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Proton-hydrogen collision at cold temperatures

Ming Li∗ and Bo Gao†

Department of Physics and Astronomy, University of Toledo, Mailstop 111, Toledo, Ohio 43606, USA

We study the proton-hydrogen collision in the energy range from 0 to 5 K where the hyperfine
structure of the hydrogen atom becomes important. A proper multichannel treatment of the hy-
perfine structure is found to be crucial at cold temperatures compared to the elastic approximation
traditionally used at higher temperatures. Both elastic and hyperfine-changing inelastic processes
are investigated, using both a newly developed multichannel quantum-defect theory (MQDT) and
the coupled-channel numerical method. Results from the two methods show excellent agreement
with MQDT providing an efficient and basically analytic description of the proton-hydrogen inter-
action throughout this energy range. We also discuss the validity of the elastic approximation and
its relation to other methods.

PACS numbers: 34.50.Cx,34.10.+x,34.70.+e

I. INTRODUCTION

The low-energy proton-hydrogen scattering has been
investigated theoretically throughout the past six
decades with increasing accuracy and expanding energy
range [1–7]. It is important for the understanding of
the physics in planetary atmospheres [5, 8] and in inter-
galactic media [9], especially for the interpretation of the
brightness of the 21cm transition, which depends essen-
tially on the spin temperature of atomic hydrogen [8–11].
The proton-hydrogen scattering is also of considerable

interest in other contexts. The system itself is one of
the arrangements of a fundamental 3-body system of
e−+p+p. Accurate results for the proton-hydrogen scat-
tering can thus be used as a benchmark for testing 3-body
theories, in a role similar to the electron-hydrogen scat-
tering in understanding e−+e−+p [12, 13]. More impor-
tantly, an accurate and efficient description of the proton-
hydrogen interaction is a prerequisite for understanding
other fundamental 3-body systems such as p + H + H
and e− + p + H , which are of fundamental importance
both theoretically and in astronomical applications such
as the H2 formation [14].
While past studies of proton-hydrogen scattering have

covered most of the energy range that is of astrophys-
ical interest, the one uncharted territory is the regime
of cold and ultracold temperatures. The lowest energy
investigated in previous works is 10−4 eV [4, 6] (equiv-
alent to 1.16 K), which is about an order of magnitude
greater than the hyperfine splitting of the atomic hydro-
gen (equivalent to about 0.07 K), and they have both
relied on the elastic approximation [15] that neglects the
hyperfine structure. Going below this energy and into the
cold and ultracold temperature regime, the hyperfine in-
teraction is expected to play an important role while the
elastic approximation breaks down, similar to what has
been shown for the hydrogen-hydrogen scattering using
a multichannel numerical method [16].
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In this work, we apply the multichannel quantum de-
fect theory (MQDT) for ion-atom interactions, developed
recently [17] that properly accounts for the hyperfine
structure, to provide an efficient and accurate description
of the proton-hydrogen scattering in the cold and ultra-
cold regime. For theoretical understanding and compari-
son, we also present the results from the coupled-channel
(CC) numerical method and discuss the validity of the
elastic approximation. The paper is organized as follows.
In Sec. II, we outline, in a unified theoretical framework,
three methods of treating low-energy proton-hydrogen
scattering: the MQDT, the CC numerical method, and
the elastic approximation, and discuss their relations. In
Sec. III, we compare and discuss the results from differ-
ent methods, with an emphasis on the cold temperature
regime of 0 to 5 K. We conclude in Sec. IV.

II. THEORY

The scattering of a proton with a hydrogen atom in
its ground 2S electronic state falls into the category of
the atom-ion interaction of the type 2S +1 S with iden-
tical nuclei of spin I2 = I1 = 1/2, which was studied
in Ref. [17]. With consideration of the hyperfine struc-
ture, all relevant low-energy processes, including elastic,
M -changing, and hyperfine-changing processes, can be
expressed as

H(F1i,M1i) +H+(F2,M2i)

−→ H(F1j ,M1j) +H+(F2,M2j) . (1)

Here F1 = I1 ± 1/2 is the asymptotic total angular mo-
mentum corresponding to the 2S electronic state of the
hydrogen atom, and F2 = I2 = I1 = 1/2 is the asymp-
totic total angular momentum of the proton. The Ms
are the corresponding magnetic quantum numbers. The
sub-indices i and j refer to the internal states before and
after the collision respectively.
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A. Radial coupled-channel equations

The Hamiltonian describing the system of interest can
be written as

H = −
~
2

2µ
▽

2
R +HBO +Hhf , (2)

where µ is the reduced mass and R is the internuclear dis-
tance. Hhf represents the hyperfine interaction and HBO

is the adiabatic Born-Oppenheimer (BO) Hamiltonian.
In atomic interactions that involve only S electrons,

the total “spin” angular momentum F = F1 + F2 and
the relative orbital angular momentum of the nuclei l are
independently conserved. In this case, the wave function,
for each F and l, can be written as

ψFMlm =

[

∑

b

ΦFM
b (R)GFl

b (R)/R

]

Ylm(R̂) . (3)

Here M and m are projections of F and l on a space-
fixed axis, respectively. ΦFM

b (R) is the channel function
of channel b that belongs to an F manifold (the sub-index
a, used later, also represents a channel that comes from
the same set of channels as channel b), GFl

b (R) is the

corresponding radial wave function, and Ylm(R̂) is the
spherical harmonics. The angular momentum coupling
schemes that define different sets of channel functions
are described in the next subsection.
We substitute Eq. (3) into the Schrödinger equation,

HψFMlm = ǫψFMlm . (4)

Upon using the orthogonality properties of the channel
functions and ignoring nonadiabatic couplings, we arrive
at a set of CC equations for components of GFl

(

−
~
2

2µ

d2

dR2
+
l(l + 1)~2

2µR2
− ǫ

)

GFl
a (R)

+
∑

b

[V BO
ab (R) + V hf

ab (R)]G
Fl
b (R) = 0 , (5)

where

V BO
ab (R) ≡ 〈ΦFM

a |HBO|Φ
FM
b 〉 , (6a)

V hf
ab (R) ≡ 〈ΦFM

a |Hhf|Φ
FM
b 〉 , (6b)

both of which are independent of M .

B. Channel structure and frame transformation

For each partial wave l, the total number of states is
2(2I1 + 1)2 = 8, and the total number of channels is

4I1+1 = 3. These three channels are separated into two
uncoupled groups for the two different F s. For 1/2 ≤
F ≤ 2I1 − 1/2, which makes F = 1/2, there are two
coupled channels. For F = 2I1+1/2 = 3/2, there is only
one channel and only elastic scatterings can happen.

TABLE I. Channel structure for the proton-hydrogen inter-
action in the ground electronic states. Here F = F1 + F2 is
the total “spin” angular momentum (including nuclear spin),
J is the total electronic angular momentum, and I = I1 + I2

is the total nuclear spin.

Total F
FF coupling JI coupling

{F1, F2} {J, I}

1/2 ≤ F ≤ 2I1 − 1/2
{I1 − 1/2, I1} {1/2, F − 1/2}

{I1 + 1/2, I1} {1/2, F + 1/2}

F = 2I1 + 1/2 {I1 + 1/2, I1} {1/2, 2I1}

We adopt two angular momentum coupling schemes
to decompose F , following the theory of Ref. [18]. The
FF coupling scheme, F = F1 + F2, forms the fragmen-
tation channels, or FF channels, that diagonalize the to-
tal Hamiltonian when R goes to infinity. The scattering
boundary conditions, hence the S matrix, are defined in
the FF channels. The JI coupling scheme, F = J + I,
forms the condensation channels, or JI channels, that di-
agonalize the adiabatic BO Hamiltonian, hence approx-
imately diagonalize the total Hamiltonian in the short
range due to the insignificance of the hyperfine interac-
tion in that region. Here J is the total electronic angular
momentum, which can only have a magnitude of 1/2,
and I = I1 + I2 is the total nuclear spin. The JI chan-
nels are the most directly related to the BO potential
curves 2Σ+

g,u, and are channels in which the short-range
Kc matrix of the MQDT formulation [17] has the sim-
plest representation. The detailed channel structure is
illustrated in Table I.

For F = 1/2, the asymptotic thresholds E1 and
E2 of the two coupled channels in the FF coupling
basis are separated by the atomic hyperfine splitting
E2 − E1 = ∆Ehf, known as the 21 cm line for hydrogen
atoms. It is given by ∆Ehf/h ≈ 1420.405751768 MHz
[19] (∆Ehf/kB ≈ 0.068168729 K). Following the theory
of Ref. [18], the FF and the JI coupling basis functions
are related by a frame transformation given by a two by
two orthogonal matrix
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UF =
(−1)2F+1

√

2(2I1 + 1)

(

−
√

2I1 − F + 1/2
√

2I1 + F + 3/2
√

2I1 + F + 3/2
√

2I1 − F + 1/2

)

. (7)

The ordering of the channels here as well as in the ma-
trices later in this paper follows the ordering in Table I.

C. Scattering amplitude and cross sections

The scattering amplitudes for processes of Eq. (1) that
satisfies the scattering boundary conditions in the FF
channels are given by [18]

f ({F1iM1i, F2M2i}ki → {F1jM1j , F2M2j}kj)

=−
∑

lmFM

2πi

(kikj)1/2
Y ∗
lm(k̂i)Ylm(k̂j)

× 〈F1jM1j , F2M2j|FMF 〉
[

SFl(ǫ)− 1

]

ji

× 〈FMF |F1iM1i, F2M2i〉 , (8)

where 1 is the unit matrix and SFl is the S matrix defined
in the FF channels [18]. ~ki,j are the initial and the final
relative momenta in the center-of-mass frame.
In terms of the scattering amplitude of Eq. (8), the

differential cross section that properly accounts for the
symmetry property of identical nuclei is given by [18, 20]

dσ

dΩj
({F1iM1i, F2M2i}ki → {F1jM1j , F2M2j}kj)

=
kj
ki

1

2

(

|f(i→ j,kj)|
2 + |f(i→ j,−kj)|

2
)

. (9)

It is symmetric for opposite directions k̂j and −k̂j , as
one should expect for identical nuclei.
Many different cross sections can be derived from the

differential cross section. In particular, the total cross
sections for elastic (include M -changing) collisions, and
the hyperfine excitation and de-excitation processes, af-
ter averaging over initial states and summing over final
states, are given by

σ({F1i, F2} → {F1j, F2}) =
π

(2F1i + 1)(2F2 + 1)k2i

×
∑

Fl

(2l+ 1)(2F + 1)|SFl
ji − δji|

2 . (10)

All cross sections are determined by the S matrix, which
can be obtained by solving the CC equations using either
MQDT or numerical methods, as discussed in the next
two subsections.

D. MQDT

One way to obtain the S matrix is MQDT. The MQDT
for ion-atom interactions, as demonstrated in Ref. [17],

consists of the formulation of Ref. [21] in combination
with the QDT functions for the −1/R4-type potentials
as detailed in Ref. [22]. It takes full advantage of the
physics that both the energy dependence [23] and the
partial wave dependence [24] of the atomic interaction
around a threshold are dominated by effects of the long-
range potential, which are encapsulated in the universal
QDT functions. The short-range contribution is isolated
to a short-rangeKc matrix that is insensitive to both the
energy and the partial wave.

1. General formulation

For an N -channel problem at energies where all chan-
nels are open, the MQDT gives the physical K matrix,
in our case the KFl, as [21]

KFl = −(Zc
fc − Zc

gcK
c)(Zc

fs − Zc
gsK

c)−1 , (11)

where Zc
xys are N × N diagonal matrices with elements

Zc
xy(ǫsi, l) being the Zc

xy functions [22] evaluated at the
scaled energy ǫsi = (ǫ − ǫi)/sE relative to the respec-
tive channel threshold ǫi. Here sE = (~2/2µ)(1/β4)

2

and β4 = (µαA/~
2)1/2 are the characteristic energy and

the length scales, respectively, associated with the po-
larization potential, −αA/2R

4, with αA being the static
polarizability of the atom.
At energies where No channels are open, and Nc =

N −No channels are closed, the MQDT gives [21]

KFl = −(Zc
fc − Zc

gcK
c
eff)(Z

c
fs − Zc

gsK
c
eff)

−1 , (12)

where

Kc
eff = Kc

oo +Kc
oc(χ

c −Kc
cc)

−1Kc
co , (13)

in which χc is a Nc × Nc diagonal matrix with ele-
ments χc

l (ǫsi, l) [22], and Kc
oo, K

c
oc, K

c
co, and Kc

cc, are
submatrices of Kc corresponding to open-open, open-
closed, closed-open, and closed-closed channels, respec-
tively. Equation (12) is formally the same as Eq. (11),
except that the Kc matrix is replaced by the Kc

eff that
accounts for the effects of the closed channels.
From the physical K matrix, the S matrix is obtained

as [18]

SFl = (1 + iKFl)(1 − iKFl)−1 . (14)

2. Kc matrix and the short-range parametrization

The short-range Kc matrix has only two independent
elements, which are two slowly varying functions of en-
ergy and l, the single-channelKc matrices Kc

g,u(ǫ, l) that
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represent the gerade and ungerade adiabatic BO molecu-
lar states. They are directly related to the corresponding
quantum defects µc

g,u(ǫ, l) by [22]

Kc
g,u(ǫ, l) = tan[πµc

g,u(ǫ, l) + π/4] . (15)

For F = 1/2 where there are two coupled channels, the
Kc matrix in the FF channels can be obtained from the
one in the JI channels through the frame transformation,
given by

Kc = UF†Kc(JI)UF , (16)

where

Kc(JI) =

(

(Kc

g
+Kc

u
)+e2(K

c

g
−Kc

u
)

2 0

0
(Kc

g
+Kc

u
)−e2(K

c

g
−Kc

u
)

2

)

,

(17)
where e2 = (−1)F+l−1/2 = (−1)l. For F = 3/2 where
there is only one channel, Kc is either given by Kc

g or

Kc
u depending on whether e1 = (−1)2I1+l = (−1)l+1 is

positive or negative:

Kc =
1

2

[

(Kc
g +Kc

u) + e1(K
c
g −Kc

u)
]

. (18)

In the simplest MQDT implementation, instead of two
full potential curves used in the numerical calculation,
only three constant parameters are needed besides the
hyperfine splitting and the reduced mass. The static
dipole polarizability of the hydrogen atom αA = 9/2
a.u. [25] characterizes the long range part of the poten-
tial. The two QDT parameters, the zero energy zero an-
gular momentum single-channel Kc

g,u(0, 0), characterize
the short range part of the potential due to the energy
and partial wave insensitive nature of the short range in-
teraction. They are related to the corresponding s wave
scattering lengths by [26, 27]

ag,ul=0/βn =

(

b2b
Γ(1− b)

Γ(1 + b)

)

Kc
g,u(0, 0) + tan(πb/2)

Kc
g,u(0, 0)− tan(πb/2)

,

(19)
where b = 1/(n− 2). It reduces to, for n = 4 [28],

ag,ul=0/β4 =
Kc

g,u(0, 0) + 1

Kc
g,u(0, 0)− 1

. (20)

More accurate results over a greater range of energies
can be obtained by incorporating the energy dependence,
and especially, for the range of energy under consider-
ation, the partial wave dependence of the short-range
parameters [17]. These weak dependences are well de-
scribed by expansions

µc
g,u(ǫ, l) ≈ µc

g,u(0, 0) + bµg,uǫ+ cµg,u[l(l+ 1)] , (21)

in which the parameters bµg,u and cµg,u characterize the
energy and the partial wave dependences of the quantum
defects for the gerade and ungerade states, respectively.

TABLE II. Zero energy QDT parameters used for the com-
parisons with numerical calculations

g or u Kc(0, 0) µc(0, 0) al=0 (a.u.) cµ

gerade -0.35829 0.64049 -30.371 0.0116

ungerade 1.1723 0.025194 810.52 0.0214

3. Determination of QDT parameters

The simplest MQDT implementation works well for
the first handful of partial waves for hydrogen but starts
to show noticeable deviation from the numerical calcula-
tion when l becomes large, thus it breaks down at ener-
gies where higher partial waves start to contribute signif-
icantly. To parametrize the short-range interaction more
accurately for energies ranging from ultracold tempera-
tures all the way to 5 kelvin, we need to use the expansion
of the quantum defects from Eq. (21).
The zero energy zero partial wave short-range param-

eters as well as parameters bµg,u and cµg,u can be deter-
mined easily by solving the single-channel radial equa-
tions with Vg,u as the potential terms at a few energies
for a few partial waves. For the energy range considered
here, the energy dependence of µc is found to be neg-
ligible, namely bµg,u ≈ 0. To determine the rest of the
parameters, we first, for the first several partial waves at
zero energy, propagate the radial wavefunctions through
single-channel calculations and match them to the proper
scattering boundary conditions, which is given by

uǫl(R) = Aǫl[f
c
ǫl(R)−Kc(ǫ, l)gcǫl(R)] , (22)

at progressively largerR until the resultingKc
g,u converge

to a desired accuracy [24, 26, 28, 29]. Here f c and gc at
ǫ = 0 are the zero-energy QDT reference functions for the
−1/R4 potential given in Ref. [27, 29]. Then the resulting
Kc

g,u(ǫ = 0, l) are converted into µc
g,u(ǫ = 0, l) and fit

into Eq. (21) for various partial waves. The parameters
obtained using the potential energy curves constructed
in the next subsection are listed in Table II. The s-wave
scattering lengths are calculated using Eq. (20) from the
corresponding single-channel Kcs.

E. Potential energy curves and numerical method

In order to numerically calculate the S matrix to com-
pare to the MQDT results, and also to extract the QDT
parameters in this paper, we need to construct the po-
tential energy terms in Eqs. (6a) and (6b) in the FF
channels.
For F = 1/2, there are two coupled channels. The hy-

perfine term can be approximated as diagonal and con-
stant in the FF channels, which is given by

V hf =

(

0 0

0 ∆Ehf

)

. (23)



5

0 4 8 12 16 20
-12.0

-8.0

-4.0

0.0

4.0

8.0

12.0

16.0

20.0

24.0

9 10 11 12 13 14 15
-0.10

-0.05

0.00

0.05

0.10

 

 

En
er

gy
 (u

ni
ts

 o
f 1

0-2
a.

u.
)

Distance R (a0)

 2 g
+

 2 u
+

 

 

 

 

FIG. 1. (Color online) BO potential energy curves of the
gerade (solid line) and the ungerade (dashed line) states con-
structed in our work for the proton-hydrogen collision

The BO potential energy matrix in the FF channels is
given in terms of the matrix in the JI channels with a
frame transformation, as

V BO = UF†V BO(JI)UF . (24)

The BO potential energy matrix in the JI channels is
diagonal and can be written as

V BO(JI) =

(

(Vg+Vu)+e2(Vg−Vu)
2 0

0
(Vg+Vu)−e2(Vg−Vu)

2

)

,

(25)
in which Vg,u are the two BO potential energy curves for
the 2Σ+

g,u molecular states respectively.
For F = 3/2, there is only one channel that only opens

when the collision energy is above the upper hyperfine
threshold. The hyperfine term V hf = ∆Ehf, and the BO
term is given by

V BO =
1

2
[(Vg + Vu) + e1(Vg − Vu)] . (26)

To perform the numerical calculation, we need the BO
potential energy curves Vg,u. For the proton-hydrogen
interaction, the potential curves can be obtained ana-
lytically in the prolate spheroidal coordinates following
the method of Ref. [30]. However, to simplify the calcula-
tion, we opt for an easier way to construct these potential
curves, which is illustrated as follows. For internuclear
separation R from 0.4 a.u. to 10.0 a.u., we use a cubic
spline [31] to interpolate the data points given in Ref. [4]
(we will refer to this reference as paper I ) which are cal-
culated using the exact method of Ref. [30]. For R larger
than 10.0 a.u., we use the asymptotic expansion from
Ref. [25]. More specifically,

Vg,u = V0(R)∓
1

2
∆V (R) , (27)

with ∓ for 2Σ+
g and 2Σ+

u , respectively. Here,

V0(R) = −
9

4R4
−

15

2R6
−

213

4R7
−

7755

64R8
−

1773

2R9
, (28)

and

∆V (R) = 4Re−R−1

(

1 +
1

2R
−

25

8R2
−

131

48R3
−

3923

384R4

−
145399

3840R5
−

521989

46080R6
−

509102915

645120R7

−
37749539911

10321920R8

)

. (29)

For R smaller than 0.4a.u., we use fitted functions for the
inner wall, given by

Vg(R) = 0.835

(

R

R0
+ 0.0012

)−1.0597

− 0.993 , (30)

Vu(R) = 0.932

(

R

R0
− 0.00009

)−1.031

+ 0.0896 , (31)

in which R0 = 1.000544628 atomic unit. All the potential
equations are in atomic units. The two potential energy
curves that we constructed are shown in Fig. 1.
To verify the validity of our potential matrix, we com-

pare the single channel s-wave short-range parameters in
Table II with the ones from previous works [7, 10, 32, 33].
It was reported that the ungerade potential supports
two molecular bound states, one of which is extremely
weakly bounded with the bound state energy around
10−9a.u. [33, 34]. This extremely weakly bound state
makes the evaluation of the corresponding s-wave scatter-
ing length very sensitive to the inner potential, because
the corresponding Kc parameter is very close to 1 [22],
which is the singular point in Eq. (20). Thus, it is more
straight forward to compare the quantum defects, which
behave like phase shifts range from 0 to 1, instead of the
scattering lengths, because the quantum defects are more
evenly defined without any singularity. Comparing the
µc
g,u(0, 0) calculated from the scattering lengths reported

in various previous works [7, 10, 32, 33] with our quantum
defects, we found the differences to be only of the order
of 10−3, comparing to 1 which is the range of variation
of quantum defect. This also confirms the insignificance
of the non-adiabatic coupling since the work of Ref. [7]
included such coupling term and the work of Ref. [32]
used the three-body Faddeev equation. The effect of off-
diagonal non-adiabatic coupling can be expected to be
similarly small.
In this work, the CC equations are integrated nu-

merically using a hybrid propagator [35, 36] constructed
similarly to the one used in the Hibridon scattering
code [37]. It employs a modified version of the log-
derivative method of Johnson [38] by Manolopoulos [35]
at the short range, and a modified version of the
potential-following method of Gordon [39] by Alexan-
der and Manolopoulos [36] at the long range. Conver-
gence can be tested on the resulting S matrix after being
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converted from the log-derivative matrix following the
method of Johnson [38].

F. Elastic approximation

At energies that are much greater than the atomic
hyperfine splitting, the hyperfine interaction can be ne-
glected to simplify the theory. Without the hyperfine
interation, the asymptotic states in the JI channels are
degenerate, and the potential matrix is diagonal in the JI
channels in all internuclear separations. Thus, instead of
solving the multichannel CC equations in the FF chan-
nels, we can solve the single-channel radial equations in-
dependently in the JI channels to obtain the phase shifts
for each channel. These phase shifts constitute the phys-
ical K matrix in the JI channels, KFl(JI), which can
then be transformed to the physical K matrix in the FF
channels, KFl, and converted to the S matrix. Such is
the essense of the elastic approximation [15], as discussed
in Ref. [16].
Under the elastic approximation, for 1/2 ≤ F ≤ 2I1 −

1/2, the physical K matrix in the JI channels can be
written as

KFl(JI) =

(

(Kg+Ku)+e2(Kg−Ku)
2 0

0
(Kg+Ku)−e2(Kg−Ku)

2

)

,

(32)
where Kg,u(ǫ, l) = tan δg,ul (ǫ) with δg,ul (ǫ) being the
single-channel phase shifts of the lth partial wave for
the gerade state and the ungerade state respectively [28].
These single-channel phase shifts can be calculated from
solving the single-channel equations using numerical
methods or single-channel QDT [28]. Then the physi-
cal K matrix in the FF channels can be obtained from

KFl = UF†KFl(JI)UF , (33)

and the S matrix can be obtained from Eq. (14). For
F = 2I1 + 1/2, there is already only a single channel,
and no further approximation is necessary.
Applying the elastic approximation using Eqs. (32),

(33), and (14), different cross sections can be expressed
in terms of Kg,u(ǫ, l) or δg,ul (ǫ). Here we present the
simplified expressions of the total cross sections given in
Eq. (10) under the elastic approximation. For the to-
tal cross sections, the zero energy in the elastic approxi-
mation, with consideration of the nuclear spin statistics,
should be offset from the zero energy in the multichan-
nel treatment by the center of gravity, which is given by
(I1 + 1)/(2I1 + 1) ·∆Ehf .
The hyperfine de-excitation cross section simplifies to

σde
ǫ≫∆Ehf

∼
I1

2I1 + 1

π

k2

∞
∑

l=0

(2l+ 1)
(Kg −Ku)

2

(1 +K2
g )(1 +K2

u)

=
I1

2I1 + 1

π

k2

∞
∑

l=0

(2l+ 1) sin2(δul − δgl ) , (34)

where σde is short for σ({I1 +1/2, I1} → {I1 − 1/2, I1}).
This is consistent with the result given in Ref. [40]. If we
define the spin exchange cross section [40] (same as the
charge exchange cross section defined in Ref. [41]) as

σse ≡
π

k2

∞
∑

l=0

(2l + 1) sin2(δul − δgl ) , (35)

Eq. (34) becomes

σde
ǫ≫∆Ehf

∼
I1

2I1 + 1
σse . (36)

The coefficient I1/(2I1 + 1) takes into account of the
nuclear spin statistics, and equals 1/4 for the proton-
hydrogen interaction.
The corresponding hyperfine excitation cross section

is related to the de-excitation cross section by a detailed
balance relation guaranteed by the time-reversal symme-
try [42], which is given by

σex
σde

=
I1 + 1

I1
·
ǫ −∆Ehf

ǫ

ǫ≫∆Ehf

∼
I1 + 1

I1
. (37)

σex is short for σ({I1 − 1/2, I1} → {I1 + 1/2, I1}), and
can be written in terms of the spin exchange cross section
as

σex
ǫ≫∆Ehf

∼
I1 + 1

2I1 + 1
σse . (38)

Therefore, for the proton-hydrogen system, the coeffi-
cient in front of σse is 3/4.
For the total elastic cross sections under the elastic

approximation, we define the elastic partial wave cross
sections

σg,u
l ≡

4π

k2
(2l + 1)

K2
g,u

1 +K2
g,u

=
4π

k2
(2l + 1) sin2 δg,ul , (39)

for the gerade state and the ungerade state respectively.
We also define the total elastic cross sections as the sum-
mation of the corresponding partial wave cross sections
over l, given by

σg,u
tot ≡

∞
∑

l=0

σg,u
l . (40)

The total elastic cross section in the lower hyperfine chan-
nel, σlo ≡ σ({I1 − 1/2, I1} → {I1 − 1/2, I1}), is given by

σlo
ǫ≫∆Ehf

∼
1

2
(σg

tot + σu
tot) +

1

4I1 + 2

∞
∑

l=0

e1(σ
g
l − σu

l )

−
I1 + 1

2I1 + 1
σse . (41)
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FIG. 2. (Color online) Comparison of the spin-exchange cross
section from paper I multiplied by 1/4 that accounts for the
nuclear statistics (stars) and the total hyperfine de-excitation
cross section from channel {F1 = 1, F2 = 1/2} to channel
{F1 = 0, F2 = 1/2} using the multichannel treatment (solid
line) and the elastic approximation (dashed line).

And the total elastic cross section in the higher hyperfine
channel, σhi ≡ σ({I1+1/2, I1} → {I1+1/2, I1}), is given
by

σhi
ǫ≫∆Ehf

∼
1

2
(σg

tot + σu
tot) +

1

4I1 + 2

∞
∑

l=0

e1(σ
g
l − σu

l )

−
I1

2I1 + 1
σse . (42)

III. RESULTS AND DISCUSSIONS

A. Multichannel treatment vs. elastic

approximation

We start with comparing our elastic approximation re-
sults of the hyperfine de-excitation cross section with the
spin exchange cross sections given in paper I, as well as
with results from our multichannel treatment. Accord-
ing to Eq. (36), the spin exchange cross section is four
times the hyperfine de-excitation cross section under the
elastic approximation for the proton-hydrogen interac-
tion. Therefore, we compare our de-excitation cross sec-
tion results with the spin exchange cross sections given
in paper I multiplied by 1/4. Also, all the cross section
results from the elastic approximation need to be offset in
energy by the center-of-gravity (I1+1)/(2I1+1)·∆Ehf =
0.0511265 K. Our results from both the elastic approxi-
mation and the multichannel treatment are obtained us-
ing the numerical calculation.
Fig. 2 shows the hyperfine de-excitation cross sections,
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FIG. 3. (Color online) Total hyperfine excitation cross sec-
tions from channel {F1 = 0, F2 = 1/2} to channel {F1 =
1, F2 = 1/2} from the elastic approximation (dashed line)
and the multichannel treatment (solid line).
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FIG. 4. (Color online) Total elastic cross sections in the lower
hyperfine channel {F1 = 0, F2 = 1/2} from the elastic approx-
imation (dashed line) and the multichannel treatment (solid
line).

where the data points converted from the results given
in paper I lie right on top of our elastic approximation
results. This demonstrates the validity of our poten-
tial energy curves and numerical method. The results
from the multichannel treatment and the elastic approx-
imation agree almost exactly for energies between 5 and
30 kelvin. The discrepancy between the two becomes
more significant when energy decreases especially below
1 kelvin.
Figures 3, 4, and 5 shows the hyperfine excitation cross
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FIG. 5. (Color online) Total elastic cross sections in the up-
per hyperfine channel {F1 = 1, F2 = 1/2} from the elastic
approximation (dashed line) and the multichannel treatment
(solid line).

sections, the elastic cross sections in the lower hyperfine
channel, and the elastic cross sections in the higher hy-
perfine channel respectively. These comparisons, along
with the hyperfine de-excitation case, show that, for the
proton-hydrogen interaction, the elastic approximation is
applicable for energies larger than 1 K, where it deviates
from the multichannel treatment by less than 5%, and
becomes more accurate at higher energies, with the de-
viation becoming less than 1% once the temperature is
higher than 5 K. The approximation fails, however, for
energies comparable or smaller than the hyperfine split-
ting. Thus for temperatures from ultracold up to about
1 K, which is approximately an order of magnitude larger
than the hyperfine splitting, the elastic approximation is
not applicable, and multichannel treatment with proper
account of the hyperfine interaction should instead be
used.
The elastic approximation also gives the incorrect

threshold behavior at the upper hyperfine threshold.
In previous attempts to extend elastic approximation
to lower energy with effective range theory, a con-
stant spin exchange cross section with the correspond-
ing rate approaching zero was predicted when energy de-
creases [7, 10, 11]. With multichannel treatment that in-
corporates the hyperfine splitting, the de-excitation cross
section follows the Wigner’s threshold law [43] which di-
verges as (ǫ−E2)

−1/2 above the upper hyperfine thresh-
old. Therefore, the hyperfine de-excitation rate without
thermal averaging,

Wde ≡ vσde =

√

2(ǫ− E2)

µ
σde , (43)

will reach a constant when the relative velocity v ap-
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FIG. 6. (Color online) Threshold behavior of the hyperfine de-
excitation rate Wde just above the upper threshold E2. The
x-axis represents the temperature equivalence of the initial
kinetic energy (ǫ − E2)/kB. The results are produced using
the multichannel numerical calculation.

proaches zero. As illustrated in Fig. 6 with results from
multichannel numerical calculation, the de-excitation
rate rises while initial kinetic energy decreases, until
eventually reaches a plateau with a constant rate of
9.098× 10−10cm3 · s−1 approximately. The same thresh-
old behavior should also be present for electron-hydrogen
and hydrogen-hydrogen collisions.

B. MQDT vs. Numerical calculation

In this subsection, we present the total cross section re-
sults from ultracold temperature to 5 K using multichan-
nel treatment. In addition, we compare the results from
MQDT with the numerical calculation to demonstrate
the applicability of MQDT in this temperature regime.
Figure 7 shows the total cross sections for hyperfine

de-excitation process from the upper hyperfine thresh-
old to 5 kelvin. Notice that, as mentioned in the
previous subsection, the de-excitation cross section fol-
lows the Wigner’s threshold law [43], which diverges as
(ǫ−E2)

−1/2 above the upper hyperfine threshold. MQDT
results are almost exactly on top of the numerical calcu-
lation below one kelvin, and, although there is slight de-
viation, the two methods still agrees relatively well from
one to five kelvin. The discrepancy is in general within
one percent which can be attributed to slight energy de-
pendence of the short-range QDT parameters.
Figure 8 shows the total cross sections for hyperfine

excitation in which the Hydrogen atom is excited from
its F1 = 0 hyperfine state to its F1 = 1 hyperfine state.
It behaves as (ǫ−E2)

1/2 above the upper threshold. The
excitation cross section is related to the de-excitation
cross section by Eq. (37) which is guaranteed by the time-
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FIG. 7. (Color online) Total hyperfine de-excitation cross
sections from channel {F1 = 1, F2 = 1/2} to channel {F1 =
0, F2 = 1/2} from MQDT (solid line) and numerical method
(dashed line). The vertical dashed line identifies the upper hy-
perfine threshold located at ǫ2/kB ≈ 0.0682 K, around which

the cross section diverges as (ǫ− E2)
−1/2.

reversal symmetry [42].

Figure 9 and 10 depict the total cross sections for
elastic scattering in the lower hyperfine channel {F1 =
1, F2 = 3/2} and the higher hyperfine channel {F1 =
1, F2 = 3/2} respectively, in which the atom remains
in the same hyperfine level after the scattering while its
M1 may or may not change. The elastic cross section in
the higher hyperfine channel, just like the de-excitation
cross section, diverges as (E − E2)

−1/2 above the upper
threshold, implying a constant rate in the zero tempera-
ture limit.

Compared to our previous results on the resonant
charge exchange problem of 23Na +23 Na+ [17], there
are not any significant resonance structure within the
hyperfine splitting for the proton-hydrogen system, even
though the hyperfine splittings of the two systems are
of the same order of magnitude. This can be attributed
to the small atomic mass and polarizability of hydrogen
which give an unusually large energy scale, sE = 0.0416
K for the proton-hydrogen system compared to other ion-
atom systems (e.g. sE = 2.21 µK for 23Na +23 Na+).
With such a large energy scale, the hyperfine splitting
corresponding to a scaled energy of ∆Ehf/sE ≈ 1.6
is much smaller in magnitude than the energy bin of
B−1(l = 0) = −105.81 that contains the least bound
s state [22, 44], and even smaller compared to energy
bins that contain the least bound states of higher partial
waves. There is thus little probability that a Feshbach
resonance associated with the upper threshold can ap-
pear within the hyperfine interval. Similarly, the proba-
bility for the appearance of a shape resonance associated
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FIG. 8. (Color online) Total hyperfine excitation cross sec-
tions from channel {F1 = 0, F2 = 1/2} to channel {F1 =
1, F2 = 1/2} from MQDT (solid line) and numerical method
(dashed line). The vertical dashed line identifies the upper hy-
perfine threshold located at ǫ2/kB ≈ 0.0682 K, around which

the cross section behaves as (ǫ− E2)
1/2.
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FIG. 9. (Color online) Total elastic cross sections in the lower
channel {F1 = 0, F2 = 1/2} from MQDT (solid line) and
numerical method (dashed line). The vertical dashed line
identifies the upper hyperfine threshold at 0.0682 K.

with the lower threshold is very small. As for the diffrac-
tion resonances [17, 22, 44], the scaled energy of the hy-
perfine splitting is too small to support any. The only res-
onances in proton-hydrogen scattering are the shape and
diffraction resonances above the upper hyperfine thresh-
old. There are two relatively visible features in all four
figures. The broader feature around 1.7 K corresponds to
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FIG. 10. (Color online) Total elastic cross sections in the
upper channel {F1 = 1, F2 = 1/2} from MQDT (solid line)
and numerical method (dashed line). The vertical dashed line
identifies the upper hyperfine threshold at 0.0682 K.

a shape resonance in partial wave l = 3, and the sharper
feature around 2.8 K corresponds to a shape resonance in
partial wave l = 4. There is another sharp feature around
16 K, shown in Figs. 2 through 5 from the previous sub-
section, corresponds to a shape resonance in partial wave
l = 7.
Figures 8, 9, and 10 are similar to Fig. 7 in showing

the agreement between results from MQDT and the nu-
merical calculation, and the conclusion we drew for the
de-excitation cross section case also stands for the oth-
ers. The deviation of the MQDT results from the nu-
merical results is within 2% for temperatures lower than
1 K, and is within 5% for temperatures from 1 K to 5
K, for both the background and the resonance positions.
This again demonstrates the capability of MQDT to ac-
curately characterize multichannel ion-atom interactions
from zero energy up to several kelvin with only a hand-
ful of parameters (five in this case), as we have demon-
strated before on the example of sodium resonant charge
exchange [17]. Also examined and verified by these com-
parisons are the physical picture behind the MQDT for-
mulation, that in this energy regime, the energy and par-

tial wave dependences are primarily due to the long-range
interaction which can be accurately characterized by the
analytic solution of the long-range potentials, and the
short-range parameters are energy and partial wave in-
sensitive [21, 22].

Computationally, MQDT is much more efficient than
the numerical calculation even when the QDT functions
are calculated on the fly. Since the QDT functions are
universal mathematical functions that are the same for all
applications and can be computed to arbitrary precision
with efficient algorithms [22], their computation can be
further accelerated to be as efficient as most other mathe-
matical special functions. This computational advantage
will be even more pronounced in other applications with
more coupled channels.

IV. CONCLUSIONS

In summary, we have investigated the low-energy
proton-hydrogen interaction using three different meth-
ods: the CC numerical method, the MQDT, and the
elastic approximation. The results show that at ener-
gies comparable or smaller than the hyperfine splitting,
the effect of nuclear spin is no longer merely statistical,
but has to be treated in a multichannel framework using
either CC numerical method or MQDT. The differences
between single and multichannel treatments are not only
quantitative, but qualitative in nature for the threshold
behavior. The MQDT method provides a simple, system-
atic, and quantitatively accurate description of proton-
hydrogen interaction in this difficult multichannel regime.
Its simplicity and efficiency suggest the potential and the
promise of MQDT and its off-shell generalization in fu-
ture studies of 3-body processes such as those involving
p+H +H or e− + p+H .
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