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We present finite-temperature, lattice Monte Carlo calculations of the particle number density,
compressibility, pressure, and Tan’s contact of an unpolarized system of short-range, attractively
interacting spin-1/2 fermions in one spatial dimension, i.e. the Gaudin-Yang model. In addition,
we compute the second-order virial coefficients for the pressure and the contact, both of which are
in excellent agreement with the lattice results in the low-fugacity regime. Our calculations yield
universal predictions for ultracold atomic systems with broad resonances in highly constrained traps.
We cover a wide range of couplings and temperatures and find results that support the existence
of a strong-coupling regime in which the thermodynamics of the system is markedly different from
the non-interacting case. We compare and contrast our results with identical systems in higher
dimensions.

PACS numbers: 67.85.Lm, 05.30.Fk, 74.20.Fg

I. INTRODUCTION

Universal aspects of strongly coupled nonrelativistic
many-body systems have been in the spotlight for the
last decade. The realization and manipulation of these
systems in the form of ultracold atomic clouds close to
broad Feshbach resonances [1], followed by the enhanced
understanding of their universality in terms of underly-
ing conformal invariance, equations of state, and the Tan
relations [2], have clarified the central role of these sim-
ple systems for many-body quantum mechanics across
all of physics. Broad resonances in dilute gases result
in effective short-range interactions, such that the ther-
modynamics is universal, in the sense that the only sig-
nificant dynamical scale is the s-wave scattering length,
and the thermal behavior is otherwise insensitive to the
microscopic details of the system.

Interest in the one-dimensional (1D) version of these
systems has existed in the area of condensed matter for a
long time (see e.g. [4]), as many of these systems display
quantum phase transitions, conformal invariance, and in
some cases are exactly solvable (at zero temperature).
Remarkably, 1D problems have also been studied in nu-
clear physics, where model calculations that resemble nu-
clear systems have often been performed (see e.g. [5, 6]),
both for insight into the physics as well as to develop new
many-body methods [7].

In spite of such broad interest, a precise characteriza-
tion of unpolarized attractively interacting fermions in
1D (e.g. in terms of the thermal equation of state and
the contact) remains surprisingly absent from the liter-
ature. Such characterization is simultaneously a predic-
tion for ultracold-atom experiments and a benchmark for
many-body methods. In contrast, there exists a consid-
erable body of literature related to polarized Fermi gases
in 1D, which are particularly interesting in connection
with exotic superfluid phases that may appear at low
temperatures. Most of that work focuses on the ground-
state problem, which can be exactly solved via the Bethe

ansatz (we return to this below); a recent, thorough re-
view can be found in Ref. [8].

In this work we study the thermodynamics of unpolar-
ized spin-1/2 fermions with a contact interaction, i.e. the
Gaudin-Yang model [9],

Ĥ = − ~2

2m

∑
i

∇2
i −

∑
i<j

gδ(xi − xj), (1)

where the sums are over all particles. We cover weakly
to strongly coupled regimes, as well as a wide range of
temperatures, and show lattice Monte Carlo results for
the particle number density n, pressure P , compressibil-
ity κ, and Tan’s contact C [10]. Furthermore, we use
exact diagonalization on the lattice to obtain the second-
order virial coefficient for the pressure b2, for which we
also present analytic continuum results. Using the same
analysis, we obtain analytic and numerical answers for
the leading-order coefficient for the contact c2.

II. MANY-BODY METHOD, SCALES AND
DIMENSIONLESS PARAMETERS

We employed a technique similar to that of Refs. [11–
13] but applied in 1D. The two-species fermion system is
placed in a Euclidean space-time lattice of extent Nx×Nτ
with periodic boundary conditions in the spatial direc-
tion and anti-periodic in the time direction. A Trotter-
Suzuki decomposition of the Boltzmann weight is imple-
mented, followed by a Hubbard-Stratonovich transforma-
tion, which allows us to write the grand-canonical parti-
tion function as a path integral over an auxiliary field.
The path integral is evaluated using Metropolis-based
Monte Carlo methods (see e.g. Ref. [14]). Throughout
this work, we use units such that ~ = m = kB = 1, where
m is the mass of the fermions. The physical spatial extent
of the lattice is L = Nx`, and we take ` = 1 to set the
length and momentum scales. The extent of the temporal
lattice is set by the inverse temperature β = 1/T = τNτ .
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The time step τ = 0.05 (in lattice units) was chosen
to balance temporal discretization effects with computa-
tional efficiency; in any case, those discretization effects
are smaller than our statistical effects.

The physical input parameters are the inverse temper-
ature β, the chemical potential µ = µ↑ = µ↓, and the

(attractive) coupling strength g > 0. From these, we
form two dimensionless quantities: the fugacity and the
dimensionless coupling, given by

z = exp(βµ) and λ2 = βg2, (2)

respectively. In the grand-canonical ensemble, the den-
sity n is an output variable, and therefore we use λ in-
stead of the γ = g/n parameter often employed in 1D
ground-state studies (see e.g. Refs. [15, 16]).

Note that 1D fermions with a contact interaction are
ultraviolet-finite, and as a consequence the bare coupling
has a physical meaning. In the continuum limit, g =
2/a0, where a0 is the scattering length for the symmetric
channel (see e.g. Ref. [17]). Using z and λ as parameters
will facilitate the comparison with experiments, as well
as with other theoretical approaches.

Lattice calculations of the kind we use are exact, up
to statistical and systematic uncertainties. To address
the former, we have taken 5000 de-correlated samples for
each data point in the plots shown below, which yields
a statistical uncertainty of order 3− 4%. To address
the systematic effects, one must approach the contin-
uum limit. Because one-dimensional problems are com-
putationally inexpensive, it is possible to calculate in
large lattices, from Nx = 50 to 100 and beyond. For
such lattice sizes, the continuum limit is achieved by
lowering the density while still remaining in the many-
particle, thermodynamic regime. Operationally, this is
accomplished by increasing the lattice parameter β, en-
suring that the thermal wavelength λT =

√
2πβ satisfies

1 = ` � λT � L = `Nx; at fixed z, this reduces the
density. In our calculations, we have used λT ' 3.5− 7.0
and Nx = 81. We have then verified that our results
collapse to the same (universal) curve when β and g are
varied while λ2 = βg2 is held fixed. This “collapse” takes
place at different rates for different parameter values (see
Appendix A for additional details). Lattice sizes larger
than Nx = 81 are computationally more expensive but
certainly feasible; however, we chose to fix that size and
cover a wider region of parameter space instead. Because
our study proceeded at constant λ, increasing β implies
reducing g, which results in smaller uncertainties associ-
ated with the temporal lattice spacing τ in the Trotter-
Suzuki decomposition; these are expected to be of order
1−2% (see e.g. Ref. [12]).

III. RESULTS

We report our results in dimensionless form by dis-
playing quantities in units of their non-interacting coun-
terparts at the same value of the input parameters, or

by scaling them by the appropriate power of the ther-
mal wavelength λT =

√
2πβ. Among our results is the

density equation of state n(λ, βµ), from which we ob-
tain the pressure P and the isothermal compressibility
κ by integrating and differentiating, respectively, with
respect to the chemical potential. Our last Monte Carlo
result is Tan’s contact C, which we determine by comput-
ing the average interaction energy. In addition to these
quantities, we use exact diagonalization to compute the
second-order virial coefficient for the pressure and den-
sity, and the corresponding leading-order coefficient for
the contact; for both of these we also provide analytic
results.

A. Density

In Fig. 1 we show the density n as a function of the
dimensionless parameters z and λ, defined above. The
non-interacting result is

n0λT =
2√
π
I1(z), (3)

where I1(z) = z dI0(z)/dz, and

I0(z) =

∫ ∞
−∞

dx ln(1 + ze−x
2

). (4)

The solid curves in Fig. 1 corresponds to a three-point
moving average over an interpolation of the original
Monte Carlo data. The error bars represent the differ-
ence between the original data and the moving average.
For all λ > 0 there exists a strongly coupled regime
around βµ = ln z ' −1, where the deviation from the
non-interacting system is maximal. This effect is more
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0 4 8 12 16

-4 -2 0 2 4 6 8
1.0

1.5

2.0

2.5

3.0

3.5

4.0

��

n
n0

Figure 1. (color online) Density n, in units of the
density of the non-interacting system n0, as a func-
tion of the dimensionless parameters βµ = ln z and
λ2 = βg2. From bottom to top, the coupling is λ =
0.0, 1.0, 1.25, 1.5, ..., 2.5, 2.75, 3.0, 3.1, 3.2, ..., 4.0. The dashed
line joins the maxima at each λ.
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pronounced for larger λ. The locus of the maxima (indi-
cated in Fig. 1 with a dashed line) can be shown to satisfy
n0κ0 = nκ, where κ is the isothermal compressibility of
the system at finite λ and κ0 is the noninteracting value.

These results are qualitatively similar to those of
Ref. [18]. In that work, the density equation of state
was computed for the 2D system. The similarity can
be traced back to the fact that in both cases a bound
state is formed as soon as interactions are turned on,
i.e. the unitary limit coincides with the non-interacting
limit. Therefore, increasing βµ along the line of constant
physics (i.e. fixed λ) ultimately leads to a weak-coupling
regime in 1D and 2D. In 3D, however, the analogous path
drives the system deep into the non-trivial unitary limit.
References [13, 19], for instance, do not see a peak in
n/n0, but rather a monotonically increasing function (see
e.g. Fig. 4(a) in Ref. [19], or Fig. 4 in Ref. [13]).

To characterize the approach to the non-interacting
limit in the region βµ > 0, we performed fits to the den-
sity using the (purely phenomenological) functional form

n/n0 = 1 + α(βµ)−γ , (5)

where α, γ are functions of λ, as shown in Table I. For
βµ� 0, the virial expansion is applicable, for which

nλT /2 = z + 2b2z
2 + 3b3z

3 + ..., (6)

and the factor of 1/2 on the left-hand side comes from
the number of fermion species. In Table I we show the
virial coefficient b2 obtained by exact diagonalization of
the two-body problem on the lattice. The exact result for
b2 in the continuum limit, obtained by the same methods
utilized in 3D (see e.g. Refs. [20, 21]), is

b2 = − 1

2
√

2
+
e

λ2

4

√
2

erf(λ/2), (7)

where erf(x) is the error function. From the above data,
we determine other thermodynamic quantities, which
furnish a prediction for ultracold atom experiments.

Table I. Fit parameters for the density equation of state, us-
ing the functional form n/n0 = 1 + α(βµ)−γ , second-order
pressure virial coefficient b2, and leading-order contact virial
coefficient c2, all as a function of the dimensionless coupling
λ. For the non-interacting gas (λ = 0), the virial coefficients

are bn = (−1)n+1n−3/2.

λ b2(lattice) c2(lattice) α γ

0 −0.35355... 0 0.0 −
1.0 0.11(5) 0.54(5) 0.24(1) 0.46(6)
1.25 0.28(5) 1.06(5) 0.300(5) 0.47(4)
1.5 0.48(5) 1.98(5) 0.450(2) 0.53(9)
1.75 0.76(5) 3.60(5) 0.554(5) 0.56(9)
2.0 1.13(5) 6.42(5) 0.656(8) 0.59(2)
2.25 1.64(5) 11.3(5) 0.771(8) 0.61(6)
2.5 2.34(5) 19.9(5) 0.970(1) 0.66(1)
2.75 3.33(5) 34.8(5) 1.219(6) 0.70(1)
3.0 4.78(5) 61.1(5) 1.525(1) 0.76(1)

B. Temperature scale

Having the density as a function of βµ at our disposal,
we can determine the temperature scale in a different
convention which is often used, namely T/εF , where εF =
k2F /2 and kF = πn/2. In Fig. 2 we show our results for
T/εF as a function of the dimensionless coupling kFa0,
for each value of λ. This graph should be understood
as a parametric plot: both axes depend on βµ implicitly
through n, at fixed λ. As can be appreciated from this
plot, for each λ our results cover a range in T/εF that
goes from below 0.1 all the way to beyond 1.5 (for display
purposes, Fig. 2 does not show the full upper region of
the T/εF axis, which corresponds to large, negative βµ).
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Figure 2. (color online) Temperature scale, in units of εF , as
a function of the coupling kF a0. Here, kF = πn/2, where n is
the total density, and εF = k2F /2. The dashed line connects
the βµ = 0 points for each value of λ. The βµ > 0 (< 0)
points lie to the right (left) of the dashed line.

C. Pressure and compressibility

It is straightforward to obtain an estimate for the pres-
sure by integrating nλT over log z = βµ. We take the
z = 0 limit (i.e. βµ → −∞) as a reference point. In
practice, we verify that the data heals (within statistical
uncertainties) to the virial expansion at low z, and use
that result (at second order) to complete the integration
to z = 0. In that limit the pressure vanishes, such that

Pλ3T = 2π

∫ βµ

−∞
nλT d(βµ)′. (8)

The results for P , in units of the non-interacting pressure
P0, are shown in Fig. 3. Note that P0λ

3
T =

√
16πI0(z),

where I0(z) is given above. By taking a derivative of n
one obtains the isothermal compressibility,

κ =
β

n2
∂n

∂(βµ)

∣∣∣∣
β

= λ3T

√
2π

(nλT )2
∂(nλT )

∂(βµ)

∣∣∣∣
β

. (9)
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Figure 3. (color online) Pressure in units of its non-interacting
counterpart, as a function of the dimensionless parameters
βµ = ln z and λ2 = βg2, obtained by βµ-integration of the
density (see Eq. 8). The values of λ shown in this plot are the
same as in Fig. 1.

We report this quantity in Fig. 4, in units of its non-
interacting counterpart κ0, where (in dimensionless form)
κ0λ

−3
T = π−3/2(n0λT )−2I2(z), and I2(z) = z dI1(z)/dz.

As expected, in the limits of large βµ (both positive
and negative) κ tends to κ0. On the other hand, in
the strongly interacting region κ � κ0, i.e., the system
is less compressible than in the non-interacting regime.
We attribute this to the formation of localized di-fermion
molecules and Pauli exclusion. Note that oscillations in
these curves at large βµ reflect the inherent instability
of calculating numerical derivatives (when coupled with
the statistical uncertainty in n), rather than a physical
effect.
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Figure 4. (color online) Isothermal compressibility in units of
its non-interacting counterpart, as a function of the dimen-
sionless parameters βµ = ln z and λ2 = βg2. The values of λ
shown in this plot are the same as in Fig. 1, but from top to
bottom instead.

D. Contact

Knowing the density as detailed above, one may use
the Maxwell relation to calculate the contact C from n
(see Refs. [10, 22, 23]), which in dimensionless form reads

z
∂(β2C)
∂z

∣∣∣∣
λ,T

=
λ2

2
√

2π

∂(nλT )

∂λ

∣∣∣∣
z,T

. (10)

Alternatively, one may use the interaction energy 〈V̂ 〉.
Starting from the definition in 1D,

C =
2

βλT

∂(βΩ)

∂(a0/λT )

∣∣∣∣
µ,T

, (11)

where Ω is the grand thermodynamic potential, the con-
tact can be shown, using the Feynman-Hellman theorem,
to be given by

C = −g〈V̂ 〉. (12)

Note that C can be made dimensionless and intensive by
multiplying it by λ4T /L. On the other hand, the virial ex-
pansion for Ω reads −βΩ = Q1

(
z + b2z

2 + b3z
3 + . . .

)
,

where Q1 = 2L/λT is the single-particle partition func-
tion, and the virial coefficients bn are the same as those
for the density appearing in Eq. 6. Thus, the virial ex-
pansion for C takes the form

βC =
2

λT
Q1

(
c2z

2 + c3z
3 + . . .

)
, (13)

where

cn = − ∂bn
∂ (a0/λT )

=

√
2

π
λ2
∂bn
∂λ

. (14)

Our definition for the cn coefficients coincides with that
of Ref. [24]. From our calculation of the virial coefficient
b2, we obtain ∂b2/∂λ; the resulting c2 is shown in Table I.
The exact continuum result (based on Eqs. 7 and 14) is

c2 =
λ2

π
− λ3

4
√
π
e

λ2

4 erf(λ/2). (15)

In Fig. 5 we show our results for the contact, includ-
ing the leading-order virial expansion (inset). We show
statistical error bars in the inset; in the main plot, the
smoothness of the results across βµ indicate that the sta-
tistical effects are of the order of the size of the sym-
bols. As seen in the inset, the data captures the correct
asymptotic behavior at small z for all λ, but the agree-
ment slowly deteriorates at large λ, suggesting that the
virial expansion breaks down earlier in that regime. For
βµ� 1 the contact satisfies

Cπβ2/(2Lλ2) = 〈n̂↓n̂↑〉πβ/2→ ζ1βµ+ ζ2, (16)

where we find ζ1 = 0.35(1) is nearly λ-independent; it
is in fact a feature of density-density correlations in the
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Figure 5. (color online) Tan’s contact C, scaled by
βλT /(2Q1λ

2) = πβ2/(2Lλ2) (see Eqs. 13, 14), as a function
of βµ. The black line shows C in the absence of interactions.
Inset: zoom-in of main plot on the region −4.5 ≤ βµ ≤ −1.0,
showing also the leading-order virial expansion. Both plots
show data for λ = 0.5, 1.0, 1.5, ..., 4.0, which appear from bot-
tom to top.

non-interacting gas that leaves an imprint at all couplings
(see below). On the other hand, as is evident from the
plot, ζ2 is approximately linear in λ at large βµ (we find
ζ2(λ) ' a + bλ with a = −0.34(1) and b = 0.701(5)
at βµ = 10). Analytic estimates in the absence of in-
teractions yield ζ1 = 1/π = 0.318... and ζ2 ∝ (βµ)−1.
Although much is known about C in various situations
(see e.g. Ref. [25] for a review), the full temperature de-
pendence in 1D shown here does not appear anywhere
else in the literature, to the best of our knowledge.

IV. SUMMARY AND CONCLUSIONS

We have performed a controlled, fully non-perturbative
study of the thermodynamics of the Gaudin-Yang model
(i.e., a one-dimensional, two-species Fermi system, with
short-range, attractive interactions). We employed lat-
tice Monte Carlo methods that have been successfully
utilized before for similar studies, and discussed statis-
tical and systematic uncertainties. We report here on
several quantities, namely the density, pressure, contact,
and leading virial coefficients, in all cases covering weakly
to strongly coupled regimes (as characterized by val-
ues of the dimensionless parameter 0 ≤ λ2 ≤ 16.0), as
well as low to high temperatures (as characterized by
−5.0 ≤ βµ ≤ 8.0, which ranges from the semi-classical
regime βµ < −1.0 to the deep quantum regime βµ > 1.0,
which we also display in terms of T/εF ). Our results
for the density equation of state display a behavior sim-
ilar to that observed in 2D systems: A regime exists
around βµ = ln z ' −1 in which deviations from the
non-interacting case are maximal. As z is increased from
z � 1 (the semi-classical regime where the virial expan-
sion is valid) this strongly coupled regime is (roughly)

accompanied by the onset of quantum fluctuations at
βµ = ln z ' 0.

Although certain 1D Fermi systems are exactly solv-
able via the Bethe ansatz [26], the latter is restricted to
uniform systems in the ground state (or close to it [28]).
Indeed, finite temperature studies require the thermody-
namic Bethe ansatz, which involves solving an infinite
tower of coupled non-linear integral equations [28]. The
necessary truncation of this tower leads to a potentially
uncontrolled approximation, in contrast to the control
over uncertainties present in the Monte Carlo techniques
used here. Regardless, it is somewhat surprising that a
thorough numerical characterization of this simple sys-
tem, as a benchmark for many-body methods, is absent
from the literature, to the best of our knowledge. To help
remedy this situation as much as possible, we have char-
acterized the universal thermodynamics of this system in
detail.

Finally, our results constitute predictions for experi-
ments with ultracold atoms in highly elongated optical
traps. These are now realized using modulated poten-
tials. Moreover, our results are universal in the sense
that they apply to any unpolarized atomic gas in dilute
regimes, where the interaction potential is well approx-
imated by a contact interaction. As we show through-
out all reported quantities, there is only one interac-
tion parameter (i.e. λ) determining the thermodynamics.
Our study is readily generalizable to a higher number of
fermion species, which are expected to be experimentally
available in the near future [29].
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Appendix A: Systematics of the approach to the
continuum limit

In this section we report briefly on the systematic ef-
fects resulting from performing calculations at finite β.
As mentioned in the main text, the continuum limit is
approached in our method when β → ∞, and different
quantities approach their limit at different rates, which
also depend on the values of other input parameters (e.g.
βµ). As we show in Figs. 6 and 7, the convergence to the
large-β limit improves as the difference between βµ and
the βµ ' −1 point (where the interaction and quantum
effects dominate) increases. This is clearer at strong cou-
pling (Fig. 7) than at weak coupling (Fig. 6); indeed, the
latter is essentially converged already at β = 4, whereas
the former still shows finite-β effects even at β = 8
in some regions. From these graphs, we infer that the
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Figure 6. (color online) Density n, in units of the non-
interacting density n0, as a function of βµ at weak coupling
(λ = 1.0), for several values of β. Finite-β effects are small
throughout the graph. Note the ranges in the x and y axes
are different from those of Fig. 1.

largest systematic uncertainties due to finite β are on the
order of 10%. We stress that that is an upper bound for
these systematic effects. Those effects are most promi-
nent around the maximum in n/n0; they are apparent

for the strongest couplings we have studied (λ = 4) and
are small for weak coupling (λ = 1).
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Figure 7. (color online) Density n, in units of the non-
interacting density n0, as a function of βµ at the strongest
coupling in this study (λ = 4.0), for several values of β.
Finite-β effects are clearly visible, especially around the max-
imum. Note that the x-axis range is different from that of
Fig. 1, but the y-axis is slightly extended.
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