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Magic wavelengths, for which there is no differential ac Stark shift for the ground and excited state
of the atom, allow trapping of excited Rydberg atoms without broadening the optical transition.
This is an important tool for implementing quantum gates and other quantum information protocols
with Rydberg atoms, and reliable theoretical methods to find such magic wavelengths are thus
extremely useful. We use a high-precision all-order method to calculate magic wavelengths for the
5s− 18s transition of rubidium, and compare the calculation to experiment by measuring the light
shift for atoms held in an optical dipole trap at a range of wavelengths near a calculated magic
value.

PACS numbers: 32.80.Rm, 37.10.Gh, 31.15.ap

I. INTRODUCTION

The concept of a magic wavelength, λmagic, at which
two atomic states experience the same ac Stark shift in
a light field, was first proposed in Refs. [1, 2] for appli-
cations in optical atomic clocks. The subject of magic
wavelengths has since become of great interest owing to
a variety of other applications including laser cooling of
fermionic ultracold gases with high phase-space densities
[3], trapping and controlling atoms in high-Q cavities in
the strong coupling regime [4], and the implementation of
Rydberg-based quantum computing protocols with neu-
tral atoms [5–7]. Extensions of the magic wavelength
idea include the use of bichromatic trapping to cancel
the ac Stark shift [8] and the use of “tune-out” wave-
lengths where the ac Stark shift is zero for a particular
state [9–12]. Recently, a magic wavelength optical lat-
tice for a Rydberg transition in rubidium was used in a
demonstration of light-atom entanglement [13].
Such a variety of applications requires the develop-

ment of theoretical and experimental methods to reliably
evaluate various magic wavelengths. While most previ-
ous applications involved relatively low-lying states, de-
velopment of fault-tolerant Rydberg gate schemes calls
for accurate prediction and measurement of magic wave-
lengths for highly-excited states, which is the subject of
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the present work. Specifically, we theoretically determine
5s− 18s magic wavelengths near the 18s− 6p resonances
in 87Rb for Rydberg-based quantum information applica-
tions and experimentally measure the magic wavelength
near the 18s− 6p3/2 resonance in a crossed-beam optical
dipole trap operating near 1064 nm, in the range of stan-
dard commercial high-power fiber amplifiers used for op-
tical trapping. We find that the experimentally measured
value of 1063.529(4) nm differs from the theoretically de-
termined value of 1063.514(4) nm by ≈ 2.8σ. Exten-
sive tests of the accuracy of the theoretical calculations
and studies of the statistical and systematic uncertain-
ties of the experiment, described later in text, were car-
ried out. We note that the theoretical value depends on
the experimentally determined energy levels as described
in Section II. Therefore, we also experimentally deter-
mine the absolute frequency of the 6p3/2− 18s transition
and obtain a value, 1063.6278(2) nm, in good agreement
with the value extracted from previous measurements,
1063.627(1) nm [14, 15].
Theoretical determination of magic wavelengths in-

volves calculation of the frequency-dependent polarizabil-
ities of the two states to find their crossing points. A
high-precision all-order method was very successful in
accurate calculation of atomic polarizabilities for low-
lying states [16–18]. However, this approach requires
construction of a finite basis set in a spherical cavity
of sufficient size to accommodate the relevant electronic
orbitals. Thus, owing to the required drastic increase
in the cavity size, this approach was previously consid-
ered not to be applicable for highly-excited states. In
this work, we demonstrate, for the first time, that the
resulting problems can be overcome, which significantly
expands the applicability of the all-order method. Ex-
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tensive tests of the numerical stability of the calculations
are carried out.1

II. THEORETICAL METHODS

The frequency-dependent scalar polarizability, α(ω), of
Rb ns states may be separated into a core polarizability
and a (dominant) contribution from the valence electron,
αv(ω). The core polarizability depends weakly on ω for
the frequencies treated here and is approximated by its
dc value calculated in the random-phase approximation
(RPA) [19]. The valence part of α(ω) is evaluated as the
sum over intermediate k states allowed by the electric-
dipole transition rules [19]

αv(ω) =
2

3(2jv + 1)

∑

k

〈k ‖d‖ v〉2(Ek − Ev)

(Ek − Ev)2 − ω2
, (1)

where jv = 1/2 for ns states, 〈k ‖d‖ v〉 are the reduced
electric-dipole matrix elements, and ω is assumed to be
at least several linewidths detuned from the correspond-
ing transition. The calculation of polarizability reduces
to the calculation of energies, electric-dipole matrix ele-
ments, and evaluation of a small Eq. (1) sum remainder
for very large k.
In the present work, we are interested in the 18s ac

polarizability near 1064 nm, which corresponds to the
18s−6p3/2 resonance. Therefore, the 18s−6p, 18s−19p
18s−18p, 18s−17p, and 18s−16p transitions are expected
to give large and partially canceling contributions to the
polarizability. Accurate representation of such highly-
excited states with high-precision all-order methodology
is the biggest challenge of the present calculation. First,
we carried out extensive numerical tests to ensure that a
500 point grid is sufficient for accurate integration of the
corresponding matrix elements at the Dirac-Fock (DF)
level. We have compared the values of the 18s− 6p and
18s − 18p DF dipole matrix elements integrated on the
500 point and 10000 point grids and found 0.01 % and
0.004 % differences, respectively. Next, we investigated
the construction of the finite B-spline basis set [20] that
can accurately represent states up to n = 19 with neg-
ligible loss of accuracy for the low-lying states. The re-
sulting basis set consists of 150 orbitals of order 13 for
each value of the relativistic angular quantum number κ
constructed in a spherical cavity of R = 600 a0. The
quality of the basis set was verified by comparing basis
set energies and dipole matrix elements with original DF

1 Unless stated otherwise, for the theoretical calculation we use
the conventional system of atomic units, a.u., in which e,me,
4πǫ0 and the reduced Planck constant ~ have the numerical
value 1. The atomic units for α can be converted to SI units
via α/h [Hz/(V/m)2]=2.48832×10−8α [a.u.], where the conver-
sion coefficient is 4πǫ0a30/h and the Planck constant h is factored
out.

values. We find 0.01 % to 0.05 % differences in matrix
elements up to 18s − 19p, demonstrating that the basis
set reproduces all of these orbitals with sufficient numer-
ical precision. The states with n > 24 in our basis have
positive energies and provide a discrete representation of
the continuum.
We use the linearized version of the coupled-cluster ap-

proach (also referred to as the all-order method), which
sums infinite sets of many-body perturbation theory
terms, for all terms up to k = 40p in Eq. (1). The
sum over k is numerically converged at n = 40 and the
estimated remainder makes a small contribution to the
final uncertainty of the calculation. The details of the
all-order approach are described in a review [16]. Ex-
perimental energies from [15, 21] are used up to n = 19,
and theoretical energies are used for higher n to keep the
completeness of the basis set. The np experimental en-
ergy uncertainties were listed in [21]. The uncertainty of
the E18s = 33194.382(7) cm−1 energy from [14] was de-
termined as the difference with the quantum defect value
of 33194.389 cm−1 [22]. Our theoretical removal energies
are in excellent agreement with NIST values, to 0.1 cm−1

or better for the 14p − 18p states and 0.2 cm−1 for the
18s, 19p states serving as additional test of the theory
accuracy.
Two different ab initio all-order calculations were car-

ried out, including only single-double (SD) excitations
and additionally including the partial triple excitations
(SDpT). The results for the most important transitions
are listed in Table I in the SD and SDpT columns.
Lowest-order DF values are listed as well for compar-
ison. We also carried out additional calculations that
included a semiempirical estimate of higher-order correc-
tions; these results are listed as SDsc in Table I. SDpT ab

initio values are taken as final. The spread of the three
all-order values (SD, SDpT, and SDsc) gives the esti-
mated uncertainty in the final value for each transition
(see [16, 23] for a detailed explanation of the methodology
and uncertainty evaluation). Relative uncertainty in per-
cent is listed in the column labeled “Unc.”. We find that
the entire correlation correction, estimated as the differ-
ence of the final and DF numbers, is very small, 0.7 % to
3 %, further confirming the small expected uncertainties
of the calculations. Relative correlation corrections are
listed in the last column as percentages.

III. MAGIC WAVELENGTHS

The dynamic polarizabilities for the 18s and 5s states
for wavelengths from 1050 nm to 1070 nm are shown
in Fig. 1. The magic wavelengths are determined as
the crossing points of these two curves marked by ar-
rows on the graph. The calculation of the 5s polariz-
ability has been discussed in [10, 17]. The calculation
of the 18s polarizability is illustrated in Table II where
we give a breakdown of the various contribution to the
α18s(ω) at the magic wavelength λmagic = 1063.514 nm.
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TABLE I. Electric-dipole matrix elements (in a.u.) that give
dominant contributions to the 18s dynamic polarizability at
1063.514 nm magic wavelength calculated in different approx-
imations. DF values are the lowest-order Dirac Fock values.
All-order single-double, scaled SDsc, and SDpT values are
listed in the corresponding columns. SDpT values are taken
as final and their uncertainties are listed in column “Unc.”
in percent. The relative correlation correction, estimated as
the difference of the final and DF numbers is listed in the last
column in percent.

Transition DF SD SDsc SDpT Unc. Corr.
18s− 6p3/2 0.1932 0.1864 0.1860 0.1874 0.8 % 3.1 %
18s− 17p1/2 178.62 179.98 180.66 179.81 0.5 % 0.7 %
18s− 17p3/2 257.13 259.68 260.62 259.37 0.5 % 0.9 %
18s− 18p1/2 222.46 217.79 217.63 218.34 0.3 % 1.9 %
18s− 18p3/2 310.74 303.49 303.13 304.34 0.4 % 2.1 %
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FIG. 1. (Color online) Magic wavelengths λ (in nm) for the
18s state in rubidium, determined as crossing of the 5s and
18s dynamic polarizabilities (in a.u.). Two magic wavelengths
near the 18s − 6p1/2 and 18s − 6p3/2 resonances are shown.

The contributions from 15 dominant transitions are listed
separately with the corresponding values of the reduced
electric-dipole matrix elements and the 18s− np experi-
mental energy difference in columns D and ∆E, respec-
tively. The uncertainties of the dominant contributions
to the polarizability arise from two sources: theoreti-
cal uncertainties in the matrix elements D and uncer-
tainties in the values of the experimental energy levels.
We give these separately in columns δαD and δαE , re-
spectively. The latter uncertainties are only significant
for 5 transitions and are omitted for all others. The
uncertainties in the contributions from np states with
n > 20 are (somewhat pessimistically) estimated at 50 %
based on the comparison of the lowest-order and all-order
values for very highly-excited states. Adding all uncer-
tainties in quadrature, we arrive at α18s = 692(41) a.u.
The uncertainty of the 5s polarizability is much lower,

TABLE II. Contributions to the 18s dynamic polarizability
(in a.u.) of Rb at the magic wavelength, 1063.514 nm. Re-
duced electric-dipole matrix elements with uncertainties listed
in parenthesis (in a.u.) and the 18s−np energy differences (in
cm−1) are given in columns D and ∆E. Uncertainties in the
polarizability contributions due to the uncertainties in dipole
matrix elements δαD and energies δαE are given in the last
two columns of the table, respectively, in a.u.

Contribution D ∆E α δαD δαE

(5− 14)p1/2 8.0 0.3
15p1/2 9.51(4) -223.72 16.8 0.1
16p1/2 24.70(8) -119.79 60.5 0.4
17p1/2 179.8(8) -36.84(5) 985.7 9.3 1.3
18p1/2 218.3(7) 30.45(6) -1201.1 7.9 2.8
19p1/2 25.9(1) 85.75 -47.5 0.4
20p1/2 10.83(7) 140.96 -13.7 0.2
> 20p1/2 -13.8 6.9

6p3/2 0.187(1) -9401.79(1) 1284.4 19.5 15.1
(7− 13)p3/2 17.7 0.2
14p3/2 6.72(4) -354.36 13.3 0.2
15p3/2 13.01(7) -222.19 31.2 0.3
16p3/2 34.1(1) -118.55 114.1 1.0
17p3/2 259(1) -35.84(5) 1995.2 19.2 2.8
18p3/2 304(1) 31.29(6) -2398.0 19.2 4.6
19p3/2 38.4(2) 86.43 -105.4 1.0
20p3/2 16.4(1) 141.74 -31.4 0.4
21p3/2 8.90(9) 204.22 -13.4 0.3
> 22p1/2 -19.5 9.7
Core 9.1 0.0
Total 692(41)
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FIG. 2. (Color online) Determination of the uncertainty in
the Rb 18s− 5s magic wavelength.

α5s = 688.1(8) a.u., at the magic wavelength.
The uncertainties in the values of magic wavelengths

are found as the maximum differences between the cen-
tral values and the crossings of the α5s ± δα5s and
α18s±δα18s curves, where the δα are the uncertainties in
the corresponding 5s and 18s polarizability values. The
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determination of the 1063.514 nm magic wavelength un-
certainty is illustrated in Fig. 2. Since the uncertainly in
the value of α5s is very small, the α5s±δα5s curves blend
together, and the uncertainty in the value of the magic
wavelength is determined entirely by δα18s.

IV. EXPERIMENTAL PROCEDURES

We experimentally determine the magic wavelength by
measuring shifts of the 5s − 18s two-photon transition
frequency for 87Rb atoms held in a crossed-beam opti-
cal dipole trap. The trapping beams are generated by
a temperature-tunable DFB laser (QD Laser QLD1061)
seeding a 30 W fiber amplifier (IPG YAR-LP-SF), al-
lowing measurements in the range from 1063 nm to
1065 nm. The wavelength is monitored with a wavemeter
(WS7 High Finesse), calibrated with 40 MHz accuracy to
780 nm light stabilized to the 87Rb D2 line and verified
with 1178 nm light stabilized (after frequency doubling)
to the 23Na D2 line. The root-mean-square fluctuation
of the measured wavelength during data taking is within
the 40 MHz accuracy of the wavemeter. The dipole trap
beams have a relative frequency difference of 34.8 MHz to
avoid formation of a lattice. After initial cooling stages
[24, 25], atoms are trapped and evaporatively cooled in
the crossed beams to a temperature of ≈ 0.6 µK, leaving
a cigar-shaped cloud of ≈ 6× 105 atoms with dimensions
≈ (13× 34× 120) µm.
Transitions to the 18s1/2 state are driven by lasers at

795 nm (probe) and 485 nm (coupling), with an inter-
mediate detuning between 85 MHz and 95 MHz below
the 5s, F = 2 to 5p1/2, F = 1 transition. Probe light
is generated by a 795 nm DBR laser diode (Photodigm)
narrowed to 10 kHz spectral width via polarization rota-
tion spectroscopy in a heated vapor cell [26]. Coupling
light is generated by a frequency-doubled laser at 485 nm
(Toptica TA-SHG Pro) with instantaneous linewidth of
less than 100 kHz, stabilized to the two-photon transition
via Rydberg electromagnetically induced transparency in
the same vapor cell [27]. The long-term stability of the
two-photon lock is better than 0.5 MHz. The probe and
coupling beams are combined on a dichroic mirror and
focused along the long dimension of the atomic cloud
with waists 270 µm (probe) and 170 µm (coupling). The
beams have opposite circular polarizations in order to
drive transitions between states of identical magnetic
quantum number, reducing sensitivity to Zeeman shifts.
A magnetic bias field of 0.3 mT, collinear with the ex-
citation beams, sets the quantization axis with atoms
initially in the |F = 2,m = −2〉 state.
We infer excitation to the 18s state by detecting

780 nm photons emitted in cascade decay through the
5p3/2 state. The light is collected by a lens relay sys-
tem (NA=0.12, optimized for absorption imaging of a
BEC) and focused through a 780-nm interference filter
onto a 200 µm-diameter core fiber. The fiber delivers the
collected light to an avalanche photodiode unit (SPCM-

AQR-12) connected to a custom FPGA time-stamp card,
which records arrival times of detected photons during
the excitation period [28]. The product of geometric col-
lection fraction, branching ratio, and detector efficiency
limits the maximum probability of detection of a Ryd-
berg excitation to less than 0.04 %.
For each setting of the dipole trap laser wavelength,

we find the 5s − 18s transition frequency as a function
of dipole trap intensity. Following the evaporative cool-
ing stage in the crossed dipole trap, one of the dipole
beams is ramped (adiabatically to avoid heating) to a
variable final intensity for the 5s − 18s excitation. The
final intensity is alternated each experimental cycle be-
tween ≈0.90 kW/cm2 and ≈4.6 kW/cm2. For ten wave-
lengths near the 6p3/2 − 18s transition, the maximum
dipole trap intensity is reduced to mitigate loss via the
6p3/2 state induced by the near-resonant optical trap-
ping field. While the atoms are held in this final dipole
trap, the probe frequency is scanned across two-photon
resonance with a double-pass acousto-optic modulator 18
times (in alternating directions) and then the atoms are
released and a new cloud loaded into the trap. We set the
intensity of the probe field and the scan speed such that
each scan only excites a small fraction of the atoms, but
the 18 scans collectively excite nearly all of the atoms.
We detect, on average, 500 photons per experimental cy-
cle. We repeat at each dipole trap wavelength and final
intensity between 5 and 10 times.

V. DATA ANALYSIS

We correlate the arrival times of 780 nm fluorescence
photons with probe detuning from the intermediate state
at that time in the scan (see Fig. 3a inset for an ex-
ample spectrum). We note that radiation trapping de-
lays emission of the 780 nm fluorescence, however we
measure this delay by pulsed resonant excitation of the
atoms to be .5 µs, and set the scan speed such that
the probe frequency does not change by more than one
Rydberg transition linewidth in this time (scan speed <
(45 kHz)/(5 µs)). Following the time-to-frequency con-
version, we fit a Gaussian to the emission spectrum and
extract the center position of the 5s− 18s transition (in
terms of the detuning of the probe field from the interme-
diate 5s− 5p1/2 transition). Laser frequency noise limits
the width of the observed emission spectrum to >200 kHz
and imposes a Gaussian lineshape.
For each dipole trap wavelength, we fit a line to the

transition frequency as a function of dipole trap inten-
sity. The extracted slope is linearly proportional to the
differential polarizability between the ground and excited
states. We plot the slope values as a function of dipole
trap frequency in Fig. 3. A least-squares 1/x power law
fit of the data on the blue side of resonance with three free
parameters (zero-crossing, multiplicative constant, and
additive constant) gives a zero-crossing at 281885(1) GHz
(1063.529(4) nm), where the uncertainty is the statisti-
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FIG. 3. (Color online) a) Measured 5s − 18s light shift near
the 6p3/2 − 18s transition with a dispersive fit to the data.
Inset is an example single-shot fluorescence spectrum with a
Gaussian fit to extract the transition frequency (in terms of
the probe detuning from the intermediate 5p1/2 state). b)
Zoomed in on the region of the magic wavelength with a 1/x
power law fit to the data (blue) and calculated polarizability
(red) with width equal to the 18s polarizability uncertainty.
Shaded regions are the uncertainties on the calculated (red)
and experimentally extracted (blue) magic wavelengths.

cal uncertainty of the fit (see Fig. 3b). The polarizability
theoretically calculated above (red curve in Fig. 3b) gives
a zero crossing at 1063.514(4) nm, a difference of 4 GHz
(≈2.8σ).
As an additional check of agreement with calculated

level spacings, we fit the slope values around the reso-
nance to a dispersive lineshape and extract a resonance
center frequency of 281858.44(4) GHz (see Fig. 3a). The

previously measured 6p3/2−18s transition frequency used
for the all-order calculation of the magic wavelength is
281858.6(3) GHz (see Theoretical Methods). The tran-
sition frequency extracted from our light shift measure-
ment agrees with the theory significantly better than does
the magic wavelength.
Any possible source of systematic error on the experi-

mental measurement that could account for the discrep-
ancy between theory and experiment requires an approx-
imately 100 kHz shift of the 5s− 18s transition between
low and high dipole trap intensity. The van der Waals
interaction between closely spaced Rydberg atoms could
cause a density-dependent (and thus dipole intensity de-
pendent) shift in the transition frequency. However, even
at the highest densities and fastest excitation scan rates,
we estimate a >2 µm average spacing between excited
Rydberg atoms, which corresponds to a van der Waals
interaction shift of <150 Hz. In addition, 100 kHz is
larger than any shift we are able to measure by varying
the density at a constant dipole trap intensity.

VI. CONCLUSION

In summary, we have demonstrated that the relativis-
tic all-order method is applicable to the calculation of po-
larizabilities of such highly-excited states as 18s, which
in addition to identifying magic wavelengths, may prove
useful in precision spectroscopy measurements in the al-
kalis. Two convenient 5s − 18s magic wavelengths were
determined, and one experimentally verified at a wave-
length accessible to commercial high-powered 1064 nm
laser amplifiers. Along with [13] and [7], our work indi-
cates that magic trapping of Rydberg atoms is experi-
mentally feasible over a wide range of principal quantum
numbers, and should allow for increased trap lifetimes
and decreased decoherence rates in a variety of Rydberg
quantum information applications.
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