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Analysis of the hyperfine structure of the (3s3d) 3DJ manifold of 25Mg I

N. K. Kjøller1,∗, S. G. Porsev2,3, P. G. Westergaard1,†, N. Andersen1, J. W. Thomsen1,‡

1The Niels Bohr Institute, University of Copenhagen,
Blegdamsvej 17, DK-2100 Copenhagen, Denmark

2Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
3Petersburg Nuclear Physics Institute, Gatchina, Leningrad District, 188300, Russia

Based on spectroscopy of the (3s3p) 3P0−(3s3d) 3D1 Mg I transitions for the stable isotopes 24Mg
(I = 0), 25Mg (I = 5/2) and 26Mg (I = 0) we report novel measurements of the 25Mg (3s3d)3DJ

hyperfine coefficients A(3D1) = 141± 7 MHz, A(3D2) = −59± 6 MHz and A(3D3) = −97± 3 MHz.
We find the hyperfine coefficients in agreement with state-of-the-art theoretical predictions presented
here giving A(3D1) = 143.3 ± 1.4 MHz, A(3D2) = −48.3 ± 0.5 MHz and A(3D3) = −96 ± 1 MHz.
We also report measurements of the isotope shifts for the investigated transitions ∆24−25 = 6 ± 9
MHz and ∆24−26 = 59.7 ± 0.5 MHz, significantly reducing the uncertainty compared to previous
measurements.

PACS numbers: 31, 32.10, 32.30, 32.70

I. INTRODUCTION

The physics of cold alkaline-earth atoms has experi-
enced tremendous progress during the past decades. One
of the reasons is the rich energy level structure associ-
ated with the two electron systems. This allows for effi-
cient cooling and trapping of a large number of atoms as
well as offering ultra-narrow intercombination line tran-
sitions well suited for the realization of, e.g., low tem-
perature samples, optical atomic clocks, precision mea-
surements, quantum degenerate gases, and quantum in-
formation processing [1–4].

Among the alkaline earth atoms explored for optical
clocks the magnesium atom takes a special role. To-
gether with mercury, magnesium is the neutral two-
valence electron atom with the lowest sensitivity to
black body radiation (BBR) compared to, for example,
strontium and ytterbium. These finite temperature ef-
fects are currently limiting state-of-the-art optical atomic
clocks [3–6]. In addition, second stage cooling using the
(3s2)1S0 − (3s3p)3P1 intercombination line has proven
difficult for magnesium atoms. An alternative approach,
where magnesium atoms are transferred to metastable
3PJ states followed by multi-line cooling on the 3PJ−3DJ

manifold, seems promising [2] as it opens for efficient
transfer of atoms to an optical lattice operated at the
magic wavelength followed by clock operation.

In this paper we present spectroscopic data for the
(3s3p) 3P0 − (3s3d) 3D1 383 nm transition highlighted
in Fig. 1 and compare to state-of-the-art theoretical
calculations. Magnesium has three stable isotopes, two
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FIG. 1: Energy levels involved in spectroscopy of metastable
magnesium (3s3p) 3P0 − (3s3d) 3D1. Atoms are transferred
to the (3s3p) 3PJ states via electron impact. The resonance
transition at 285 nm is used to determine the absolute fraction
of atoms transferred to the metastable 3PJ states [7, 8].

bosonic and one fermionic isotope, 24Mg(I = 0), 25Mg
(I = 5/2) and 26Mg (I = 0), so spectroscopy involves
both fine and hyperfine structure. Pioneering measure-
ments reported in [9] revealed a spectroscopic structure
for the fermionic isotope that deviated significantly from
the fine structure energy level diagram presented in Fig.
1 with hyperfine structure added successively. This ap-
proach is troublesome, as also pointed out in [9], since
the fine and the hyperfine splittings are of the same or-
der of magnitude in this case. In this paper we explain
the nature of the spectra by including fine and hyper-
fine structure on an equal footing and diagonalizing the
corresponding Hamiltonian. This allows us to extract ex-
perimentially the 25Mg (3s3d)3DJ hyperfine coefficients
for comparison with state-of-the-art theoretical predic-
tions. In addition, we measured the isotope shifts of the
(3s3p)3P0 − (3s3d)3D1 Mg I transitions for 24Mg, 25Mg
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and 26Mg.

II. THEORY OF MEASUREMENT

The comparable fine and hyperfine splitting (hfs) of the
fermionic 25Mg (3s3d) 3D levels entails that the fine and
hyperfine structure are included in the Hamiltonian on an
equal footing. Neglecting contributions from interactions
of the atom with an external magnetic field we arrive at
the Hamiltonian

H = HF +HHF, (1)

consisting of the fine structure Hamiltonian HF and the
hyperfine counterpart HHF. Hyperfine levels of the same
F , but different J will thus mix when the combined
Hamiltonian is diagonalized. As a result, the states
|3DJ , F 〉 having F = 3/2, 5/2, 7/2 mix to form nine eigen-
states of H, all with non-zero projections onto states with
J = 1.

Diagonalization of the Hamiltonian proceeds in a stan-
dard way. For HF we assume the fine structure splittings
of the triplet D-states to be known from previous exper-
iments [10], whereas the hyperfine structure of 25Mg 3Dj

is not known. The hyperfine structure coupling HHF due
to nuclear multipole moments may be represented as a
scalar product of two tensors of rank k:

HHF =

∞∑
k=1

N(k) ·T(k). (2)

Here N(k) and T(k) act in the space of nuclear and elec-
tronic coordinates, respectively. Using this expression
the matrix elements of HHF may be written as [11]

〈3DJ , F |HHF|3DJ′ , F 〉 = (−1)I+J+F

×
∑
k

〈I‖N (k)‖I〉〈3DJ‖T (k)‖3DJ′〉
{
I I k
J J ′ F

}
.(3)

where 〈I‖N (k)‖I〉 and 〈3DJ‖T (k)‖3DJ′〉 denote the re-
duced matrix elements of N(k) and T(k), respectively. In
the following we consider only the first term in the series.
Due to significant mixing, the hyperfine levels are not de-
scribed completely by the hyperfine magnetic dipole (A)
constants alone. By including the off-diagonal matrix ele-
ments of T(1) we have been able to explain the additional
transitions observed in the 3P0−3D1 spectrum, and as a
result we have extracted all 14 × 14 matrix elements of
the hyperfine structure Hamiltonian from our data. In
Appendix A we show that HHF can be completely char-
acterized in terms of five linearly independent reduced
matrix elements of T(1) out of 3 × 3 possible. In Ap-
pendix B we develop a model relating these five matrix
elements, as well as the isotope shifts for 24Mg, 25Mg
and 26Mg, to the line shape of the observed spectra. In
the following we describe first the theoretical predictions,

then we apply the model developed in Appendix B to de-
termine experimentally the five independent reduced ma-
trix elements of T(1), as they are sufficient to determine
all matrix elements of HHF.

III. METHOD OF CALCULATION

Spectroscopic properties of Mg I were calculated in a
recent paper [12]. In this work we use the same method of
calculation. For this reason we only briefly recapitulate
the main features of this approach. We start from the
solution of the Dirac-Fock (DF) equations

H0 ψc = εc ψc, (4)

where H0 is the relativistic DF Hamiltonian [13, 14] and
ψc and εc are single-electron wave functions and energies,
respectively.

We treat Mg as a two valence electron atom. An
initial self-consistency procedure is carried out for the
[1s22s22p6] closed core, and the 3s, 3p, 3d, 4s, 4p, and
4d orbitals are formed in the field of the frozen core (the
VN−2 approximation) [12, 15]. The dominant part of the
Breit interaction is also included self-consistently [16].
We use the B-spline basis set formed in a spherical cav-
ity with radius 60 a.u., consisting of 35 orbitals for each
partial wave up to l = 5. All five partial waves with the
orbitals having principal quantum numbers n ≤ 23 are in-
volved in forming the configuration space. We construct
the set of configurations by single and double excitations
of the electrons from the main configuration 3s2 to the
4s − 23s, 3p − 23p, 3d − 23d, 4f − 23f , and 5g − 23g
orbitals. As discussed in [12] such a configuration space
is numerically complete.

The wave functions and energy levels are found by solv-
ing the multiparticle relativistic equation for two valence
electrons [17]:

Heff(En)Φn = EnΦn, (5)

where the effective Hamiltonian is defined as

Heff(E) = HFC + Σ(E), (6)

with HFC being the Hamiltonian in the frozen-core ap-
proximation. The energy-dependent operator Σ(E) ac-
counts for virtual excitations of the core electrons. It
is constructed using the second order many-body per-
turbation theory in the CI+MBPT approach [13] and
linearized coupled cluster single-double method in the
CI+all-order approach [14]. The construction of the ef-
fective Hamiltonian in the CI+MBPT and CI+all-order
approximations was described in detail in Refs. [13, 14].

Using the wave functions of the 3DJ states obtained
by solving Eqs. (5) and (6) the matrix elements of op-
erator T(1) can be found theoretically. We calculate
〈3DJ‖T (1)‖3DJ′〉 in the frame of both the CI+MBPT
and CI+all-order methods. As we show in Appendix A,
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CI+MBPT CI+All Final Exp.

A(3D1) 143.31 143.29 143.3± 1.4
A(3D2) -48.34 -48.31 -48.3± 0.5
A(3D3) -95.92 -95.92 -96± 1

A(3P1) -144.14 -144.11 -144.1± 1.4 -144.977(5)a

A(3P2) -128.26 -128.23 -128.2± 1.3 -128.445(5)a

aReference [7].

TABLE I: Theoretical hfs constants of the even-parity
3s3d 3DJ states and the odd-parity 3s3p 3P1,2 states ob-
tained in the CI+MBPT+RPA and CI+all-order+RPA ap-
proximations are given in columns labeled “CI+MBPT” and
“CI+All”, correspondingly. The rounded CI+All values,
given in column labeled “Final”, are treated as final theo-
retical results. All values are in MHz. The uncertainties on
the final digits are given in parenthesis for the experimental
values.

the diagonal matrix elements 〈3DJ‖T (1)‖3DJ〉 are con-
nected by a simple formula with magnetic dipole hyper-
fine structure (hfs) constants.

To estimate the accuracy of calculation we present in
Table I the hfs constants of the low-lying states obtained
in the CI+MBPT and CI+all-order approximations. In
calculating these quantities the random phase approxi-
mation (RPA) corrections were also included. As seen
from the table, difference between the hfs constants ob-
tained at the CI+MBPT and CI+all-order stages is less
than 0.1%, i.e., the high-order corrections are very small.
Additional corrections beyond random-phase approxima-
tion such as the core-Brueckner, two-particle corrections,
structural radiation, and normalization corrections (see,
e.g., [18] for more detail) contribute according to our esti-
mate at the level of a few tenth percent. As an additional
test of the accuracy we have calculated the hfs constants
for the 3s3p 3P1 and 3s3p 3P2 states and found the agree-
ment with the experimental results [7] at the level of 0.6%
and 0.2%, correspondingly (see Table I). Based on these
considerations we conservatively assign 1% uncertainty
to the theoretical values. The CI+all-order+RPA values
are treated as final theoretical results. Experimental de-
termination of the hfs constants of the 3s3d 3DJ states
will be discussed in detail in the following sections.

IV. EXPERIMENTAL SETUP

Fig. 2 shows the experimental setup used. The mag-
nesium oven is operated at around 520 ◦C and produces
a flux of about 1013 atoms/s. Electron impact produces
metastable atoms and initiates a discharge which runs at
a stable current of about one ampere comparable to the
setup described in [8]. By exciting the magnesium beam
with resonant 285 nm light (not shown on Fig. 2) 20 cm
downstream from the electron impact region we are able
to detect fluorescence at 285 nm with the electron impact

FIG. 2: (Color online). Schematic diagram of the experi-
mental system. The 383 nm light is provided by frequency
doubling of a 766 nm external cavity diode laser in a bow
tie cavity using a bismuth triborate (BIBO) crystal. Vertical
polarization is assured by a polarizing beam splitter (PBS).
A metastable magnesium beam is generated by electron im-
pact and probed about 45 cm above the oven orifice after
passing a Ø1 mm skimmer. The 383 nm light intersects the
metastable beam at a right angle. Fluorescence detection is
performed at right angles to the incoming laser beam and the
metastable beam using a photomultiplier tube (PMT). The
acousto-optic modulator (AOM) offers the possibility to per-
form spectroscopy with both zeroth and first order as well as
chopping the laser beam for phase sensitive detection.

switched on and off. From the on-off fluorescence ratio at
285 nm we estimate that about 40% of the atoms exiting
the oven are transferred to metastable states.

The 383 nm light is produced by frequency doubling of
an external cavity diode laser (ECDL) operated at 766
nm. After passing through a 40 dB optical isolator, the
766 nm light is injected into a tapered diode amplifier,
resulting in an output of about 500 mW. The output of
the tapered amplifier is directed through another 40 dB
isolator and then coupled into a second harmonic gener-
ation (SHG) bow tie cavity. With a 5 mm anti-reflective
coated bismuth triborate crystal (BiB3O6 or BIBO) we
obtain an output of typically 65 mW at 383 nm.

A piezo transducer in the ECDL is used for
scanning laser frequency over the entire scan
range. Calibration of the frequency scan is achieved
by modulating the acousto-optic modulator (AOM) RF
frequency with a known frequency of 15 MHz, thus gen-
erating two sidebands at ±15 MHz relative to the carrier
frequency, yielding a conversion factor κ, which re-
lates the output laser frequency ν to the piezo
transducer voltage Upiezo (κ = dν/dUpiezo). Re-
peated measurements at different levels of laser
diode current reveal the conversion factor κ to be
approximately linearly dependent on Upiezo, hav-
ing a small positive slope. Over the scanned volt-
age range κ varies by ± 1.6 pct. All spectra have
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been corrected for this voltage dependency. We
probe the metastable atoms using the first AOM order
diffracted at 240 MHz. By chopping the AOM RF in-
put at 45 KHz we achieve additional noise reduction in a
phase sensitive detection scheme with a lock-in amplifier.

Spectroscopy is performed at a distance of 45 cm from
the oven orifice of Ø2 mm using linearly polarized light.
A Ø1 mm skimmer placed 25 cm from the oven orifice
further reduces the transverse Doppler effect. The photo-
multiplier tube is located perpendicular to both the 383
nm laser beam and the metastable atom beam. Each
spectrum is averaged over 20− 22 scans.

Typically, the laser power was about 0.8 mW, result-
ing in a power broadening half-width at half maximum
(HWHM) theoretically estimated to 20 MHz for the 24Mg
isotope, which is confirmed experimentially by analysis
of the measured spectra. In Table II we list theoretically
estimated contributions from various broadening mecha-
nisms associated with our experiment. The list includes
residual Doppler effect, Zeeman broadening due to mag-
netic fields, power broadening and transit time broad-
ening. From Table II we see that Doppler and power
broadening are the main contributors. For this reason
transit time broadening and the Zeeman effect, as well
as differences in isotope mass, have been assumed negli-
gible in the following analysis of the measured spectra.

Broadening effect HWHM broadening

Doppler effect 17

Power broadening 20

Transit time broadening 0.5

Zeeman effect 0.7

Total 30

TABLE II: Estimated values for the broadening mechanisms
associated with the experimental setup. All values are in
MHz.

Based on the geometry of the setup and the tem-
perature of the oven we estimate a Doppler broadening
HWHM of 17 MHz, as stated in Table II. The calculation
of the Doppler broadening assumes a shifted Maxwell-
Boltzmann velocity distribution as given in [8] since inter-
action with the electrons in the discharge region has been
observed to shift the velocity distribution to higher val-
ues. However, the velocity distribution has not been mea-
sured for this particular oven and the calculated Doppler
broadening is thus only an estimate. From the measured
spectra we extract a Doppler broadening value of about
22 MHz.

In total, the 24Mg and 26Mg peaks were observed to
have HWHM of 35 MHz. The 25Mg transitions have
lower transition dipole moments and thus lower absorp-
tion transition rates than 24Mg and 26Mg, as detailed in
Appendix B in (30). The 25Mg multiplet can thus be ex-
pected to have slightly narrower peaks, as was confirmed

experimentally with HWHM values in the range 26− 30
MHz.

V. RESULTS AND DISCUSSION

The measured spectra consist of the 3P0−3D1 tran-
sition for the 24Mg and 26Mg isotopes, as well as nine
allowed 3P0−3DJ hyperfine transitions of the 25Mg iso-
tope. We model the peaks of all three isotopes as Voigt
profiles [19]. The extracted relative positions, relative
amplitudes and Lorentz widths of the 11 peaks fix the
five independent reduced matrix elements of T(1) and
the isotope shifts ∆24−25 and ∆24−26, see Appendix B
for details.

In Fig. 3 we show a fit of our model, detailed in Ap-
pendix B, to a typical experimental spectrum. From the
model, the contribution of each transition can be identi-
fied. The 3P0−3D1 peak is shown in black for 24Mg, and
in red for 26Mg, while the dipole allowed transitions from
3P0 to the 25Mg triplet D hyperfine levels are shown in
green and labeled (a)−(h). Our model shows that three
25Mg resonances are located below the large asymmetric
peak of 24Mg and 26Mg. Furthermore, we observe five ad-
ditional peaks, attributed to 25Mg, which are clearly sep-
arated from the large asymmetric peak. Due to a small
transition rate (10−3 times the 24Mg transition rate) the
ninth 25Mg transition having F = 3/2 and located be-
tween (g) and (h) (at 799 MHz in Fig. 3 and at 553 MHz
in Fig. 4 where 24Mg 3D1 is used as zero) is not visible,
though included in the model.

Based on the spectroscopic data we extract the five in-

FIG. 3: (Color online). Fluorescence signal at 383 nm cor-
responding to the total 3P0 −3D1 multiplet (blue), the fitted
model (dashed black, in insert) and the 11 Voigt profiles that
sum up to the fitted model. The individual Voigt profiles are
the 24Mg transition (black), the 26Mg transition (red) and the
nine allowed 25Mg transitions (green). The labels (a)−(h) cor-
respond to the labels given in Fig. 4. The midpoint of the
scanning range is used as zero for the frequency axis.
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dependent matrix elements TJJ ′ ≡ 〈3DJ‖T (1)‖3DJ′〉 and
two isotope shifts ∆24−25 and ∆24−26. In Table III we
show weighted averages where all energies are reported in
MHz. When solving the Schrödinger equation HΦ = EΦ
both Φ and −Φ are solutions. As a result, the model is in-
different to the signs of T12 and T23, and only the absolute
values of these have been stated in Table III. The statisti-
cal error bars are based on the fitting of the model. The
dominant systematic error arise due to the sta-
tistical error on the mean value and slope of the
voltage dependent conversion factor κ introduced
in section IV. The noted systematic errors do not
represent standard deviations, but are estimates
of the impact resulting from the statistical uncer-
tainty on the conversion factor κ. By varying the
mean and slope of κ within one standard devia-
tion and repeating the fitting procedure, the de-
pendencies of the fitted variables on κ are mapped
out. The largest impact results from varying the
mean value of κ, and the largest changes in the
fitted variables occur when the upper and lower
bounds of the mean are inserted. The resulting
fitted values of the TJJ ′ ’s, ∆24−25 and ∆24−26 have
been used as the upper and lower values of the
systematic error bars.

Variable Exp. σstat σsys Theory

T11 −1010 ±6 +48
−47 −1025± 10

T22 936 ±13 +97
−97 773± 8

T33 2597 ±21 +78
−61 2567± 26

|T12| 1752 ±4 +58
−56 1781± 18

|T23| 1657 ±9 +97
−97 1812± 18

∆24−25 6 ±2 +9
−8 -

∆24−26 59.7 ±0.4 +0.4
−0.4 -

TABLE III: Experimentally measured and theoretically cal-
culated values of the reduced matrix elements TJJ′ =
〈3DJ‖T (1)‖3DJ′〉, and experimental values of the isotope
shifts ∆24−25 and ∆24−26. The statistical errors σstat are
the standard deviations for each experimental value.
The systematic errors σsys corresponds to the max-
imum effect on each experimental value of varying
the conversion factor κ within one standard devia-
tion. The calculated theoretical values have been obtained
using the CI+all-order formalism. All values are in MHz.

We note from Table III that the experimen-
tal values of T11, T33 and T12 lie within one error
bar of the theoretical values, while for T22 and T23

the differences are around 1.5 error bars, agreeing
with the expectation that on average 68% of any
set of measured values lie within the range of one
standard deviation of the mean. However, in order
to investigate the differences between measured and ex-
perimental T22 and T23 values, mixing between 1D2 and

3D2 have been investigated theoretically but proved un-
able to explain the differences.

The hyperfine structure constants A(3DJ), calculated
from the three diagonal elements TJJ , are presented in
Table IV. Theoretical values found using the CI+all-
order formalism are also presented in both Table III and
Table IV, see Section III for details. If we assume that
only 3s electron contributes to the hfs constants of the
3s3d 3DJ states (neglecting the contribution of the 3d
electron), one can show [20] that a sum rule exists in this
approximation, stating that A(3D1)+A(3D2)+A(3D3) =
0. The measured hyperfine structure constants are ob-
served to sum up to −15 MHz, which is around 1.5 times
the standard deviation of the sum, while the theoretical
values sum up to −1 MHz.

The isotope shifts ∆24−25 and ∆24−26 for the 3P0-3D1

transitions have been measured previously by Hallstadius
and Hansen [21] and Beverini et al. [9]. For comparison,
their results are listed in Table V along with the values
found in this work. Our values represent an improve-
ment of the uncertainty by a factor of six compared to
the best previous measurements of ∆24−26. The value
of ∆24−25 has proved difficult to measure [21–23]. The
best measurement is by Hallstadius and Hansen [21] who
measured a value of 30 MHz, but were unable to assign
an error bar to that number. In this work an error bar
is assigned but comparable in size to the quantity.

Based on the values of Table III, the 14 hyperfine en-
ergy levels of the 25Mg triplet D can be estimated along
with the composition of the hyperfine states. The po-
sitions of the 25Mg hyperfine energy levels, relative to
the fine structure levels of 24Mg, are shown in Fig. 4. In
order to compare the levels of 24Mg and 25Mg, all the en-
ergy levels are reported relative to the 3D1 level of 24Mg.
The value ∆24−25 = 6 MHz of Table III has been used.
Notice from the figure that the hyperfine energy levels
of 25Mg 3DJ are distributed over a range from −1500
MHz to 700 MHz relative to 3D1 of 24Mg, and that there
are energy levels located both below and above the 24Mg
triplet D fine structure levels.

Knowing the energy levels of 25Mg 3DJ and their com-
position, it is possible to assign state-labels to the tran-

Variable Exp. σstat σsys Theory

A(3D1) 141 ±1 +7
−7 143.3± 1.4

A(3D2) −59 ±1 +6
−6 −48.3± 0.5

A(3D3) −97 ±1 +2
−3 −96± 1

TABLE IV: Experimentally measured and theoretically calcu-
lated values of the hyperfine structure constants A(3DJ). The
statistical and systematic errors, σstat and σsys, correspond
to one standard deviation for each experimental value. The
measured values have been obtained from the measured TJJ

of Table III and the calculated values have been obtained us-
ing the CI+all-order formalism. Their uncertainties are given
in parenthesis. All values are given in MHz.
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∆24−25 ∆24−26

Hallstadius and Hansen [21] 30 60

Beverini et al. [9] - 65.0 ± 3

This work 6 ±2 +9
−8 59.7 ±0.4 +0.4

−0.4

TABLE V: Measured 24Mg-25Mg and 24Mg-26Mg isotope
shifts for the 3P0-3D1 transition reported by Hallstadius and
Hansen [21] and Beverini et al. [9] compared to this work.
The statistical and systematic errors, σstat and σsys, are noted
for each experimental value for this work as in Table III. All
values are in MHz.

sitions observed in the 3P0−3D1 spectrum. In Fig. 4
the 25Mg levels involved in the 3P0−3D1 transitions have
been labeled (a)−(h), and in Fig. 3 the transitions have
been labeled correspondingly.

The 3P0−3D1 spectrum has been measured previously
[9], but to our knowledge this is the first time state-
labels have been assigned to the transitions. Similarly,
the transitions of the 3P1−3D1,2 and 3P2−3D1,2,3 spec-
tra may be assigned state-labels from knowledge of the
14 energy levels and their relative peak amplitudes. Of
these, only the (3P2, F = 9/2) → (3D3, F = 11/2) tran-
sition of the 3P2−3D1,2,3 multiplet has previously been
assigned state-label [9]. However, the 3P1−3D1,2 and
3P2−3D1,2,3 multiplets are more crowded with allowed
transitions than the 3P0−3D1 multiplet, and the errors
on the calculated energy levels may prove too large to
identify all the transitions in these spectra.

VI. CONCLUSION

In this paper we have analyzed the hyperfine structure
of the 25Mg (3s3d) 3DJ levels through spectroscopy of
the (3s3p) 3P0 − (3s3d) 3D1 transition multiplet for the
stable isotopes 24Mg, 25Mg and 26Mg, combined with
theoretical calculations using the CI+all-order formal-
ism. A comparable fine and hyperfine splitting of the
25Mg triplet (3s3d) 3D induces mixing between hyperfine
levels of same F , and the number of levels with non-zero
projections onto J = 1 states is increased to nine. Tak-
ing this into account we have shown that the hyperfine
structure Hamiltonian can be completely characterized
in terms of five linearly independent reduced matrix ele-
ments of T(1). Based on this we have developed a model
relating the five matrix elements, as well as the isotope
shifts for 24Mg, 25Mg and 26Mg, to the line shape of the
observed spectra.

By applying the developed model we have extracted
all 14 × 14 matrix elements of the hyperfine structure
Hamiltonian from data, and established the hyperfine co-
efficients A(3D1) = 141±7 MHz, A(3D2) = −59±6 MHz
and A(3D3) = −97 ± 3 MHz. The hyperfine coefficients
are in agreement with the state-of-the-art CI+all-order
formalism predictions giving A(3D1) = 143.3± 1.4 MHz,
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FIG. 4: The fine structure levels of 24Mg triplet D (values
from [10]) and the hyperfine structure levels of 25Mg triplet
D (this work). The 3D1 level of 24Mg is used as zero for the
energy axis and the labels (a)−(h) correspond to the labels
given in Fig. 3. All values are given in MHz. Note that the
number of significant figures does not correspond to the size
of the error bars on the values for 25Mg and that the value
∆24−25 = 6 MHz has been used to calculate the energy levels.

A(3D2) = −48.3±0.5 MHz and A(3D3) = −96±1 MHz.
In order to extract the hyperfine structure of 25Mg triplet
(3s3d) 3D from the measured spectra, the isotope shifts
∆24−25 = 6 ± 9 MHz and ∆24−26 = 59.7 ± 0.5 MHz
were also extracted, and the uncertainties on these val-
ues have been reduced significantly compared to previous
measurements.

Experiments involving a magneto-optical trap (MOT)
at 383 nm would enable a very clean spectroscopic signal
to be derived. The MOT in this case is isotope sensitive
[2] and would allow trapping and subsequent individual
probing of the various magnesium isotopes. Refined mea-
surements of the hyperfine structure of 25Mg can thus be
envisioned.
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Appendix A: Matrix elements of the hyperfine
structure

In the following we consider only the first term in the
series (2), so that HHF = N(1) · T(1). The hyperfine
Hamiltonian will thus have the matrix elements

〈3DJ , F |HHF|3DJ′ , F 〉 = (−1)I+J+F

×〈I‖N (1)‖I〉〈3DJ‖T (1)‖3DJ′〉
{
I I 1
J J ′ F

}
. (7)

For N(1) we choose N(1) = µ/µN so that N(1) is dimen-
sionless and T(1) has the dimension of energy. Thus

〈I‖N (1)‖I〉 =
1

µN
〈I‖µ‖I〉. (8)

Using the Wigner-Eckart theorem [11] the magnetic
dipole moment µ can be rewritten as

µ =

(
I 1 I
−I 0 I

)
〈I‖µ‖I〉 (9)

=

√
I

(2I + 1)(I + 1)
〈I‖µ‖I〉, (10)

where in the second line the Wigner 3j-symbol is written
explicitly. Inserting the expression for µ into (8), we
obtain

〈I‖N (1)‖I〉 =

√
(2I + 1)(I + 1)

I

µ

µN
. (11)

For 25Mg, the nuclear spin is I = 5/2, and the magnetic
dipole moment is known from experiments to be µ =
−0.85546µN [24], and thus 〈I‖N (1)‖I〉 = −2.47936 is a
known quantity.

The nine reduced matrix elements of T(1) on the
other hand are unknown. However, by insertion of
J = 1, 2, 3 into (7) it is seen that that the coefficients of
〈3D1‖T (1)‖3D3〉 and 〈3D3‖T (1)‖3D1〉 are zero, and that

〈3D1‖T (1)‖3D2〉 = −〈3D2‖T (1)‖3D1〉, (12)

〈3D2‖T (1)‖3D3〉 = −〈3D3‖T (1)‖3D2〉. (13)

Thus, only five of the 3× 3 matrix elements are linearly
independent, and HHF may be specified by the five lin-
early independent reduced matrix elements of T(1).

Now, consider the diagonal elements of (7). Writing
the Wigner 6j-symbol of (7) explicitly and inserting (11)
we find

〈3DJ , F |HHF|3DJ , F 〉

=
1

2I

µ

µN

〈3DJ‖T (1)‖3DJ〉√
J(J + 1)(2J + 1)

(14)

×
[
F (F + 1)− I(I + 1)− J(J + 1)

]
.

We recognize this as the usual expression for the diagonal
matrix elements of the hyperfine structure Hamiltonian

〈3DJ , F |HHF|3DJ , F 〉

=
A(3DJ)

2

[
F (F + 1)− I(I + 1)− J(J + 1)

]
, (15)

and by inspection, the hyperfine structure constants are
identified as

A(3DJ) =
µ

µN I

〈3DJ‖T (1)‖3DJ〉√
J(J + 1)(2J + 1)

. (16)

Thus, the hyperfine structure constants A(3DJ) can be
expressed in terms of the diagonal matrix elements of
T(1).

Appendix B: The fitted model

The Voigt profile describing each peak in the observed
spectra is given by [19]

V (x, y) = A
y

π

∫ ∞
−∞

exp(−u2)

y2 + (x− u)2
du, (17)

where

y =
√

ln 2
αL
αD

, and x =
√

ln 2
ν − ν0

αD
, (18)

with A being an amplitude prefactor, ν being the laser
frequency, ν0 being the peak center frequency, and αL
and αD being the Lorentz and Doppler HWHM, respec-
tively. Summing up the profiles for each of the 11 allowed
transitions we arrive at a model for the spectrum

U(ν) = U0 +
∑

j=24,25,26

∑
i

A
(j)
i

×V

(
√

ln 2
ν − ν(j)

i

αD
,
√

ln 2
α

(j)
L,i

αD

)
, (19)
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where a vertical offset U0 has been included. In this no-
tation, the peak corresponding to the i’th level of the j’th

isotope jMg has the amplitude A
(j)
i , the center frequency

ν
(j)
i , the Lorentz width α

(j)
L,i and the Doppler width αD.

The mass differences between the isotopes are assumed
negligible and the velocity distributions identical for the
three isotopes. As a result, the Doppler width αD is
assumed to have the same value for all peaks in the spec-
trum.

The parameters αD and U0 are fitted directly from

each spectrum, while the remaining parameters ν
(j)
i ,

α
(j)
L,i and A

(j)
i are related to other parameters fitted from

the spectra − among these the five linearly independent
reduced matrix elements of T(1) and the isotope shifts
∆24−25 and ∆24−26. As a result, each spectrum can be
described by only 12 fitted parameters.

Center frequency ν
(j)
i : In each iteration of the fit-

ting procedure the Hamiltonian (1) is calculated from
the five linearly independent reduced matrix elements of
T(1). See Appendix A for details. Diagonalizing H we

find the 14 eigenvalues E
(25)
i and eigenstates |βi〉 that

each can be written as

|βi〉 =
∑

J=1,2,3

cJ,i|3DJ , F 〉, (20)

where cJ,i = 〈3DJ , F |βi〉. Of the 14 eigenstates only nine
have non-zero projections c1,i onto states with J = 1.

The spectra of 25Mg and 26Mg are shifted relative to
the 24Mg energy level E(24) by the isotope shifts ∆24−25

and ∆24−26, respectively, and the center frequencies of
the transitions are thus

hν(24) = E(24), (21)

hν(26) = E(24) + ∆24−26, (22)

hν
(25)
i = E(24) + ∆24−25 + E

(25)
i , (23)

where E(24), ∆24−25 and ∆24−26 are fitted from each
spectrum, alongside the five linearly independent
reduced matrix elements of T(1) necessary for the

calculation of E
(25)
i .

Lorentz width α
(j)
L,i: A transition experiencing

power broadening has the Lorentzian HWHM of [25]

αL =
Γ

4π

(
1 +

2Ω2

Γ2

)1/2

, (24)

where Γ and Ω are the natural line width (FWHM) and
the Rabi frequency of the transition, respectively. The
Rabi frequency can be related to the transition dipole
moment, which again can be related to the line strength
of the transition. Using a general result of [11] about
transition line strengths, it can be shown that

Ω2 =
E 2

0

~2
(2F + 1)

{
J F I
F ′ J ′ 1

}2

S(γJ ; γ′J ′), (25)

where E0 is the electric field amplitude and S is the line
strength. Primed and unprimed quantum numbers refer
to the final and initial state of the transition, respec-
tively. Inserting into (24) we arrive at an expression for
the Lorentz width of each transition

α
(j)
L,i =

Γ

4π

(
1 + |c1,i|2ηi C

)1/2
, (26)

where c1,i are the projection coefficients of (20), while C
and ηi are defined as

C =
4

ε0c~2Γ2
Iν S(γJ ; γ′J ′), (27)

ηi = (2F ′ + 1)

{
J F I
F ′ J ′ 1

}2

. (28)

Here, Iν = 1
2ε0cE

2
0 is the laser light intensity. The

parameter C is a constant of the transition while ηi is
a dimensionless parameter dependent on the initial and

final states. C is fitted from each spectrum, and α
(j)
L,i are

calculated from C.

Amplitude A
(j)
i : Now, we need only to obtain the

amplitudes A
(j)
i of the transitions to have expressions for

all the elements of U(ν) in (19). In the dipole approxima-
tion, the absorption transition rate for linearly polarized
light from an energy level |a〉 to a higher lying energy
level |b〉 is given by [26]

Wba =
1

4πε0

4π2

c~2
IνD

2
ba , (29)

where D 2
ba is the transition dipole moment. The transi-

tion dipole moment can be related to the line strength of
the transition and for the 3P0−3D1 transitions it can be
shown that

Wba = |c1,i|2ηiK, (30)

where K is defined as

K =
1

4πε0

4π2

c~2
Iν S(γJ ; γ′J ′). (31)

The transition amplitudes A
(j)
i are proportional to both

the transition rate Wba, the natural abundance N (j) of
the isotope in question and the electron excitation cross

section for the isotope. To account for this, A
(j)
i is cal-

culated as
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A
(j)
i = |c1,i|2ηiN (j)

devN
(j)K, (32)

where N
(j)
dev accounts for the differences in electron exci-

tation cross sections and is set equal to 1 for 24Mg. K is

fitted from each spectrum and A
(j)
i are calculated using

K.
To simplify the fitting procedure, N

(26)
dev is fixed at the

known value of 1.04 [27]. Fitting N
(25)
dev , or varying it in

the range from 0.9 to 1.1, was observed only to change

the values of the other fitted variables by values smaller
than their respective statistical uncertainty. For that

reason N
(25)
dev was fixed at unity.

To summarize, the twelve variables fitted from
each spectrum are: The five linearly independent
〈3DJ‖T (1)‖3DJ′〉, ∆24−25, ∆24−26, αD, U0, E(24), C, and
K. Of the twelve, the first seven parameters represent
general properties of magnesium whereas the last five are
dependent on the experimental setup.
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