
This is the accepted manuscript made available via CHORUS. The article has been
published as:

High-temperature supersolid of ^{4}He in a one-
dimensional periodic potential

Raina J. Olsen
Phys. Rev. A 91, 033602 — Published  2 March 2015

DOI: 10.1103/PhysRevA.91.033602

http://dx.doi.org/10.1103/PhysRevA.91.033602


A high-temperature supersolid of 4He in a one-dimensional periodic potential

Raina J. Olsen∗

Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831

The search for robust experimental proof of supersolidity has encountered many complicating
factors, such as temperature dependent changes in the mechanical properties of solid 4He which
mimic the signature of superfluid flow. As a result, the physical existence and true nature of this
unique state of matter are still under debate. Here we consider 4He stabilized by a one-dimensional
periodic potential whose lattice spacing is similar to the length scale of the 4He-4He interaction.
We use the Bogoliubov transformation to calculate the excitation spectrum, finding that when
interactions between nearest or next-nearest neighbors are attractive, there is a finite positive gap in
energy between the delocalized ground state and the lowest energy excitations, which is significantly
larger than the both the lambda temperature and the melting temperature. Not only does this make
the system stable against phase separation of particles and vacancies, but it means that it should
be possible to observe a supersolid at a high enough temperature that superfluidity in bulk liquid
4He or changes in the mechanical properties of bulk solid 4He do not obscure it. The properties of
experimentally achievable materials which could support this type of supersolid are also discussed.

PACS numbers: 03.75.-b,67.80.bd, 05.30.-d

I. INTRODUCTION

A supersolid is a paradoxical state of matter in which
certain positions are more likely to contain a particle than
others, just as in a classical solid where the particles oc-
cupy fixed sites. But in contrast to a classical solid where
each particle is localized at a single site, the particles in
a supersolid flow without friction between these sites as
they do in a superfluid [1]. Since the concept was first
proposed over forty years ago [2–4], the physical existence
and true nature of a supersolid has been a matter under
debate. The first claim of experimental observation of su-
persolidity [5] both intensified the debate and increased
the interest in studying these systems experimentally.

In general, there are two types of supersolid systems
currently being considered, but experimental study of
both of these systems present complications which have
so far prevented definitive proof for the supersolid state.
The first is bulk solid 4He, in which the “solid” in super-
solid originates entirely from the 4He-4He van der Waals
interaction, which is attractive between particles at ad-
jacent lattice sites. Originally the supersolid state in this
system was described as a cloud of delocalized vacan-
cies, which exist even in a perfect crystal [3, 4]. Creation
of a localized vacancy increases the potential energy be-
cause particles at neighboring sites no longer have an
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attractive interaction with the removed particle, but de-
localizing the vacancy decreases the kinetic energy, thus
if the kinetic term dominates then creation of delocal-
ized vacancies will be energetically favorable. But recent
theoretical studies have found that delocalized vacancies
have a finite energy cost at the melting density [6]. At the
same time, torsional oscillator experiments with solid 4He
looking for the non-classical rotational inertia (NCRI) of
superfluid 4He have found that the fraction of 4He with
NCRI has a strong dependence on the density of defects
in the crystal [7, 8]. As a result, most people in the field
now agree that superfluid flow in solid 4He does not occur
in the perfect bulk crystal [9, 10], but occurs only along
vacancies which collect near defects [10–12] (though there
are some exceptions [13].) Not only does this mean that
the fraction of particles participating in superfluid flow is
quite small and thus difficult to detect, but experiments
have also shown that the defects affect the mechanical
properties of the solid in a way which can mimic NCRI
[14]. Thus both the physical existence of superfluidity
in bulk solid 4He and its accurate theoretical description
are still being hotly debated.

The second type of supersolid, formed by cold atoms
in optical lattices within an atomic trap [15–19], is sim-
pler to describe but has still not been observed. To see
a supersolid in which particles (and thus vacancies) are
delocalized over the entire system rather than phase sep-
arating, it is necessary to have strong interactions be-
tween particles which sit at neighboring sites on the lat-
tice [18]. Strong repulsive interactions between neigh-
bors create a solid-like structure, with only certain lattice
points occupied [15–19]. Since optical systems have lat-
tice spacings much larger than the length scale of van der
Waals interactions, interactions between neighboring lat-
tice sites are long range and must be induced by some ad-
ditional mechanism [19–21]. While experimental creation
of atomic traps and optical lattices are well-understood,
offer significant benefits such as the lack of defects and
ability to finely control the system, and have been used to
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study Bose-Einstein condensation [22–24] and superflu-
idity [25], creation of optical systems with strong enough
long-range interactions to observe the predicted super-
solid has not yet been achieved. Additionally, methods
to measure properties of optical systems are quite differ-
ent than those used with condensed matter systems, and
will also need to be developed to detect signatures of su-
persolidity [20]. But because these systems are predicted
to have superfluid flow throughout the entire system, the
signature of supersolidity should be much larger, thus
easier to reliably detect.

We propose a hybrid system which combines the bene-
fits of each of these systems to overcome many of the cur-
rent difficulties in obtaining strong experimental proof of
supersolidity. Our system is composed of 4He occupying
an external periodic potential whose lattice spacing is co-
herent with the particle-particle interactions. Like bulk
solid 4He, the strong interactions necessary to create a su-
persolid state originate naturally from the 4He-4He van
der Waals interaction, but the structure of the supersolid
is controlled and stabilized by the external potential, as
it is in an optical lattice system. Within a certain range
of parameters, we find that the ground state is super-
fluid and also has crystalline order in its density profile,
making it a supersolid. As in an optical supersolid, there
is superfluid flow throughout the entire system and thus
the fraction of NCRI will be much larger and easier to
detect than it is in bulk solid 4He. In addition, we find
a large gap in energy between this ground state and the
lowest energy density excitations, which is an order of
magnitude larger than both the lambda point and melt-
ing point of bulk 4He. This means that the signature
of NCRI from the supersolid 4He in this system should
be observable at high enough temperatures that super-
fluidity in bulk liquid 4He or changes in the mechanical
properties of bulk solid 4He do not obscure it.

In this paper, we consider 4He in an idealized one-
dimensional potential, finding that the effect occurs only
within two narrow ranges of lattice spacing, correspond-
ing to systems in which there are strong attractive in-
teractions between nearest or next-nearest neighbors. To
the best of our knowledge, previous studies of supersolids
in optical lattice systems have considered only repulsive
interactions between neighbors. The need for strong at-
tractive interactions between neighbors, which originate
from short-range van der Waals forces, does add an ad-
ditional complication to experimental study of this sys-
tem, since the necessary lattice spacing is too small to be
achieved with an optical system; instead an appropriate
materials system must be found, and lattice spacing is
much more difficult to control in materials. However, we
have previously found that a quasi-two dimensional sys-
tem composed of two close parallel graphene sheets can
also provide the necessary environment with attractive
interactions between certain next-nearest neighbors [26].
In this system, the graphene lattice spacing is fixed, but
the distance between the two sheets is varied to provide
the correct spacing between neighbors on different sheets.

It is likely that other similar materials systems could also
be found, such as nanotubes with controllable diameter
[27] and opened ends [28].

II. CALCULATIONS

In this work, we begin with a plane-wave basis set and
diagonalize the Hamiltonian using the Bogoliubov trans-
formation (BT) [29]. In Sec. II A we shall review the
single mode BT, typically used to calculate the spectrum
of excitations in bulk superfluid liquid 4He. In Sec. II B,
we will use the multi-mode BT to calculate the excita-
tion spectrum in the presence of an external periodic po-
tential, with the results, showing both superfluidity and
long-range crystalline order, presented in Sec. II C. In
contrast to the BT used with a plane-wave basis set in
the present work, other previous studies of the super-
solid state in solid 4He generally begin with a basis set
of Wannier functions, which are localized at each lattice
site, and use a Bose-Hubbard model (BHM) to diagonal-
ize the Hamiltonian. In Sec. II D we will compare our
BT calculations with those of a BHM, showing that ex-
cited bands must be included in a BHM to capture the
results of the multi-mode BT for this system.

A. Single-Mode Bogoliubov Transformation

We shall briefly review the single-mode BT for a ho-
mogeneous system of 4He [30], noting its assumptions
and approximations and casting the equations in a ma-
trix form which will be used in the next section with the
multi-mode BT. (Note that some of the notation may
seem unnecessary in the single-mode case, but will be
useful in the multi-mode case.) Then we will use the re-
sults of the single-mode BT to discuss the approximate
effect of an external potential on the excitation spectrum.

Using a plane wave basis set and assuming that there
is no external potential, the Hamiltonian is given by

Ĥ =
∑
k

E(k)â†kâk +
∑
k,k′,q

V (q)

2Ṽl
â†k+qâ

†
k′−qâk′ âk (1)

where E(k) = ~2k2/2m is the kinetic energy, Ṽl is the vol-
ume in l dimensions such that the density is ρ = N/V l

whereN =
∑
k â
†
kâk, and V (q) is the Fourier transform of

an effective two-body 4He-4He interaction Veff (x). Typi-
cally the effective interaction Veff (x) is equivalent to the
real 4He-4He interaction, but with the highly repulsive
part at x → 0 set to a finite constant. This screening is
an approximation for correlation effects, which we discuss
in more detail in the Appendix. Here we use the 3D V (q)
proposed by Sunakawa et al. [31] to match measurements
of excitations in bulk superfluid 4He. This interaction
potential is shown in Figure 1(a). It is overall highly re-
pulsive, but is negative at k ∼ 2 Å−1, corresponding to
a wavelength of ∼ 3.1 Å and reflecting the fact that the
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FIG. 1. (Color online) (a) Fourier transform of the 4He-4He
interaction energy times the liquid 4He density, ρliq, in units
of Kelvin (K). (b) Single particle energy in a periodic potential
Ucos(Qx) with Q=3.75 Å−1. (c) Energy of the elementary
excitations calculated by Eq. 12 at ρliq, using the energies in
panel (b).

4He-4He interaction is attractive at these distances. Note
that V (q) = V ∗(−q), and that the imaginary interaction
terms in Eq. 1 always cancel after the sum over q, thus
we can take V (q) as real and symmetric.

The BT assumes that the system is at a low enough
temperature that the lowest energy state is occupied by
a large fraction of the particles, and the number of ex-

citations is small
∑
k 6=0 â

†
kâk = δN � N . Thus the

k = 0 state is taken as the trial ground state and because
the number of excitations is small, two body interaction
terms between two excitations ( with k 6= 0, k′ 6= 0)
are neglected. The BT also assumes that because of the
macroscopic occupation of the k = 0 state, quantum fluc-
tuations of this state may be neglected, and operators for
this state are replaced with a c-number,

â†0â0 ≡ N0 = N −
∑
k

â†kâk ' â0â0 ' â
†
0â
†
0 ' â0â

†
0, (2)

â†0â
†
0â0â0 = N2

0 ' N2 − 2N
∑
k

â†kâk, (3)

Details on derivation of the BT can be found in Pitaevskii
and Stringari [30]. Defining E1

0 = E(0) as the one-body
energy of a particle in the lowest energy state, and Em0 =
V (0)

2Ṽl
as the mean field interaction energy between two

particles in the system, the Hamiltonian then becomes,

Ĥ = N(E1
0 +NEm0 ) + ∆Ĥ (4)

∆Ĥ =
∑
k 6=0

(E(k)− E(0))â†kâk (5)

+N
∑
k 6=0

V (k)

2Ṽl

[
2â†kâk + â†kâ

†
−k + âkâ−k

]
.

Replacing 2â†â = ââ†+ â†â− 1 ' ââ†+ â†â, and casting

∆Ĥ in matrix form,

∆Ĥ =
∑
k 6=0

[â†kâ−k]

[
Ek λk
λk Ek

] [
âk
â†−k

]
, (6)

2Ek = E(k)− E(0) + ρV (k), (7)

2λk = ρV (k). (8)

Because of the non-zero λk terms which mix excitations
at k and −k, the Hamiltonian is not diagonal in this
basis. The Bogoliubov transformation converts to a new
diagonal basis where,

∆Ĥ =
∑
k 6=0

[b̂†k b̂−k]

[
Ẽk 0

0 Ẽk

] [
b̂k
b̂†−k

]
, (9)

through the transformation,

Mk =

[
uk vk
vk uk

]
, (10)[

âk
â†−k

]
= Mk

[
b̂k
b̂†−k

]
. (11)

The condition to preserve the boson commutation rules
in the new basis, is u2k − v2k = 1, with uk = cosh(αk),
vk = sinh(αk), and tanh(2αk) = −λk/Ek. This means
that for these equations to have a solution, |λk| ≤ |Ek|.
When the equations do not have a solution, this indicates
that our trial ground state should be discarded.

Note that Eq. 9 diagonalizes the excitations, but does
not directly modify the ground state. We will show in
Sec II C (begining with Eq. 28) that there is a non-zero
number of particles in excited states even at T = 0, an
effect called quantum depletion which represents an ef-
fective modification of the ground state. The quantum
depletion at a given k grows as |λk| → |Ek|. But recall
that in going from Eq. 1 to Eq. 4, the BT makes the
assumption that there are few excitations, so that terms
which are quadratic in the number of excitations may be
neglected. As quantum depletion grows to represent a
large fraction of the particles in the system, this assump-
tion becomes inaccurate and thus the BT equations are
inaccurate or even insoluble.

Generally speaking, when the BT does not have a solu-
tion, this indicates that the ground state should include
components at the values of k for which the BT is in-
soluable. Often this indicates a transition from a Bose-
Einstein condensate (BEC) in the delocalized k = 0 state
to localized states, in which a range of states with small
k are occupied. For instance, it is well known that a
BEC with attractive interactions is unstable. Under this
condition, limk→0 V (k) < 0 and Eqs. 7 and 8 show that
|λk| > |Ek| for small but finite k, thus there is no solution.
The BT is not able to explicitly calculate a delocalized
to localized transition, but finding no solution for long-
wavelength excitations indicates that such a transition
will occur.

Scaling the energy so that E(0) = 0, the resulting

equation for the energy of the excitations is ε(k) ≡ Ẽk,

ε(k) =
√
E(k)2 + 2E(k)ρV (k). (12)
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Using the Sunakawa et al. [31] potential produces the
well-known roton dip in the excitation energy (shown by
the unbroken line in Fig. 1(c)), which is caused by using
the negative values of V (k) in Eq. 12 at wavelengths
∼ 3.1 Å.

As a first approximation, we can estimate the effect of
an external periodic potential Ucos(Qx) on the excita-
tion spectrum by using the single particle energy E(k)
for the periodic potential, shown in Fig. 1(b) for several
values of U . The excitation energies are then calculated
by using these values for E(k) in Eq. 12, and are shown
in Fig. 1(c).

For the spectra plotted in Figure 1(b)-(c), we have cho-
sen the periodicity of the external potential such that the
boundary of the first Brillouin zone at Q/2 falls in the
roton part of the excitation spectrum. This results in a
particularly dramatic change in the excitation spectrum.
Even a relatively weak potential opens a large enough
band gap at E(Q/2) to significantly reduce the roton
energy even further. When −2ρV (Q/2)/E(Q/2) > 1,
we find that Eq. 12 no longer has a solution at Q/2.
As discussed above, this means that our trial ground
state, the k = 0 state, is not correct, but because the
excitations with no solution are not near k → 0, a de-
localized to localized transition is probably not the rea-
son. But certainly due to the external potential, states at
±Q,±2Q, ... should also be occupied, and these have not
been included in the trial ground state. We should also
expect that the trial ground state should include compo-
nents at k = ±Q/2, since the energy of these excitations
has approached zero. In the next section, we will include
all of these components using a multi-mode BT.

B. Multi-Mode Bogoliubov Transformation

In the presence of an external potential Ucos(Qx), the
Hamiltonian is,

Ĥ =
∑
k

[
E(k)â†kâk + U/2

∑
k

â†kâk±Q

]
(13)

+
∑
k,k′,q

V (q)

2Ṽl
â†k+qâ

†
k′−qâk′ âk.

As in the single mode case, we assume that most of the
particles occupy the ground state (g.s.) and that quan-
tum fluctuations of this state can be ignored, but now
the ground state will include components at k 6= 0 and

we will replace each of the operators â†k, âk, k ∈ g.s. with
c-numbers. We define the ground state as the momen-
tum distribution of the lowest energy many body state,

n0(k) = â†kak/N0, where N0 =
∑
k∈g.s. â

†
kak is the total

number of particles in the ground state. In derivation
of Eq. 12, it was assumed that n0(0) = 1. We term any
change in this distribution as a deformation of the ground

state. Using ˆ̃a0 =
∑
k

√
n0(k)âk, the Hamiltonian for the

particles in the ground state is,

Ĥ0 = E1
0
ˆ̃a†0ˆ̃a0 + Em0 ˆ̃a†0ˆ̃a†0ˆ̃a0ˆ̃a0 + Ed0 ˆ̃a†0ˆ̃a†0ˆ̃a0ˆ̃a0, (14)

E1
0 =

∑
k

(~k)2

2m
n0(k) +

U

2

∑
k

√
n0(k ±Q)n0(k), (15)

Em0 =
V (0)

2Ṽl

∑
k,k′

n0(k′)n0(k) =
V (0)

2Ṽl
, (16)

Ed0 =
∑

k,k′,q 6=0

[
V (q)

2Ṽl

√
n0(k′ + q)n0(k − q) (17)

×
√
n0(k)n0(k′)

]
.

The individual terms in these equations were derived
from Eq. 13, using k1, k2 ∈ g.s.. As in the single-mode
case, E1

0 is the one-body energy of a particle in the ground
state, Em0 is the mean field interaction energy of a par-
ticle in the system and is independent of the shape of
n0(k), and we introduce now a new term, Ed0 , which is
the interaction energy of a particle which results from
the deformation of the ground state. Deformation of the
ground state is caused by the presence of the external
potential, but also results from the two-body interaction
terms whenever the lattice spacing is on the order of the
length scale of the interparticle interaction. In fact, we
will find that the interesting behavior of this system oc-
curs only when the interactions cause additional defor-
mation of the many-body ground state compared to the
single-particle ground state.

We used Eqs. 14-17 to find the ground state for a 1D
system using a numerical variational method, starting
with n0(0) = 1 and adding components at n(k) which
minimize the energy. We found the 1D Fourier trans-
form of the Sunakawa et al. [31] pseudo-potential too
attractive, resulting in deformation even with U = 0
(an unphysical result), thus we estimated V 1D(k) '
V 3D(k)ρ

2/3
liq , with ρliq = 0.0218 Å−3 [31].

Figure 2(a)-(b) shows the resultant ground state in real
space and momentum space for a choice of Q = 3.75
Å−1, for which V (Q/2) < 0. As predicted in the pre-
vious section, the ground state at high density contains
components such that n0(Q/2) 6= 0, leading to Ed0 < 0.
We note that the single body ground state contains no
components at Q/2, so this deformation at Q/2 is en-
tirely the effect of interactions. By looking at the real
space representation of the ground state in Fig. 2(a), we
can gain a better physical understanding of this effect.
At a density ρ → 0, where interactions are negligible,
there are peaks in the probability density a distance 1.67
Å= 2π/Q apart, corresponding to each lattice site. But
the 4He-4He interaction is highly repulsive at this dis-
tance, thus at high density the ground state is deformed
so that only every other lattice site is occupied. The fact
that Ed0 < 0 reflects the fact that the 4He-4He interaction
is attractive for next-nearest neighbors on the lattice at
a distance of 2× 1.67 = 3.35 Å.
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FIG. 2. (Color online) Density in (a) real space and (b) mo-
mentum space of the ground state, for Q=3.75 Å−1 at aver-

age densities of ρ = 0, ρ
1/3
liq . Panel (b) also depicts some of

the negative two-body interaction terms in the ground state
Hamiltonian which make addition of components at n0(Q/2)
energetically favorable, depicted by arrows that go from the
annihilated state to the created state. (c) Density in momen-
tum space of the ground state, and the vectors of excitations
which interfere through the ground state. Some of the off-
diagonal terms in the Hamiltonian are also depicted by arrows
between the annihilated states and created states.

The approximate Hamiltonian for the single-mode case
(Eq. 4) contains several off-diagonal terms in which ex-
citations at ±k interfere through interaction with the

ground, k = 0 state, such as â†kâ
†
−kâ0â0 ∼ Nâ†kâ

†
−k,

and the single-mode BT transforms to a new basis in
which these off-diagonal terms cancel. But because the
deformed ground state contains more components, we
should expect more off-diagonal terms. As with the sin-
gle mode case, we will use an approximate Hamiltonian
which includes the single-particle energy of the excita-
tions and the interaction energy between a particle in
the ground state and an excitation, but the interaction
between two excitations will neglected.

Ĥ = Ĥ0 +
∑
k 6∈g.s.

[
~2k2

2m
â†kâk +

U

2
â†kâk±Q

]
(18)

+
∑

k0∈g.s.,k 6∈g.s.

V (0)

2Vl
2â†k0 â

†
kâkâk0

+
∑

k0,k′0∈g.s.,k 6∈g.s.

V (k)

2Vl

[
2â†k0+kâ

†
k′0
âk′0+kâk0

+â†k0 â
†
k′0
âk′0+kâk0−k + â†k0+kâ

†
k′0−k

âk′0 âk0

]
,

where the last two terms are off-diagonal. There are in-
deed many more of these off-diagonal elements in this

Hamiltonian, such as â†kâ
†
Q−kâQâ0 (using k0 = 0, k′0 = Q

in the last term). This means that an excitation at k in-
terferes with other excitations at many wavevectors be-
sides just −k, necessitating a multi-mode BT.

Inserting ˆ̃a†0ˆ̃a0 = N0 and Eqs. 2 and 3 into Eq. 14,
and the result into Eq. 18, we obtain

Ĥ = N(E1
0 +NEm0 +NEd0 ) + ∆Ĥ (19)

∆Ĥ =
∑
k 6∈g.s.

[(
~2k2

2m
− E1

0 − 2NEd0 ]

)
â†kâk+ (20)

Q

2
â†kâk±Q

]
+

∑
k0,k′0∈g.s.,k 6∈g.s.

V (k)N

2Vl

√
n0(k0)n0(k′0)×

[
2â†k0+kâk′0+k + âk′0+kâk0−k + â†k0+kâ

†
k′0−k

]
.

The off-diagonal terms may be expressed in matrix form
using vectors of creation and annihilation operators. We
define K = (k|n0(k) 6= 0), Kl < Kl+1 as the discrete
ordered set of m+1 wavevectors contained in the ground
state, and assume that the ground state is symmetric
about k = 0 such that Kl = −Km−l. We also define

Âk = [âK0+k . . . âKm+k] and Â−k = [âKm−k . . . âK0−k]

as vectors of annihilation operators, with Â
†
k and Â

†
−k

the corresponding vectors of creation operators. Figure
2(c) depicts these vectors. Again using 2â†â ' ââ† +
â†â, and k0 = Kl with k′0 set by Kl, Ki, Kj , and the
condition of momentum conservation, we obtain ∆H in
matrix form,

∆Ĥ =
1

m+ 1

∑
k 6∈g.s.

[Â
†
kÂ−k]

[
Ek λk
λk Ek

][
Âk

Â
†
−k

]
, (21)

2Ek,ij =

(
~2(Ki + k)2

2m
− E1

0 − 2NEd0

)
δij + (22)

U

2
δKi±Q,Kj

+ ρ
∑

l=[0,m]

[
V (Ki −Kl + k) ×

√
n0(Kl)n0(Kj −Ki +Kl)

]
,

2λk,ij = ρ
∑

l=[0,m]

[
V (Ki −Kl + k) × (23)

√
n0(Kl)n0(Ki +Km−j −Kl)

]
.

where the term 1/(m+ 1) in front of Eq. 21 accounts for
multiple instances of k′ = k + Kl over the m + 1 values
of Kl. The real multi-mode BT converts to a new basis,
B̂,

∆Ĥ =
1

m+ 1

∑
k

[B̂
†
kB̂−k]

[
Ẽk 0

0 Ẽk

][
B̂k

B̂
†
−k

]
, (24)



6

where Ẽk is diagonal, λ̃k = 0, ε(Ki + k) = Ẽk,ii, and

Mk =

[
uk vk
v†k u†k

]
, (25)[

Âk

Â
†
−k

]
= Mk

[
B̂k

B̂
†
−k

]
, (26)

Many properties of this transformation have been dis-
cussed in other work [32–35] which we will not repeat
here. However, we note that the condition for the com-
mutation rules to be preserved in the new basis is,

M†
[

1 0
0 −1

]
M =

[
1 0
0 −1

]
, (27)

which reduces to the familiar u2 − v2 = 1 in the single
mode case. Clearly if M and Mr both meet this con-
dition, so does MMr. Thus we solved for M using an
iterative Monte Carlo method: starting with M0 = 1, re-
peatedly generating a random matrix Mr for which Eq.
27 is true, and setting Mi+1 = MiMr if the off-diagonal
elements of the Hamiltonian are smaller in the new basis.

C. Results

In two cases, we find a solution for M (Ẽk diagonal and

λ̃k = 0) where there is a positive gap in energy between
the ground state n0 and the lowest energy Bogoliubov
excitation. Figure 3(a)-(b) shows the gap size as a func-
tion of Q, ρ, and a dimensionless parameter c describing
the potential strength U = −(c~Q)2/2m. In general, an
energy gap appears at high density in a periodic potential
where either Q or Q/2 falls into the roton region, referred
to as “Case 1” and “Case 2” respectively. Figure 3(c)-(d)
shows representative excitation spectra for each case.

In every case where a positive energy gap appears,
Ed0 < 0. Mathematically, this can be understood by
examining Eq. 22, which shows that the diagonal of
Ek is offset by −NEd0 . As discussed in the single-
mode case, we require |λk| ≤ |Ek| for the equations to
have a solution. For the multi-mode transformation,
the condition is that |λ̃k,ii| ≤ |Ẽk,ii| in a basis where

both Ẽk and λ̃k are diagonal. For Ed0 = 0, we find

limk→0 |λ̃k,ii| = |Ẽk,ii| and limk→0 |vk, ii| = |uk, ii| = ∞,
which leads to limk→0 ε(k) = 0. Meanwhile, if Ed0 is neg-

ative, we find limk→0 |λ̃k,ii| < |Ẽk,ii|, but they are never
equal, and it can be shown that this means |vk| and |uk|
never approach infinity and ε(k) never approaches zero.

Physically, we can understand this by comparing the
present system to the corresponding classical case of 4He
adsorbed on graphene, where the ground state describes
a solid commensurate (aligned) with the underlying pe-
riodic potential. As the wavelength of the phonons ap-
proaches infinity (k → 0), the phonons represent vibra-
tion of the entire system back and forth together, result-
ing in no net change to the interparticle interactions, but
moving the particles out of the minima in the potential

Q
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FIG. 3. (Color online) Energy gap between the ground su-

perfluid state and lowest energy excitation for (a) ρ = 1.4ρ
1/3
liq

and (b) c = 0.92. Excitation spectrum Ẽ(k) at ρ = 1.2ρ
1/3
liq for

(c) Q = 2.06 Å−1 and (d) Q = 4.11 Å−1 with several values
of c. Panels (c) and (d) also show vc~k for each excitation
spectrum, where vc is the critical velocity.

and thus coming at a finite energy cost in the presence
of a lattice potential [37]. This finite gap between the
ground state and the longest wavelength phonons has
been measured by neutron scattering [38]. The gap in the
excitation spectrum increases the stability of the solid
phase and thus raises the melting temperature. Here,
we observe a similar behavior, with the presence of the
external potential breaking translational symmetry [36]
and creating a finite gap between the excitation spec-
trum and the ground state, except here the ground state
is superfluid.

Ed0 < 0 with Q or Q/2 falling into the roton region cor-
responds to there being strongly attractive interactions
between either nearest or next-nearest neighbors respec-
tively, corresponding to lattice spacings of ∼3.1 Å and
∼1.5 Å respectively. We note that the lattice spacing
in graphene is 2.46 Å, which falls outside of both “Case
1” and “Case 2”. At intermediate values of Q which do
not fall into either of these cases, we could not find a
solution for the multi-mode BT. Instead, we find that we
reach a solution in which Ẽk and λ̃k are diagonal, but
|λ̃k,ii| > |Ẽk,ii| for some small values of k. As mentioned
previously, finding no solution at small values of k indi-
cates that the delocalized trial ground state n0 should be
discarded, and that the real ground state likely consists
of particles in localized states, which is consistent with
the experimental results for 4He on graphene. In Figure
3, we report an energy gap of zero in these cases where
we find no solution because we believe that a BHM is
better at distinguishing between an insulating state and
a gapless superfluid state. We will discuss the BHM in
the context of this problem in the next section.

At chemical potential µ and temperature T , since the
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quasi-particle excitations are bosons, their average occu-
pation is

< b̂†k b̂k >=
1

e(ε(k)−µ)/kBT − 1
, (28)

where kB is the Boltzmann constant. But the average
number of real particles in excited states must be calcu-
lated from the average numbers of excitations using the
BT, giving

< â†kâk > =
∑
j

[
u∗k,jm/2uk,jm/2 < b̂†Kj+k

b̂Kj+k > (29)

+v∗k,jm/2vk,jm/2 < b̂−Kj−k b̂
†
−Kj−k >

]
,

where we have used the symmetry of the ground state,
Km/2 + k = k, in the matrix multiplication. Using <

b̂−Kj−k b̂
†
−Kj−k >=< b̂†Kj+k

b̂Kj+k > +1, we obtain,

< â†kâk >=
∑
j

[ |uk,jm/2|2 + |vk,jm/2|2

e(ε(Kj+k)−µ)/kBT − 1
+ |vk,jm/2|2

]
(30)

The second term in Eq. 30 is temperature independent,
and is known as the quantum depletion. It is described as
the effect of the strong interactions which tend to push
particles out of the ground state even at T = 0. The
resultant increase in kinetic energy represents the zero-
point energy of the relative motion between the interact-
ing particles. The first term in Eq. 30 is temperature
dependent, and is known as the thermal depletion.

In bulk liquid 4He, the quantum depletion at T = 0 is
quite large, ∼91% [39]. We find that there is significantly
less quantum depletion in our system: 39.3% in “Case 1”

and 24.6% in “Case 2” (with c = 0.92, ρ = 1.2ρ
1/3
liq , and

Q = 2.06, 4.11 Å−1 respectively.) This is because inter-
actions strongly deform the density of the ground state
instead, and the quantum depletion is relatively small.
Mathematically, this can be directly related to the pres-
ence of a gap. The gap appears because |vk,jm/2| never
approaches infinity, and this also reduces the magnitude
of the quantum depletion.

In Figure 4, we show the fraction of particles in the
ground state, defined as N0/N , where,

N0 = N −
∑
k 6=0

< â†kâk > . (31)

We have used the µ of an equivalent non-interacting 1D
boson gas at N,T in Eq. 30 to calculate the average
number of particles in excited states. Figure 4 shows
that N0/N remains fixed at 60-75% up to T =2–4 K (de-
pending on parameters), and then drops off slowly. Both
the flat region and the slow fall-off are directly related to
the presence of the gap in the excitation spectrum, which
reduces the thermal depletion of the ground state. Be-
cause the ground state has diagonal long-range order, and
describes a delocalized state in which particles/vacancies
are spread out over the entire system, we call this state
a supersolid and N0/N the superfluid fraction.

In contrast, for a 3D bulk superfluid, µ = 0 is used
instead, which assumes that the N0 particles form a
Bose-Einstein condensate in the ground state. But the
Mermin-Wagner-Hohenberg theorem states that there
cannot be off-diagonal long-range order (ODLRO) in less
than three dimensions. This is a general theorem; Hohen-
berg [40] applied it to fluctuations in Bose liquids, show-
ing that there can be no ODLRO and thus no BEC in
any 1D or 2D system. Similar theorems also prevent di-
agonal long-range order in less than three dimensions for
systems with continuous translational symmetry, but the
underlying periodic potential breaks translational sym-
metry [36], permitting long-range crystalline order in this
system (just as it permits a classical 2D solid for 4He
adsorbed on graphite [37, 38]). However, presence of a
periodic external potential does not permit ODLRO.

Thus the superfluid fraction is in the ground density
state, but the phase may still fluctuate. The wavefunc-
tion of all N0 particles is thus,

ψ =
√
n0(x)eiφ(x). (32)

Note that this wavefunction has an irrotational velocity
field, just as in a bulk 2D or 3D superfluid. However, it
is likely that phase excitations no longer take the form
of simple vortices, with φ(r, θ) = mθ, where m is any
integer. This is for two reasons. First, vortices are so-
lutions of the Gross-Pitaevskii equation, which assumes
the particle-particle interaction can be approximated by
a delta-function interaction, while the behavior we have
predicted in the present work emerges only with a finite-
width interaction. Secondly, since n0(x) is not equal to a
constant, the Gross-Pitaevskii Hamiltonian may generate
interference terms ∇

√
n0(x) · ∇eiφ(x).

While a treatment of the Berezinsky-Kosterlitz-
Thouless transition (which originates from the behavior
of phase excitations) in this system is beyond the scope of
this work, we do note that phase excitations of the form
eimθ will not have diverging velocities in their core if their
centers are at the minima in n0(x). To prevent diverging
energy for vortices in normal bulk systems, the density of
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the superfluid is normally multiplied by a function that
goes to zero at the core center. In this system, that func-
tion should vary as a function of x, and thus should lead
to significantly different dynamics for the phase excita-
tions in the present system compared to bulk systems.

D. Comparison With Other Models

Here we have used a plane-wave basis set and diago-
nalized the Hamiltonian using the BT [29]. In contrast,
most previous studies of the supersolid state have used
an extended Bose-Hubbard Hamiltonian, with a basis of
Wannier functions ψi localized at each lattice site i. A
simple hard-core Bose-Hubbard Hamiltonian is,

Ĥ =
∑
i

[
−t(ĉ†i ĉi+1 +H.c.)− µĉ†i ĉi (33)

+V ĉ†i ĉ
†
i+1ĉi+1ĉi

]
where ĉ†i creates a particle in the lowest energy band at
site i and permits only one particle per site, µ is the
chemical potential, V is the interaction energy between
particles at neighboring sites on the lattice, and −t is a
negative value representing the decrease in kinetic energy
when particles hop between sites. BH models similar to
these have been thoroughly explored for positive (repul-
sive) V [15–18, 20]. But of course in a system of 4He with
a small lattice spacing, V is attractive (negative), and de-
localizing particles throughout the entire system involves
a trade-off between potential and kinetic energy, which
we can understand by considering a simple example.

Figure 5(a) depicts a solid many-body state consist-
ing of N particles on N sites, which has an energy of
NV . If a vacancy is created inside the solid, as shown
in Fig. 5(b), the energy will be (N − 2)V − 2t, a change
of −2V − 2t. (Note that the diagonalized state will be a
normalized linear combination of states with the vacancy
at different positions, (|011 · · · > +|101 · · · > +|110 · · · >
+ . . . )/

√
N , each of which have the same energy.) Be-

cause V is negative, removing a particle increases the
potential energy by −2V . But if particles jump into this
vacancy from neighboring sites, their kinetic energy de-
creases by −2t. If the total is positive, then the solid is
the ground state, and if the total is negative, then cre-
ation of delocalized vacancies inside the solid is energeti-
cally preferred and the ground state is a superfluid. The-
oretical work with bulk solid 4He at the melting density,
0.0287 Å−3, finds that the potential energy term domi-
nates and thus the ground state is solid n0(x). To make a
superfluid the ground state, the kinetic term must domi-
nate instead. We will show that the kinetic term becomes
more important in the system presented in this work be-
cause particles are pushed into higher-order bands by in-
teractions.

Inclusion of higher-order bands leads to more complex
behavior due to the larger amount of overlap between
excited Wannier functions at neighboring lattice sites
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FIG. 5. (Color online) Bose-Hubbard model for an external
potential −Ucos(Qx) with Q = 2.06 Å−1, corresponding to a
lattice spacing of a = 3.05 Å, and varying U = −(c~Q)2/2m.
(a) An insulating solid state with one particle at each site. (b)
State with a vacancy inside the solid, which can hop to dif-
ferent positions. (c) Value of the hopping parameter between
two adjacent sites for particles in the lowest energy band and
second excited band, α = 0, 2. (d) Occupation of the second
excited band for a solid state which minimizes the energy. In-
set shows wavefunctions at adjacent sites for c = 0.89 for the
α = 0 states (left), and for the lowest energy combination of
the α = 0, 2 states (right).

[19]. Based on the results of the BT, which found that
the interactions resulted in additional deformation of the
ground state beyond the deformation caused by the ex-
ternal potential, we should expect that the interactions
should push particles into excited bands in a BHM. A
BH Hamiltonian with excited bands which can capture
the behavior of the present system is,

Ĥ =
∑
i,α

[
−tα(ĉ†i,αĉi+1,α +H.c.) + (34)

(Eα − µ)ĉ†i,αĉi,α
]

+

∑
i,α1,α2,α3,α4

[
2V α1,α2,α3,α4

i,i+1,i+1,i ĉ†i,α1
ĉ†i+1,α2

ĉi+1,α3
ĉi,α4

+

2V α1,α2,α3,α4

i,i+1,i,i+1 ĉ†i,α1
ĉ†i+1,α2

ĉi,α3
ĉi+1,α4

]
where α labels the band and Eα is the band energy. Note
that because the interaction has a finite width on the
order of the lattice spacing (d = 2π/Q), both direct and
exchange interactions are important and included in Eq.
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34, with matrix elements given by,

V α1,α2,α3,α4

i1,i2,i3,i4
=

1

2

∫
ψ∗i1,α1

(x1)ψ∗i2,α2
(x2)V (x1 − x2) (35)

×ψi3,α3
(x2)ψi4,α4

(x1)dx1dx2.

Figure 5(c) shows that the energy of the hopping term for
the second excited band is much larger than for the lowest
energy band. This means that the kinetic term becomes
more important when excited bands are occupied.

To test our hypothesis that interactions push parti-
cles into excited bands, we calculated the energy of the
solid state Πi(aψi,0 + bψi,2) as a function of b, with
a2 + b2 = 1 using the Dupont-Roc et al. [41] pseudo-
potential for V (x). Figure 5(d) shows the value of b for
which the energy is minimized as a function of potential
strength. We do find that interactions push particles into
higher bands, and this becomes more significant as the
potential strength increases. The minimized wavefunc-
tion (shown in the inset of Fig 5(d)) tends to localize the
particles more strongly at lattice points than the lowest
band Wannier function because V (d) is attractive, while
V (x < d/2) is repulsive. But when the potential strength
is quite weak, ψi,2 is not localized by the periodic po-
tential, and so the interaction energy is not minimized
by occupation of this band. As the potential gets even
stronger, we would expect other bands ψi,4, ψi,6 . . . to
also become important.

In principle, this BHM model could be solved, though
it is much more complex. But to accurately use the model
to predict properties of a potential experimental system,
we must use an accurate pseudo-potential. Here we have
used the V (x) of Dupont-Roc et al. [41], which has an ar-
bitrarily chosen shape for the soft core whose parameters
were set to match three experimental parameters - the
density, energy, and compressibility of bulk liquid 4He.
In contrast, the V (k) used in the BT calculations was
chosen to match measurements of ε(k) in bulk superfluid
4He, which provide an accurate estimation of V (k) over
a broad range of k. Because phase information on V (k)
is not measured, an accurate representation of V (x) to
use in the BHM cannot be extracted directly from V (k).

However, comparison of the BT and the BHM allows
us to more easily understand the physical reason for the
unique behavior we predict in this system. The presence
of the external potential allows particles at adjacent sites
to avoid each other’s repulsive cores by occupying wave-
functions that are more strongly localized at each lattice
site, but which also have higher kinetic energy. Delocal-
izing the particles by spreading them over multiple sites
thus results in a larger reduction in kinetic energy, which
is able to overcome the increase in potential energy that
comes from creating vacancies inside the solid.

III. DISCUSSION

Here we have shown that when 4He occupies a peri-
odic potential with a lattice spacing similar to the length

scale of the 4He-4He interaction, the lowest energy state
describes a system with long-range crystalline order in
which particles are delocalized over all the lattice sites,
both of which are properties of a supersolid. Generally, a
supersolid is concisely described as a system with both di-
agonal long-range order (in the density) and off-diagonal
long range order (in the phase). We will now discuss the
precise definition of the supersolid state, arguing that the
present system should indeed be considered a supersolid.

Boninsegni and Prokofev [10] say that for a system
to be considered a supersolid, the long range crystalline
order must occur “spontaneously, exclusively as a result
of interactions among elementary constituents.” Presum-
ably, this condition is to exclude systems in which a
density modulation is imposed by an external potential
that would not otherwise exist. However, we argue that
the word “exclusively” should be removed from this def-
inition. In the present system, a density modulation is
certainly imposed by an external potential, but the pre-
dicted behavior occurs only when the imposed modula-
tion has the same periodicity as is spontaneously adopted
in bulk solid 4He, and the density profile is also perturbed
by the interactions to be different than the single-particle
state of the same potential. Presence of the external po-
tential simply allows the long range crystalline order to
exist in less than three dimensions, and at higher tem-
peratures than normally observed.

While we have shown that the ground state has a
significant fraction of particles delocalized over the en-
tire system (rather than confined to a single site), the
generally accepted condition for superfluidity is that off-
diagonal long-range order in the phase must decay al-
gebraically as a function of distance, rather than expo-
nentially as it does in a classical gas. Popov [42] showed
through consideration of phase fluctuations that a homo-
geneous 2D system at T = 0 has off-diagonal long-range
order which decays algebraically, whereas a homogeneous
1D system has exponentially decaying ODLRO. (In 3D,
there is no decay.) Clearly if there is no superfluidity at
T = 0, it will not exist at T > 0 either. However, sim-
ulations have found superfluid flow in certain quasi-1D
systems [12] and we also predict superfluid behavior in
this 1D system. Because of the complexity of phase ex-
citations in this system, which we discussed in Sec. II C,
we have not calculated the off-diagonal order parameter
for this system. However, we do note that superfluidity
emerges here only because of the novel gap in energy we
have found between the ground state and excitations in
this system. If there were no gap, the number of exci-
tations calculated from Eq. 30 (with the sum properly
converted to a Bose integral with a constant density of
states near k → 0) would have an infrared divergence
even at T = 0, thus there would be zero particles left in
the delocalized superfluid ground state.

We find the physical reason for using algebraic decay of
ODLRO as a condition for superfluidity to be inadaquate.
Algebraic decay of long range order indicates that the
system is approaching a critical point, which in this case
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FIG. 6. (Color online) Average correlation between two parti-
cles in one dimension at T=2 K, with and without an external
potential. The latter case falls under “Case 1”, with c = 0.92,

ρ = 1.2ρ
1/3
liq , and Q = 2.06 Å−1.

represents formation of a BEC. But a BEC and a super-
fluid are not equivalent. For instance, non-interacting
BECs are not superfluid, and a bulk 2D superfluid is not
a BEC.

Presence of slowly-decaying ODLRO means that at
any given instant the phases of the equilibrium wavefunc-
tion at two points which are far apart are correlated with
one another. Since velocity is the derivative of phase, this
means that the velocities of two particles in the super-
fluid which are not in direct contact with one another
are also correlated at any given instant. But many of the
unique properties of a superfluid which make it of interest
to specialists and novices alike, such as the fountain ef-
fect or the tendency of the superfluid to reach the lowest
available level in a gravitation field even when it must
climb over high barriers to do so, are particular to its
time-dependent response to changing conditions in the
environment rather than its equilibrium state at a single
moment. In a typical bulk system, correlation functions
of the many-body state at a time interval τ = t2− t1 = 0
may be able to accurately predict the response of the sys-
tem to fluctuations over short time intervals, τ ' 0. But
both the BT and the BHM work in a Fock space, where
the many-body state is a product of single-particle states
and explicit correlation terms are neglected, except in an
approximate way through the choice of the short-range
pseudo-potential. But when particle-particle correlations
are long-range, the evolution of the system in response
to fluctuations can not be accurately predicted by corre-
lation functions at τ = 0.

To investigate particle-particle correlations in this sys-
tem, we explicitly calculated two-body terms using a
mean field method described in detail in the Appendix.
Figure 6 shows the resultant correlation probability
ρ12(x1− x2), defined as the mean probability density for
two-body terms of the many-body quantum state. When
there is no external potential, the correlation probabil-
ity goes to a constant above ∼ 6 Å. This short range
correlation is quite typical and reflects the fact that the
interparticle interaction is also short-ranged. But under
the same conditions which create a superfluid energy gap
in the present system (thus removing the infrared diver-

gence in the number of excitations), the correlation prob-
ability becomes periodic at large distances, representing
long range correlations between particles. In this system,
because the interparticle interaction and external poten-
tial are coherent, they each enhance the other, leading to
the highly stable ground state which possesses long-range
crystalline order in the density as shown in Fig. 2(a), as
well as these long-range particle-particle correlations.

The long-range particle-particle correlations occur only
when the particles occupy delocalized states and there
is an external potential. Because the BT works with
the momentum distribution of the quantum field, it does
not explicitly give the correlations in the relative mo-
tion of the particles [43], but it is likely that these long-
range correlations are not fully described by any method
which does not explicitly deal with two-body entangle-
ment terms in the many-body wavefunction.

We propose that a more encompassing and physically
meaningful measure of superfluidity is the correlation be-
tween the motions of particles a sufficiently long distance
apart over time scales on the order of the time between
perturbations of the system. Since velocity is the deriva-
tive of phase, the instantaneous phase correlation de-
scribed by the first order correlation function is usually
a good proxy for short-time velocity correlation. But in
this system, the long-range particle-particle correlations
that are induced by the external potential result in short
time velocity correlation even without strong instanta-
neous phase correlation.

As described in the Introduction, the advantages of
this hybrid system (or one like it [26]) would make strong
experimental proof of supersolidity easier to obtain than
in currently studied systems because the predicted su-
perfluid fraction is large, even at temperatures above
the melting point and lambda point of the bulk. But
in addition, an experimental version of this system could
provide a controllable testing ground in which we could
deepen our understanding of superfluidity and the rela-
tive importance of instantaneous phase correlations and
short time velocity correlations to produce the interesting
macrosopic behavior of superfluid systems.
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IV. APPENDIX

The solution of a quantum two body-problem with in-
teractions between the two bodies has the general form,

Ψ(x1, x2) = ψ1(x1)ψ2(x2)φ12(x1 − x2), (36)

where φ12(x1 − x2) represents correlations between the
two particles. We assume throughout that the individual
terms include the appropriate normalization factors such
that an integral of Ψ∗Ψ over all coordinates is equal to
one, and define ρ1(x1) = ψ∗1(x1)ψ1(x1), ρ12(x1 − x2) =
φ∗12(x1 − x2)φ12(x1 − x2) and so forth. Eq. 36 is the
solution of the two-body Schrodinger equation,

i~
∂Ψ

∂t
=

[
− ~2

2m1
∇2
x1
− ~2

2m2
∇2
x2

+ U(x1) (37)

+U(x2) + V (x1 − x2)
]

Ψ,

where U is the external potential and V is the interaction
between the two particles. Because V depends on both
position variables, it results in correlations between the
two particles in the solution. If V = 0, then there are no
correlations (φ = 1) and Eq. 37 can be solved exactly by
a separation of variables into two independent one-body
problems. In other cases, the problem can be simplified
by moving to a new coordinate system,

X =
m1x1 +m2x2
m1 +m2

, (38)

x = x1 − x2, (39)

i~
∂Ψ

∂t
=

[
− ~2

2(m1 +m2)
∇2
X −

~2m1m2

2(m1 +m2)
∇2
x (40)

+U

(
X + x

m2

m1 +m2

)
+ U

(
X − x m1

m1 +m2

)
+V (x)

]
Ψ.

In this new coordinate system, U depends on both posi-
tion variables, thus the problem can only be solved ex-
actly by separation of variables when U = 0.

But often, such as in this work, we are interested in the
solution of problems where both U and V are nonzero.
A common technique to find an approximate solution to
Eq. 37 is mean field theory. The problem is separated
into two one-body problems, and the correlation between
the two is incorporated by assuming each particle feels
only the average effect of the other.

To do this, an ansatz is chosen for the initial form of Ψ.
The mean field of the second particle, V2, is calculated
and used to solve the Schrodinger equation for the first
particle.

V2(x1) =

∫
ρ2(x2)ρ12(x1 − x2)V (x1 − x2)x2 (41)

i~
∂ψ1

∂t
=

[
− ~2

2m1
∇2
x1

+ U(x1) + V2(x1)

]
ψ1, (42)

The solutions of ψ1 are used to calculate the mean field of
the first particle V1(x2) felt by the second particle, which
is then used in the same way to solve the Schrodinger
equation for the second particle to find the solutions of
solutions of ψ2. This process can be repeated iteratively
until a stable solution is found.

When the particles are identical bosons and we wish
to solve for the ground state, the problem becomes even
simpler because each particle occupies the same state and
thus we only need to solve one set of equations during
each iteration to find that state. For N particles using
m1 = m2, the problem becomes

VN−1(x1) = (N − 1)
∫
ρ1(x2)ρ12(x1 − x2) (43)

× V (x1 − x2)dx2

i~
∂ψ1

∂t
=
[
− ~2

2m1
∇2
x1

+ U(x1) + VN−1(x1)
]
ψ1, (44)

ρ1 = ψ∗1,k=0ψ1,k=0, (45)

In most cases, ρ12 is assumed to be constant through-
out; or rather, some fixed pseudo-potential V ′(x1−x2) '
ρ12(x1−x2)V (x1−x2) is chosen which approximates ρ12
by screening the highly repulsive part of the interaction.
However, we could also apply the same mean-field ap-
proach to perform a separation of variables on Eq. 40
and find a better solution for ρ12.

U12(x) =

∫
ρ1(X − x/2)ρ1(X + x/2) (46)

× [U(X − x/2) + U(X + x/2)] dX

i~
∂φ12
∂t

=

[
− ~2

2m1
∇2
x + V (x) + U12(x)

]
φ12. (47)

Since in this work we found a large gap in energy between
the ground state and the excited states which change
the density of the system, we will assume that we are
at some non-zero temperature T which is small enough
that the particles all occupy the ground single particle
density state (as explained above, there may be phase
excitations, but by definition these do not change the
density), but large enough that a thermal distribution of
φ12 states are occupied. Thus we estimate the average
correlation probability density as,

ρ12 =

∑
k e

Ek/Tφ∗12,kφ12,k∑
k e
−Ek/T

. (48)

This is a zeroth order approximation, which takes into
account only thermal depletion of the ground state and
not quantum depletion.

Eqs. 43-48 were solved iteratively, starting with ψ
equal to the ground state of the single-particle solution of
U and φ = 1 as our initial ansatz, and we found that the
solution converged quite quickly, with only 3-4 iterations
needed. When U = 0, as in a bulk system, the lowest en-
ergy solution of φ12 was bound, but only just, with 0.71 K
between the bound state and the continuum of unbound
states. This is because the 4He-4He potential is weak
while the 4He mass is quite small, giving it a relatively
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large zero point energy which is comparable to the poten-
tial depth, and is the same reason it is difficult to form a
bulk solid from 4He. For the set of conditions shown in
Figure 6 of the main paper, with U = −7.87cos(2.06x),
there was 3.34 K between the bound state and the con-
tinuum. But even at T = 2K, which was the tempera-
ture used for the calculations shown in Figure 6 of the
main paper, enough of the unbound states are occupied
that ρ12 shows long-range correlations between the par-
ticles. When the effect of quantum depletion is properly

included, there should be long-range correlations even at
T = 0.

We would also like to emphasize that this long-range
correlation occurs only because the particles occupy
quantum states which extend over the entire system. At
higher temperatures, where the system is more properly
described by particles occupying highly localized states,
U12 will simply be zero because these highly localized
states have little overlap, such that ρ1(X − x/2)ρ2(X +
x/2) ' 0 for all values of X,x.
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