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Two electrons at the threshold of ionization represent a severe test case for electronic structure
theory. Variational methods can yield highly accurate energies, but may be less accurate for other
operators of interest. A pseudospectral method yields very accurate expectations values for the two-
electron ion with nuclear charge at and close to the critical value which yields zero ionization energy.
As an illustration, the ground-state density is calculated and an extremely accurate parametrization
given. Other components in Kohn-Sham density functional theory are also calculated, and the
efficacy of approximations discussed.

I. INTRODUCTION

The value of highly accurate benchmark calculations
to first-principles electronic structure theory cannot be
overstated. While comparison with experiment is the ul-
timate arbiter of the usefulness of prediction, the ability
to control and eliminate multiple sources of error with a
direct solution of the Schrödinger equation allows pure
‘apples-to-apples’ comparisons. The two-electron atom
is one of the simplest nontrivial quantum systems and
so serves as a common test problem for electronic struc-
ture methods, from early variational [1] and computer
[2] calculations to more recent basis set comparisons [3]
and ultra-high precision calculations [4–6]. The special
case when the ionization potential is precisely zero, i.e.,
the nuclear charge Zc is the smallest value that binds
two electrons, is the simplest case of a quantum-critical
electronic problem [7]. Such systems have been mapped
to phase transitions in statistical mechanics [8]. In this
limit, the electron positions are most strongly correlated
with each other and the decay of the electron density is
slowest, two issues that are difficult for electronic struc-
ture methods to handle. Recently, high-precision varia-
tional calculations have greatly expanded the accuracy
to which Zc is known [9], and strong correlation methods
have been tested on this system [10].

For many N -electron atoms, there exists a minimum
Zc = N − 1 − ν, with 0 < ν < 1, such that the ground
state of Ĥ(Z) has positive ionization energy for all nu-
clear charges Z > Zc. It is thought that λc = 1/Zc
corresponds to the radius of convergence of the pertur-
bative solution of the two-electron atom with the pertur-
bation being the electron-electron interaction 1/r12 [11].
Baker and coworkers used 401 orders of perturbation
theory to obtain Zc = 0.911 03 [11] and Ivanov later
used better extrapolation techniques on their data to get
Zc = 0.911 028 26 [12]. From a direct variational calcu-
lation to solve for the critical charge, Sergeev and Kais
obtained Zc = 0.911 028 225 [13]. Recently, Estienne and
coworkers [9] obtained Zc = 0.911 028 224 077 255 73(4),
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far surpassing the prior estimates in precision. We ob-
tain Zc = 0.911 028 224 07(6), agreeing with Ref. [9] and
an unpublished figure by Schwartz [14]. Although our Zc
is not as precise, our wave function is roughly as accurate
as our value of Zc (to about 10−10 of the maximum, even
in the tail). Variational expansions typically have half
as many accurate digits of accuracy in the wave func-
tion as in the energy [15]. Beyond ground-state energy
comparisons, the density and expectation values can pro-
vide detailed information for strengths and weaknesses
of electronic structure methods. The pioneering work
of Umrigar and coworkers [16, 17] for several spherical
atoms is a case in point. The availability of the Kohn-
Sham (KS) potential and its eigenvalues was useful for
all of density functional theory (DFT), and especially for
the development of linear-response time-dependent den-
sity functional methods for finding excited state energies,
where the ground-state orbitals and energies are vital in-
puts [18, 19].

In this article, we give a high-order expansion for
the electron density at large r for all Z ≥ Zc, includ-
ing fits for the ionization energy and the normalization
factor. This information encodes the quantum critical
transition. We give a highly accurate fit to the density
for Z = Zc for all r as well as precise expectation val-
ues. We conclude with an example from DFT. Common
semi-local energy functionals fail to capture the qualita-
tive behavior of the correlation energy as Z → Zc, but
this error is almost perfectly cancelled by their exchange
approximations. We explain this cancellation in terms of
the locality of the exchange-correlation holes.

II. METHOD

Standard quantum methods typically have trouble cal-
culating states near the ionization threshold because of
their much more diffuse and, hence, spatially correlated
wave function, Ψ, and the accidental mixing of ener-
getically similar continuum states into the ground state.
For example, diffusion Monte Carlo calculations take ad-
vantage of the separation in energy between the ground
and excited states and fails to separate degenerate states.
However, the pseudospectral method used here is a non-



2

variational collocation method in which the value of Ψ is
calculated on a grid in such a way that the local error in
Ψ becomes exponentially small with increasing grid reso-
lution. We accurately calculate the bound state right on
the threshold of the continuum by automatically select-
ing normalizable states. Thus our method is particularly
well-suited to produce benchmark expectation values for
quantities not directly related to the energy at the critical
value.

Pseudospectral methods [20] have their origins in fluid
dynamics [21], where they are used to evolve systems
without shocks because their convergence properties hold
only for C∞ functions. They have been extended to solv-
ing Einstein’s field equations for colliding black holes
by the excision of the singularities from the computa-
tional domain [22, 23]. In quantum chemistry, Friesner
and others have shown orders of magnitude improve-
ment in speed for a wide variety of methods [24–32].
Direct solution of Schrödinger’s equation has been per-
formed for one-electron problems [33, 34], but only re-
cently has a sufficient representation of the computa-
tional domain been demonstrated for fully-correlated,
two-electron atoms [35, 36]. We use the implementation
of Ref. [36].

III. ASYMPTOTIC BEHAVIOR AND DENSITY
FIT

A difficult test for any method is the large-r behavior
of the density. As r → ∞, for Z > Zc, the well-known
analysis of the exponential decay of the density [37] yields

n(r) → exp(−2
√

2Ir), where I is the ionization energy.
However, for Z = Zc, the behavior differs qualitatively
[n(r)→ exp(−4

√
2(1− Zc)r), note, r is inside the square

root]. For low values of Z, the asymptotic value is not
approached until very large r. So one must use higher
order expansions to connect the limits with our numeric
results.
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FIG. 1. (Color online) Exact (dots) and asymptotic (A1 =
5.528 × 10−3, A2 = 1.517, and B = 0.1375) densities (solid
line) for Z = 1, 2, and Zc.

To analyze these results, we review well-known facts
from KS DFT[38]. The KS equations describe fictitious
non-interacting fermions sitting in a potential, vS(r),
whose density matches the real one. For two spin-
unpolarized electrons, one orbital is doubly occupied and
the KS equation in atomic units is[

−1

2
∇2 + vs(r)

]
φ(r) = εφ(r), (1)

where φ =
√
n(r)/2 and ε = −I = E + Z2/2 are the

KS orbital and its energy, respectively, while vs(r) is the
Kohn-Sham potential given by

vs(r) = −Z
r

+ vH(r) + vX(r) + vC(r). (2)

For two electrons, the Hartree and exchange potentials
are trivially related,

vH(r) = −2 vX(r) =

ˆ
n(r′)dr′

|r− r′|
, (3)

and the correlation potential is defined so as to make Eq.
(1) exact. For large r, the exchange potential, behaves as
−1/r while the correlation potential decays much faster,
as −α/2r4, where α is the dipole polarizability of the
N − 1 system, here equal to 9/2Z4 [16]. Amovilli and
March [39] derived the asymptotic behavior of the density
at large r for Z = 2. We extend their work to any Z > Zc
and to the next highest order in 1/r by solving Eq. (1)
order by order:

√
nZ(r) ∼ xβ

√
AZ

ex

[
4∑
k=0

ak
xk
− 3r−2

4Z4

2∑
k=1

ãk
xk

+O
(
x−5

)]
,

(4)

where x = η r, η =
√

2I, β = ξ/η − 1, and ξ = Z −
1. The normalization factor AZ is defined as AZ =
limr→∞ nZ(r) e2x/x2β . The formula

AZ = α1δ + α2δ
2 + α3δ

3, (5)

with δ = Z − Zc, α1 = 0.006 674 48, α2 = 0.567 102, and
α3 = 2/π, fits our densities over the entire Z range to
within 0.2% with the maximum error occurring around
Z = 1. The value of α3 comes from the large-Z limit of
the density. Likewise,

I = {1 + β1 exp[−β2 ln2(β3δ)]}(β4δ + δ2/2), (6)

with β1 = 0.085 704 8, β2 = 0.166 941, β3 = 5.097 253,
and β4 = 2〈1/r1〉Z=Zc

− Zc = 0.245 189 01 has a max-
imum error of 0.3% occurring around Z = 0.92. The
coefficients in the large-r expansion are given recursively
as a0 = 1, ak = −ak−1[ξ − kη][ξ − (k − 1)η]/(2kη2), and
ã1 = 1 and ã2 = −(β2 + β + 3)/2.

At Zc, the long range behavior changes [10, 39, 40].
Here we extend such asymptotic forms to higher order:

√
nZc(r) ∼

√
Be−y

r3/4

[
8∑
k=0

bk
yk
− 9r−2

4Z4
c

4∑
k=1

b̃k
yk

+O
(
y−9

)]
,

(7)



3

n0 0.23819008067 B 0.1375
c1 0.0610986 c2 0.0352145
c3 −0.0494222 c4 0.123575
c5 −0.212456 c6 0.308266
c7 −0.328053 c8 0.219550
d1 7.82582× 10−5 d2 3.79484
s 4.19599

TABLE I. Parameters for Eq. (8) in atomic units.

where B = limr→∞ nZc
(r)e2yr3/2 ≈ 0.1375, y =

2
√

2|ξc|r, ξc = Zc − 1, and b0 = 1, bk =

−bk−1(2k + 1)(2k − 3)/8k, while b̃1 = 4/5, b̃2 = −17/10,

b̃3 = 1107/224, and b̃4 = −30 489/1792. These asymp-
totic expressions are shown with our calculated densities
in Fig. 1 for Z = Zc, 1 and 2. See appendix A for the
errors in this expansion.

To make our results more immediately useful , we cre-
ated a fit to the critical density:

nZc
(r) =

[
n0e
−2Zcr

(
1 +

8∑
k=1

ck
2k2/4

rk+1

)
+B

r3

s3 + r3

(
a

ỹ

)3
e−ỹ

1− 3
2ỹ + 21

8ỹ2 −
87

16ỹ3 + 1755
128ỹ4

] [
1 +

d1r
10

1 + d2r29/2

]
, (8)

Z = Zc Z = 2 Ref. [36]
〈r21〉 39.779 95(20) 1.193 482 995 30(16)
〈r212〉 81.303 37(40) 2.516 439 313 8(6)
〈r1 · r2〉 -0.871 728 2(66) -0.064 736 661 60(25)
〈r1〉 4.146 972 44(58) 0.929 472 295 02(6)
〈r12〉 7.083 427 6(12) 1.422 070 255 93(38)
〈1/r1〉 0.578 108 619(11) 1.688 316 800 5(6)
〈1/r12〉 0.223 374 112(19) 0.945 818 448 5(6)
〈1/r21〉 0.873 035 760 4(46) 6.017 408 866 1(36)
〈1/r212〉 0.085 788 151 9(80) 1.464 770 922 4(15)
〈1/r1r2〉 0.239 016 167(21) 2.708 655 473 6(20)
〈1/r1r12〉 0.154 038 646(14) 1.920 943 921 1(13)
〈δ(r1)〉 0.157 506 390 55(31) 1.810 429 318 2(12)
〈δ(r12)〉 0.001 473 985 59(13) 0.106 345 370 53(33)

TABLE II. Expectation values in atomic units. Uncertainties
in the last digit(s) are given by the number in parentheses.

where ỹ = (2y)4/
√

1 + (2y)6, a = 4
√

2|ξc|, n0 =
2〈δ(r1)〉, and the fit parameters (ck’s and dk’s) are given
in Tab. I. The short-range part is exact to first order
in r and along with the long-range part contains higher
order corrections to order r9 by fitting to the pseudospec-
tral density. The long-range part is chosen to reproduce
Eq. (5) to order r−2 (second order), while the last term
is a Padé approximant to the remaining error. Our
numerical densities appear in appendix B. We believe
that there is great value in parametrizations that cap-
ture asymptotic limits, which is why we constructed our
critical density in such detail. Analytic forms can be ap-
plied in almost any context, and guarantees of asymptotic
correctness can be useful in testing methods.

IV. EXPECTATION VALUES

We give expectation values of some simple operators
in Table II, compared to those for the helium atom. At
ZC, the two-electron atom is much fatter than for Z = 2.
Furthermore, the two electrons are much more likely to
be on opposite sides of the nucleus than for Z = 2, as

Pseudospectral fit
N 1.9999118 1.99757
E -0.414 986 212 52(5)
EH 0.595 467(52) 0.595 038
TS 0.389 857(17) 0.389 873
En -1.053 346 537(20) -1.053 176
EC -0.049 240(39) -0.049 202
TC 0.025 129(17) 0.0251 133

TABLE III. Normalization and energy components (total,
Hartree, Kohn-Sham kinetic, nuclear, correlation, and kinetic
correlation) of the critically bound system in atomic units.
Uncertainties in the last digit(s) are given by the number in
parentheses.

the expectation value of r1 · r2 is more than an order of
magnitude greater. We challenge any other method to
match the precision of this table.

V. EXAMPLE BENCHMARKS FOR DENSITY
FUNCTIONAL THEORY

To illustrate the usefulness of these results, we exam-
ine the behavior of the critical ion in KS DFT. For two
unpolarized electrons, the ground-state energy and all
exact KS energy components can be extracted directly
from the density and external potential without solving
an interacting problem by using the asymptotic decay of
the density to determine the ionization potential and the
virial theorem [16, 41]. We perform this procedure here
as a test of the accuracy of our densities. These energies
are listed in Table III for Z = Zc for both our pseu-
dospectral density and our parametrized form [Eq. (8)].
The errors in the fit components are ∼ 0.1% or less.

Next, we illustrate the usefulness of our method in ex-
plaining the behavior of approximations to DFT. At first
glance, this system appears as a disaster for commonly
used approximations, since their self-consistent densities
will not bind the electrons. However, this is solely due to
failures in the approximate vXC(r), while the energy itself
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FIG. 2. (Color online) Exact and approximate correlation
energies, evaluated with the exact densities.

remains highly accurate[42]. Evaluation on the accurate
density circumvents this (important) distraction. In Fig.
2, we show several common EC functionals for the two-
electron ions, showing how unusual this system is. The
LDA usually overestimates EC by a factor of 2-3 (as it
does for He), but here is more accurate than the “bet-
ter” GGA approximations, PBE and LYP[43, 44]. This
is clearly due to the sharp dip in the exact curve which
occurs only for Z ≤ 1. This oddness is also reflected in
the ratio of TC/|EC|, which is close to 1 for He, close to
0 for stretched H2, but close to 1/2 at ZC.

LDA

PBE

BLYP

1.0 1.2 1.4 1.6 1.8 2.0

0.00

0.01

0.02

0.03

Z

D
E

xc
Ha

.u
.L

FIG. 3. (Color online) Error in approximations evaluated
with the exact densities. For PBE at Z = Zc, the error is
0.6 mhartree.

But DFT requires approximating both EX and EC si-
multaneously, and is notorious for cancellations of errors.
In Fig. 3, we plot the XC errors, showing a very dif-
ferent picture. The GGA’s are absurdly accurate, with
errors that are far less than for EX or EC separately.
How can we understand this? The clue is in the LDA
result, which is remarkably accurate. For large Z (even
He), EX/EC >> 1, so any cancellation is negligible. As
Z reduces to ZC, EX becomes much smaller, allowing
a much greater cancellation. To see why this is so, in
Fig. 4, we plot the system-averaged X, C, and XC holes
of Z = ZC and Z = 1[45]. The much smaller X hole
at ZC is much more greatly affected by the addition of
the C hole, and the extent of the XC hole is much more
short-ranged than that of X (or C) alone. Bringing the

XC hole inwards makes it more amenable to local ap-
proximation, because of the accuracy of the ontop hole
and cusp condition satisfied by LDA and PBE. This is
why these approximations work unusually well for such
a strongly correlated system.
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FIG. 4. (Color online) Exact density-weighted holes for Z =
Zc and 1. The magnitude of the exchange hole decreases as
Z → Zc, allowing for the error cancellation.

VI. CONCLUSIONS

We close with a clear illustration of the demands of this
system, and the limits of even this method. Although
the dependence of vS(r) is notoriously sensitive to n(r),
a plot of vC(r) for our fit density is indistinguishable from
the numerical result. But in Fig. 5, we show r4 vC(r),
which is known to approach −9/(4Z4

C) as r → ∞. Our
numerical density is accurate just far enough (to r ≈ 40)
to roughly meet the asymptote for vC(r), and suggests
the final value is not reached even at r = 100. For this
quantity, our fit fails around r ≈ 8, despite the care in
its construction.
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FIG. 5. (Color online) The correlation potential times r4

calculated with our numerical density (exact, black), Eq. (8)
(fit, dashed red), and using the asymptotic form 7 for the
local noninteracting kinetic energy and the fit for the exchange
energy (dotted, blue). Only by combining the asymptote with
our exact data can we extract the behavior for all r.
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In summary, we have shown that pseudospectral meth-
ods yield highly accurate densities, even at and near a
quantum critical transition, allowing unprecedented eval-
uation of densities in the tail and of other position expec-
tation values for such a situation. We have constructed
high order asymptotic forms for all Z ≥ Zc and used
our densities to give accurate fits of the ionization en-
ergy and normalization factors in such expressions as a
function of Z. A highly accurate fit for the critical density
has been given to make this benchmark easier to use for
other electronic structure theorists, and we demonstrate
how this system can be used to evaluate and learn about
errors with density functional theory examples. We have
shown a remarkable cancellation of exchange and corre-
lation errors for local and semi-local functionals at the
critical density and explain this cancellation in terms of
the exchange and correlation holes.
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Appendix A: Errors in Asymptotic Densities

We have given the asymptotic densities at large r for all
Z ≥ Zc in Eqs. (4) and (7). These along with our fit to
the normalization factors [Eq. (5) and B = 0.1375] and
ionization energies [Eq. (6)] are useful for checking the
accuracy of the electronic structure of any two-electron
atom. Although these are exact expressions (up to the
fits), there is still the open question of how accurate each
order is as a function of r. We answer this question in
detail in Fig. 6 for Z = Zc, 1, and 2. There is no eas-
ily discernible pattern other than lower Z implies larger
r for a given order. It is of note that the most well
known asymptotic form (the zeroth-order expression) is
relatively slow to converge to the exact density. For ex-
ample, at Z = Zc, it still yields a 10% error at r = 50
a.u.

Appendix B: Raw Density Data

In the main body of the paper, we gave a fit to our
density at Z = Zc. This fit gave DFT energies to 0.1%
or less. For those readers requiring more accuracy, we
provide our best calculation of the one-electron density
in Tab. IV. The accuracy of these data can be inferred
from the value of our normalization in Tab. II, which is
off by 9×10−5. The majority of this error comes from the
relatively large errors in the tail of the density. Since the
weight for the density at the furthest out nonzero value
is about 3× 106, the error in the density values is about
3× 10−11, comparable to the error in our value of Zc.

FIG. 6. (Color online) Relative error in the asymptotic densi-
ties [Eqs. (4) and (7)] compared to the exact densities (points)
from zeroth to fourth order in 1/r. The leading order correc-
tion to these formulas is calculated with higher order terms
and plotted as dark solid lines except for the 4th order error
which is made with a fit. These lines indicate whether the
errors have reached the asymptotic regime or not. Note, that
for Z = 1, zeroth, first, and second order are the same. There
does not appear to be a general pattern. Deviations from lim-
its at very large r are due to the limits in machine-precision
arithmetic in calculating Ψ in the tail.

In order to obtain a functional form that can be easily
evaluated off the grid or used to calculate derivatives, one
should construct the Cardinal functions:

Cj(x) =

N∏
k=1,k 6=j

x− xk
xj − xk

, (B1)
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where x = (1− Zcr)/(1 + Zcr) and N = 52, which have
the property of being equal to one at one grid point and
zero at all the others. The density at an arbitrary value
of x can then be obtained by

n(x) =

N∑
k=1

njCj(x), (B2)

the explicit values used for nj are in Tab. IV (note, values
in the table are divided by Z3

c ).
Integration can be performed via quadrature. The val-

ues of xj are the Gaussian quadrature points (roots of the
53rd order Legendre polynomial). For example,

ˆ
drn(r) =

1

Z3
c

N∑
j=1

wjnj , (B3)

where the values of wj can be found in Tab. IV. Note,
that the volume element 4πr2dr and the conversion from
the r-coordinate to x-coordinate have already been taken
into account by the values of wj . Since the weights get
rather large when rj is big and the precision of the density
is not very good in the tail, one should be careful about
including such points in the quadrature. Usually some
sort of truncation scheme is needed, chosen at a value of r
such that contributions from larger r should be negligible.
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rj (a.u.) xj (a.u.) nj/Z
3
c (a.u.) wj (a.u.)

0.0005759641912909017 0.9989511111039503 0.314682351915279 4.660741235847267×10−9

0.00303925808565137 0.9944775909292161 0.3132732840892592 3.0300099503007153×10−7

0.007489495670215863 0.9864461956515499 0.3107441016739011 2.9066843483625716×10−6

0.013959796221790716 0.9748838842217445 0.30710436909115857 0.000013877890940302966
0.02249735397316229 0.9598318269330866 0.3023689171597749 0.00004612340448161165
0.03316494107684804 0.9413438536413591 0.29655769404226007 0.00012288064229107963
0.046041970051123156 0.9194861289164246 0.28969610387322686 0.00028224923029420383
0.061225781649952314 0.8943368905344953 0.2818154628129142 0.0005832308520293945
0.07883324279239258 0.8659861628460676 0.27295353887455004 0.0011139006628788277
0.09900270777331016 0.8345354323267345 0.2631551627930131 0.0020025658396714803
0.12189640224230178 0.8000972834304684 0.252472896572073 0.0034331010464428006
0.147703303023036 0.7627949951937449 0.24096774168832766 0.005666131691016764

0.17664260478943944 0.7227620997499832 0.22870986212496724 0.009068430900444735
0.2089678872961224 0.6801419042271677 0.21577928855460538 0.014153905827555817
0.24497212550105105 0.6350869776952459 0.20226655892230294 0.021641025428937748
0.28499372130027406 0.5877586049795791 0.18827323726105366 0.032533717316659924
0.32942378214164697 0.5383262092858274 0.17391223683317283 0.04823599283798371
0.3787149317776135 0.48696674569809606 0.15930785598077488 0.07071540224691103
0.43339201631982543 0.4338640677187617 0.14459541626218037 0.10273774745849322
0.4940651706915445 0.3792082691160937 0.12992037421715608 0.1482066729138109
0.5614458450037321 0.32319500343480784 0.11543676326001442 0.21265904048506942
0.6363665691262939 0.2660247836050018 0.10130481511247609 0.30399399290119455
0.7198054734468116 0.20790226415636606 0.0876876171812794 0.43355629325257544
0.8129169082310087 0.14903550860694917 0.07474669189818135 0.6177628843571673
0.9170699472802668 0.08963524464890056 0.06263644690028392 0.8805726039488526
1.033897173471482 0.029914109797338766 0.05149755279322456 1.2572818945152056
1.1653569976191294 -0.029914109797338766 0.04144946858019295 1.800435561708559
1.3138139675134421 -0.08963524464890056 0.032582558170176246 2.5891630981063303
1.4821432470208165 -0.14903550860694917 0.02495051560492449 3.744155528864454
1.6738679412287918 -0.20790226415636606 0.018564108415709536 5.452097769788892
1.8933416121746534 -0.2660247836050018 0.013387488441818883 8.006263376861513
2.145993806251467 -0.32319500343480784 0.009338394879270824 11.875328334071545
2.4386647296695396 -0.3792082691160937 0.006293338088208658 17.822611142279463
2.7800680689846717 -0.4338640677187617 0.004097904475823055 27.117747215953976
3.1814412499350295 -0.48696674569809606 0.0025830926921683018 41.92262357320114
3.657475177082267 -0.5383262092858274 0.0015807827534237687 66.01620223603643
4.2276696497961455 -0.5877586049795791 0.0009415599134492133 106.20157190068788
4.9183526634276635 -0.6350869776952459 0.0005453042282610736 175.1405955662702
5.76576296728434 -0.6801419042271677 0.0003049997869381752 297.30896094699824
6.820887335531765 -0.7227620997499832 0.00016242082753832506 522.1176753124039
8.157294259937565 -0.7627949951937449 0.00008077588981359748 954.4527398959269
9.884289312564363 -0.8000972834304684 0.00003665063488089955 1830.417963708067
12.169963155779914 -0.8345354323267345 0.000014740319797992315 3719.7467675090556
15.28364511271759 -0.8659861628460676 5.054109250994349×10−6 8117.066837845993
19.678953431941505 -0.8943368905344953 1.3947108874720773×10−6 19366.157899552323
26.168717467688783 -0.9194861289164246 2.8316551169626493×10−7 51822.50322060266
36.329306394116436 -0.9413438536413591 3.6357597278623005×10−8 161516.57680062292
53.55560068801603 -0.9598318269330866 2.2296122675325307×10−9 622216.7754332445
86.30923308485625 -0.9748838842217445 3.32223667644662×10−11 3.2798803957197545×106

160.8732228413056 -0.9864461956515499 0. 2.880656250507084×107

396.4320475486722 -0.9944775909292161 0. 6.724307713324147×108

2091.8996773448594 -0.9989511111039503 0. 2.2330122223506357×1011

TABLE IV. Density at the pseudospectral grid points and quadrature weights.
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