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Universal transversal gates with color codes — a simplified approach

Aleksander Kubica and Michael E. Beverland
Institute for Quantum Information & Matter, California Institute of Technology, Pasadena CA 91125, USA

We provide a simplified, yet rigorous presentation of the ideas from Bomb́ın’s paper Gauge Color
Codes [arXiv:1311.0879v3]. Our presentation is self-contained, and assumes only basic concepts from
quantum error correction. We provide an explicit construction of a family of color codes in arbitrary
dimensions and describe some of their crucial properties. Within this framework, we explicitly show
how to transversally implement the generalized phase gate Rn = diag(1, e2πi/2

n

), which deviates
from the method in the aforementioned paper, allowing an arguably simpler proof. We describe
how to implement the Hadamard gate H fault-tolerantly using code switching. In three dimensions,
this yields, together with the transversal CNOT, a fault-tolerant universal gate set {H,CNOT, R3}
without state-distillation.

I. INTRODUCTION

To build a fully functioning quantum computer, it is
necessary to encode quantum information to protect it
from noise. In physical systems, one expects noise to act
locally. Therefore, topological codes [1–4], which natu-
rally protect against local errors, represent our best hope
for storing quantum information. However, a quantum
computer must also be capable of processing this infor-
mation. This motivates the search for topological codes
allowing the implementation of a set of gates which (i)
can operate in the presence of typical noise without cor-
rupting the stored information, and (ii) can perform any
computation on the encoded information. A theoretical
framework has been developed around these ideas — a
gate which is fault-tolerant does not propagate typical
errors into uncorrectable errors [5, 6], and therefore sat-
isfies (i). A set of gates which is universal can generate
any unitary on the code space with arbitrary precision
[7, 8], and therefore satisfies (ii).

The known methods of implementing a universal, fault-
tolerant gate set in topological codes typically require an
enormous amount of overhead. For instance, magic state
distillation [9] with the two-dimensional toric code re-
quires many additional ancilla qubits [10], whereas com-
puting by braiding non-abelian anyons [1, 11] requires ad-
ditional time to move anyons around macroscopic loops
[12]. These forms of overhead can make quantum pro-
cessing orders of magnitude less efficient than storage
alone in topological codes. This may render such ap-
proaches impractical given the experimental difficulty of
scaling up quantum hardware [10, 13, 14]. In this paper
we focus on a new construction by Bomb́ın [15], for a uni-
versal fault-tolerant gate set with topological color codes.
This approach avoids the types of overhead mentioned
above. However, a lattice of at least three dimensions
is required, limiting the construction’s practicality, and
there may be other sources of overhead (related to gauge
fixing).

Following Bomb́ın’s construction, we use the simplest
form of fault-tolerant gate — the transversal gate, which
is a code-space preserving unitary composed of separate
unitaries applied to each physical qubit. However, ac-

cording to a no-go theorem by Eastin and Knill [16], for
any code which protects against arbitrary single-qubit er-
rors, the set of transversal gates forms a finite group and
therefore cannot be universal. Some recent approaches
to circumvent this no-go theorem in order to implement
a universal gate set with transversal gates have been put
forward [17–19].

In Ref. [15], Bomb́ın applies the approach of gauge
fixing [18, 19] to color codes on a d-dimensional lat-
tice. Color codes were first introduced in two dimen-
sions by Bomb́ın and Martin-Delgado in Ref. [3]. They
are topological stabilizer codes [1, 20–22], meaning they
are defined on a lattice and have macroscopic distance
together with geometrically local stabilizer generators.
The main new conceptual contribution in Ref. [15] is that
gauge fixing allows one to fault-tolerantly switch between
a (stabilizer) color code on a d-dimensional lattice, in
which CNOT and Rd = diag

(
1, exp( 2πi

2d
)
)

are transver-
sal, and a different (subsystem) color code on the same
lattice, in which H is transversal. Critically, for d ≥ 3,
{H,CNOT, Rd} forms a universal gate set. To the au-
thors’ knowledge, this represents the first construction
using gauge fixing to achieve a universal gate set in a
topological code.

In Ref. [15], Bomb́ın argues that for every d ≥ 2, there
exists a d-dimensional color code with a transversal im-
plementation of Rd ∈ Pd \ Pd−1, which is the main tech-
nical contribution therein. Here, Pd is the d th level of
the Clifford hierarchy∗ [23]. At the same time, for any
topological stabilizer code, Bravyi and König [22] showed
that the group of logical gates implemented transversally
must be contained in Pd. These results have been ex-
tended beyond the stabilizer code setting [24, 25]. Color
codes are the only family of topological stabilizer codes
currently known to saturate the Bravyi-König classifica-
tion in every dimension d ≥ 2.

In this paper, we provide a simplified yet rigorous pre-
sentation of the ideas in Ref. [15]. The organization is as

∗ The Clifford hierarchy is defined sequentially for j > 1 according
to Pj = {unitary U |UPU† ∈ Pj−1 ∀P ∈ P1} with P1 repre-
senting the Pauli group. Note that P2 is the well-known Clifford
group.



2

follows. First, to build some intuition, we introduce color
codes in two dimensions in Section II. We explain how
to transversally implement the gate set {H,CNOT, R2},
which generates the Clifford group. Then, we describe
the generalization of color codes to d dimensions in Sec-
tion III. Next, in Section IV we discuss transversal gates
in those codes with an emphasis on the phase gate Rn,
and show that in certain d-dimensional color codes Rd
is transversal. Our construction utilizes the bipartite
property of the lattice allowing for a simpler verifica-
tion than in Ref. [15]. Finally, in Section V we explain
how to switch between color codes fault-tolerantly us-
ing the technique of gauge fixing. In particular, this al-
lows one to implement a fault-tolerant universal gate set
{H,CNOT, R3} in a color code in three dimensions.

II. COLOR CODE IN TWO DIMENSIONS

In this section, we give an explicit construction of a sta-
bilizer color code in two dimensions [3, 26]. We consider
a 3-valent lattice formed as a tiling of a sphere, such that
faces of the lattice are colored with three colors, where
neighboring faces have distinct colors. Qubits are placed
at the vertices of this lattice. To define a color code on
this lattice, we associate an X- and a Z-type stabilizer
generator with every face. This code encodes no logical
qubits. A new code, which encodes a single logical qubit,
can be formed through the removal of a single physical
qubit. We describe the transversal implementation of the
logical gates CNOT, H and R2 in the new code†.

A. Color code with no encoded qubits

Color codes in two dimensions are CSS stabilizer codes
[20, 21], and are therefore specified by their stabilizer
group S generated by X- and Z-type stabilizer genera-
tors. The code space is the simultaneous +1 eigenspace
of every stabilizer generator. In the construction, we use
a two-dimensional lattice L∗0, obtained from a tiling of
the 2-sphere, and satisfying the following requirements

• valence — every vertex is 3-valent, meaning it be-
longs to exactly 3 edges,

• colorability — faces can be colored with 3 colors:
red, green and blue, such that every two faces shar-
ing an edge have different colors.

An example of such a tiling of the 2-sphere is presented
in Fig. 1(a). From these properties alone, one can show
that the total number of vertices in L∗0 is even. To see
this, note that the Euler characteristic is V −E+F = 2,

† We use a bar to indicate action on logical code space. The ab-
sence of a bar indicates action on physical qubits.

where V , E and F denote the number of vertices, edges
and faces in L∗0, respectively. Since every vertex is 3-
valent, we obtain E = 3

2V , and then V = 2(F − 2),
which is even.

(a) (b)

(c) (d)

FIG. 1. (Color online) Construction of color codes in two
dimensions. In (a) and (b), qubits are placed at vertices,
and X- and Z-type stabilizer generators are associated with
faces. In (c) and (d) (the dual picture), qubits are placed on
faces, and X- and Z-type stabilizer generators are associated
with vertices. (a) Take a lattice L∗0, which is a tilling of the
2-sphere with 3-colorable faces and 3-valent vertices. The sur-
rounding circle is identified with a vertex v. The color code
on L∗0 encodes no logical qubits. (b) To obtain L∗, remove
from L∗0 the vertex v, together with the three edges and three
faces containing it. The color code on L∗ encodes one logical
qubit. (c) (Dual) lattice L0 is obtained from L∗0 by replacing
faces, edges and vertices by vertices, edges and faces, respec-
tively. All faces are triangles, and the vertices are 3-colorable.
The color code on L0 encodes no logical qubits. (d) Lattice
L formed from L0 by removing a single face. No stabilizer
generators are associated with those vertices belonging to the
boundary of the removed face. The color code on L encodes
one logical qubit.

At every vertex in L∗0 we place a qubit. We refer to the
set of all qubits by Q, whereas by Q(Π) ⊂ Q we denote
the set of vertices of a face Π. Alternatively, we can think
of Q(Π) as the set of qubits belonging to Π. To define
the color code, it is sufficient to specify X- and Z-type
stabilizer generators. For every face Π, we define an X-
type stabilizer generator X(Π) to be a tensor product of
Pauli X operators supported on qubits Q(Π), similarly
for Z-type generators. Then, the stabilizer group S is
generated by

S = 〈X(Π), Z(Π), for every face Π in L∗0〉. (1)

To prove that this specifies a well-defined stabilizer
code, we must verify that all the generators of S com-
mute. It is sufficient to check that for any two faces Π1
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and Π2 in L∗0, X(Π1) and Z(Π2) commute. First take
the case Π1 6= Π2. If Π1 and Π2 share no vertices, then
X(Π1) and Z(Π2) trivially commute. If they share a ver-
tex, then by 3-valence, they also share an edge. More-
over, due to valence and colorability conditions, Π1 and
Π2 cannot share two consecutive edges, and thus their
intersection has to contain an even number of vertices,

|Q(Π1) ∩Q(Π2)| ≡ 0 mod 2. (2)

For the case Π1 = Π2 = Π, due to 3-colorability and 3-
valence, the number of vertices belonging to a face Π is
even,

|Q(Π)| ≡ 0 mod 2. (3)

Therefore, we obtain commutation of X(Π1) and Z(Π2)
for arbitrary Π1 and Π2.

From the construction of the lattice, one obtains that
each vertex belongs to exactly three faces, colored with
three different colors. Thus, one can express the set of
vertices in L∗0 as the disjoint union‡ of vertices belonging
to red faces, and similarly for green and blue [3, 26],
namely

Q =
⊔
ΠR

Q(ΠR) =
⊔
ΠG

Q(ΠG) =
⊔
ΠB

Q(ΠB), (4)

where {ΠR}, {ΠG} and {ΠB} are the sets of all red, green
and blue faces, respectively. This implies that not all the
stabilizer generators we have defined are independent∏

ΠR

X(ΠR) =
∏
ΠG

X(ΠG) =
∏
ΠB

X(ΠB), (5)

∏
ΠR

Z(ΠR) =
∏
ΠG

Z(ΠG) =
∏
ΠB

Z(ΠB). (6)

In fact, these are the only conditions [26, 27] which relate
the stabilizer generators to one another.

We can now verify that the color code which we have
defined on the lattice L∗0 encodes no logical qubits. As
before, using the Euler characteristic we obtain F − 2 =
E − V , and from 3-valence of vertices — E = 3

2V . We
have placed physical qubits at vertices, thus |Q| = V .
There are 2F −4 independent stabilizer generators, since
there are two stabilizer generators for every face and four
conditions (5) and (6). The number of logical qubits is
equal to the number of physical qubits minus the number
of independent stabilizer generators, and we obtain

|Q| − (2F − 4) = V − 2(E − V ) = 0. (7)

‡ We use the disjoint union A tB in place of the union A ∪B of
two sets A and B when their intersection is empty, A ∩B = ∅.

B. Color code with one logical qubit

To obtain a color code with one encoded logical qubit,
we can remove one vertex from the lattice L∗0, together
with three edges and three faces it belongs to, obtaining
a new lattice L∗ (see Fig. 1b). By removing one vertex,
we also discard six stabilizer generators associated with
the removed faces, and thus the stabilizer generators no
longer have to satisfy (5) and (6). One can check that
this new code encodes one logical qubit, since there is one
qubit more than independent stabilizer generators. By
removing more vertices, one could encode more logical
qubits, but we will not analyze that case. Note that the
total number of qubits in L∗ is odd, |Q| ≡ 1 mod 2,
which plays an important role in our considerations.

On physical grounds, it is of interest to consider sta-
bilizer codes with stabilizer generators which are low-
weight and geometrically local. In the construction we
have presented, this can be achieved if each face in the
lattice L∗ is geometrically local and contains a small
number of vertices, as in Fig. 1b. It can be shown that
following this construction, the resulting color code has
macroscopic distance [3], and therefore is a topological
stabilizer code.

Later, when we discuss color codes in d dimensions, we
follow a similar construction. We briefly outline the pro-
cedure here, deferring detailed discussion to Section III.
We start with a tiling of a d-sphere, place qubits at ver-
tices and define (gauge group) generators to be supported
on suitable cells. Then, we remove one vertex and all the
cells containing it. In particular, we discard generators
supported on the removed cells. Such a code encodes
only one logical qubit [27].

C. Transversal gates

Consider a stabilizer code encoding one logical qubit,
with the stabilizer group S. In this setting, a transversal
gate U on a single logical qubit is implemented as a tensor
product of single physical qubit unitaries U1⊗ . . .⊗U|Q|,
which preserves the code space. On the other hand, a
logical gate on two logical qubits requires two copies of
the code, in which case we say that the overall code space
is the +1 eigenspace of the elements in S⊗S. A transver-
sal gate on two logical qubits is implemented as a ten-
sor product of two qubit gates on pairs of corresponding
qubits in both copies of the code, which preserves the
overall code space. Observe that transversal gates are
fault-tolerant since they do not spread errors within each
copy of the code.

We now show that in the two-dimensional color code
described in the previous subsection, one can transver-
sally implement the gate set {H,CNOT, R2}, which gen-
erates the (non-universal) Clifford group. The Clifford
group, combined with computational basis state prepa-
ration and measurement, can be simulated efficiently on a
classical computer [28, 29]. For each gate, H, CNOT and



4

R2, we verify that a particular transversal unitary im-
plements the logical gate by showing that it has the cor-
rect action under conjugation on generators of the logical
Pauli group, and that the stabilizer group is preserved§.

This two-dimensional color code is a CSS stabilizer
code encoding a single logical qubit with logical Pauli
operators X = X(Q) and Z = Z(Q). In addition it is
a self-dual CSS stabilizer code — a code with the same
support for X- and Z-type stabilizer group elements (for
each face, there is an X- and a Z-type generator). This
implies that the logical Hadamard gate can be imple-
mented transversally, as under conjugation by H(Q),
X 7→ H(Q)X(Q)H(Q)† = Z and similarly Z 7→ X.
Moreover, X(Π) 7→ Z(Π), Z(Π) 7→ X(Π), and thus S
is preserved.

The logical gate CNOT can be implemented transver-
sally between two identical copies of this color code by
applying a physical gate CNOT to every pair of corre-
sponding qubits in the first and the second copy. This
can be verified by checking that under conjugation by
CNOT, X I 7→ XX, I X 7→ I X, Z I 7→ Z I, I Z 7→ Z Z
and S ⊗ S is preserved¶.

To show that R2 can be implemented transversally, we
use the fact that the set of vertices in L∗ is bipartite
(see Fig. 2(a)). In other words, Q can be split into two
subsets, T and T c := Q \ T , such that vertices in T are
connected only to vertices in T c and vice versa. To prove
this, first note that every face in L∗0 has an even number
of edges. Moreover, every cycle in L∗0 (as a tiling of the
2-sphere) is contractible. This implies that every cycle
in L∗0 is a boundary of faces and is therefore even. Using
the following lemma

Lemma 1 (Graph Bipartition). A graph containing only
even cycles is bipartite [30].

we see that L∗0 must be bipartite, and so is the lattice L∗
due to its construction from L∗0.

Now, we can show that R = Rk2(T )R−k2 (T c) imple-
ments R2, for some choice of integer k. We use the

relations R2XR
†
2 = iXZ and R2ZR

†
2 = Z. Since

|Q| ≡ 1 mod 2, then |T | − |T c| = 2|T | − |Q| ≡ ±1
mod 4, and picking k = |T | − |T c| mod 4 ensures that
k(|T | − |T c|) ≡ 1 mod 4. With this choice of k, the ac-

tion by conjugation of R = Rk2(T )R−k2 (T c) on the logical
X and Z is

RX R† = ik(|T |−|T c|)X Z = iX Z, (8)

RZ R† = Z. (9)

Furthermore, as every face Π in the lattice L∗ has an
equal number of vertices in T and T c, under the action

§ Preservation of the stabilizer group is a sufficient (but not nec-
essary) condition that implies preservation of the code.

¶ Notice that generators of S ⊗ S are mapped under conjugation
to a different generators, namely X(Π)⊗ I(Π) 7→ X(Π)⊗X(Π),
Z(Π)⊗ I(Π) 7→ Z(Π)⊗ I(Π), I(Π)⊗X(Π) 7→ I(Π)⊗X(Π) and
I(Π)⊗ Z(Π) 7→ Z(Π)⊗ Z(Π).

of R the stabilizer generators X(Π) and Z(Π) become:

RX(Π)R† = ik(|T∩Π|−|T c∩Π|)X(Π)Z(Π) (10)

= X(Π)Z(Π) ∈ S, (11)

RZ(Π)R† = Z(Π), (12)

implying that the stabilizer group S is preserved. This
completes the verification that R implements R2.

(a) (b)

FIG. 2. (Color online) (a) The set of vertices of L∗, the lattice
used to define the color code, is bipartite — it can be split
into two subsets: T (hollow circles), and its compliment T c

(filled circles). Vertices in T are only connected to vertices in
T c and vice versa. The logical gate R2 can implemented by
applying Rk2 to qubits in T , and R−k2 to qubits in T c, where
k ≡ |T | − |T c| mod 4. (b) The dual lattice L. Faces are
bipartite.

D. Dual lattice picture

We can alternatively express the construction of color
codes in the dual lattice picture, which we will use exten-
sively for d > 2 dimensions. We use a two-dimensional
(dual) lattice L0, obtained from a tiling of the 2-sphere,
and satisfying the following requirements

• all faces are triangles,

• vertices are 3-colorable, meaning two vertices be-
longing to the same edge are colored with different
colors.

See Fig. 1(c) for a simple example. Note that these con-
ditions are equivalent to the conditions of 3-valence of
vertices and 3-colorability of faces required for the tiling
L∗0 of the 2-sphere, where lattices L∗0 and L0 are dual to
one another.

A qubit is placed on every face of L0, and an X- and a
Z-type stabilizer generator is associated with every ver-
tex, meaning they are supported on qubits corresponding
to faces containing that vertex. The resulting color code
is exactly the same as that described in Section II A,
and therefore has zero logical qubits. To encode a single
logical qubit, one should remove a face from L0, together
with stabilizer generators associated with the vertices be-
longing to the removed face, see Fig. 1(d).

The bipartition of vertices in L∗ corresponds to a bi-
partition of faces in L, meaning that faces in L can be
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split into two sets, T and its compliment T c, such that
faces in T share an edge only with faces in T c and vice-
versa. See Fig. 2(b).

III. COLOR CODE IN HIGHER DIMENSIONS

Here we present a construction of color codes on d-
dimensional lattices. In higher dimensions it is easier
to describe the construction in the language of the dual
lattice. The majority of this section is devoted to defining
dual lattices satisfying certain conditions and analyzing
their properties. The discussion is a generalization of
that already presented for two dimensions. The basic
idea of how to construct the dual lattice L is to first
tile a d-sphere with d-simplices to form a lattice L0. We
require that every vertex in L0 can be assigned one of d+1
distinct colors and two vertices belonging to the same
edge have different colors. The lattice L, used to define
the color code, is formed by removing one d-simplex from
L0, which results in a color code encoding one logical
qubit [15, 27].

A. Simplicial complexes and colorability

A d-simplex δ is a d-dimensional polytope which is
a convex hull of its d + 1 affinely independent vertices
v0, v1, . . . , vd, namely

δ =

{
d∑
i=0

tivi

∣∣∣∣∣ 0 ≤ ti ∧
d∑
i=0

ti = 1

}
. (13)

In particular, 0-simplices are vertices, 1-simplices are
edges, 2-simplices are triangles, 3-simplices are tetrahe-
dra and so on.

A convex hull of a subset of vertices of size k+1 ≤ d+1
is a k-simplex σ, which we call a k-face of δ, and σ ⊂ δ.
For example, the faces of a 3-simplex (a tetrahedron)
are: four 0-simplices, six 1-simplices, four 2-simplices and
a single 3-simplex. More generally, δ contains

(
d+1
k+1

)
k-

faces, since every k-face is uniquely determined by the
choice of k+ 1 vertices spanning it. By ∆k(δ) we call the
set of all k-faces of δ, namely

∆k(δ) = {σ ⊂ δ|σ is a k-simplex}. (14)

Instead of having only one simplex, we can consider
a collection of them. Moreover, we can create new ob-
jects, called simplicial complexes [31], by gluing sim-
plices along their proper faces of matching dimension.
We restrict ourselves to simplicial complexes containing
finitely many simplices. We will define a d-dimensional
color code on a lattice L obtained by gluing together
d-simplices. The technical name for such a lattice is a
homogeneous simplicial d-complex.

Although L is formally a collection of simplices, by the
same symbol we also denote the union of these simplices

as a topological space. Notice that L is a manifold with
a boundary, which we can think of as being embedded
in real space. We denote by ∂L the set of simplices be-
longing to the boundary of L, where the boundary of L
is the set of points in the closure of L not belonging to
the interior of L. Moreover, by ∆′k(L) we understand
the set of all k-simplices belonging to L \ ∂L. Note that
∆′d(L) = ∆d(L).

We say that a simplicial d-complex L is (d + 1)-
colorable if we can introduce a function

color : ∆0(L)→ Zd+1, (15)

where Zd+1 = {0, 1, . . . , d} is a set of d + 1 colors, and
two vertices belonging to the same edge have different
colors. Moreover, by color(δ) we understand the set of
colors assigned to all the vertices of a simplex δ, namely

color(δ) =
⊔

v∈∆0(δ)

color(v). (16)

An example of a 3-colorable, homogeneous, simplicial
2-complex is the lattice L shown in Fig. 1(d). Note in
particular that it is composed of nineteen 2-simplices (tri-
angles). The exact shape of objects in L is not important
due to its topological nature — the lattice is not rigid
and can be smoothly deformed. In this example, ∆′0(L)
consists of the set of 9 vertices (the three vertices in the
boundary are excluded). ∆′1(L) is the set of 27 edges,
(the three edges in the boundary are excluded). ∆′2(L)
is the set of all 19 triangular faces.

B. Definition of color code

Here we define color codes on a d-dimensional lattice
L, which must satisfy the following conditions

Condition 1. L is a homogeneous simplicial d-complex
obtained as a triangulation of the interior of a d-simplex.

Condition 2. L is (d+ 1)-colorable.

One can obtain such a lattice L from any (d+1)-colorable
tiling of the d-sphere with d-simplices, followed by the
removal of one d-simplex. In d = 2 dimensions, this is
precisely the procedure described in Section II D. An ex-
plicit construction of a family of lattices satisfying these
conditions is outlined in Appendix 1.

Qubits are placed on each and every d-simplex of L,
and thus the set of all qubits Q is equal to ∆d(L). This
motivates the next definition, namely for a simplex δ ⊂
L \ ∂L we define

Q(δ) = {σ ∈ ∆d(L)|σ ⊃ δ}. (17)

In other words, Q(δ) can be thought of as the set of qubits
placed on d-simplices containing δ. We say that qubits
Q(δ) are supported on δ. By saying that an operator is
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supported on δ we mean that it is supported on the set
Q(δ), for example X(δ) := X(Q(δ)).

A color code is a CSS subsystem code [32, 33]. Recall
that a CSS subsystem code is specified by its gauge group
G. Each X-type gauge group generator X(Gx) consists
of Pauli X operators applied to qubits Gx; similarly for
Z-type generators. The stabilizer group S ⊂ G is the
group generated by all Pauli operators X(Sx) and Z(Sz)
contained in G, which commute with every element of G.
Note that −I 6∈ S. The codewords are +1 eigenvectors
of all elements of S.

We define a d-dimensional color code [15] on the lattice
L, where d = dimL, as the CSS subsystem code with X-
and Z-type gauge generators supported on (d − 2 − z)-
and (d− 2− x)-simplices in L,

G = 〈X(δ), Z(σ)|∀δ ∈ ∆′d−2−z(L), σ ∈ ∆′d−2−x(L)〉, (18)

where x+z ≤ d−2. The X- and Z-type generators of the
stabilizer group S are supported on x- and z-simplices,
namely

S=〈X(δ), Z(σ)|∀δ∈ ∆′x(L), σ∈ ∆′z(L)〉. (19)

We refer to this code by CCL(x, z). When con-
text makes the lattice unambiguous, we sometimes use
CCd(x, z) to emphasize the dimensionality of the lattice,
dimL = d. Note that the generators of the gauge and
stabilizer groups are supported on simplices which do not
belong to ∂L, the boundary of the lattice L.

To illustrate the language introduced in this section,
we revisit the two-dimensional color code described in
Sections II B and II D. We begin with the lattice L shown
in Fig. 1d. Qubits are placed on 2-simplices (triangular
faces). Since x+z ≤ dimL−2 = 0, there is only one color
code on the two-dimensional lattice L, namely CCL(0, 0),
which is a stabilizer code. Stabilizer generators are asso-
ciated with 0-simplices (vertices). Note that no stabilizer
generators are assigned to the three vertices belonging to
the boundary of L.

C. Properties of the lattice

Here we present some properties of any (d+1)-colorable
homogeneous simplicial d-complex L. We use these prop-
erties to verify that CCL(x, z) is a valid code, and later
that there is a transversal implementation of Rn. We
start with the following lemmas.

Lemma 2 (Intersection). Let δ and σ be two simplices
in L\∂L. If Q(δ)∩Q(σ) 6= ∅, then Q(δ)∩Q(σ) = Q(τ),
where τ is the smallest simplex containing both δ and σ.

Proof. If Q(δ) ∩ Q(σ) 6= ∅, then there exists ε ∈ ∆d(L)
such that ε ⊃ δ, σ. Let C = color(δ) ∪ color(σ) and set τ
to be the unique (|C| − 1)-simplex in ε, colored with the
set of colors C. Since τ ⊃ δ, then Q(τ) ⊂ Q(δ); similarly
Q(τ) ⊂ Q(σ), and therefore Q(τ) ⊂ Q(δ) ∩ Q(σ). As τ

is the smallest simplex containing δ and σ, then Q(τ) ⊃
Q(δ) ∩Q(σ) and thus Q(δ) ∩Q(σ) = Q(τ).

Lemma 3 (Disjoint Union). Let L be a simplicial d-
complex which is (d + 1)-colorable. Then, for a sim-
plex δ ⊂ L \ ∂L and a chosen set of colors C, such
that color(δ) ⊂ C ⊂ Zd+1, there exists a partition of
the set of qubits supported on δ into a disjoint union of
sets of qubits supported on (|C| − 1)-simplices containing
δ, namely

Q(δ) =
⊔
σ⊃δ

σ∈∆′|C|−1(L)

color(σ)=C

Q(σ). (20)

Proof. First note, that two different k-simplices δ1 and
δ2 in L \ ∂L colored with the same colors, color(δ1) =
color(δ2), cannot belong to the same l-simplex, l ≥ k,
thus do not share a qubit, Q(δ1)∩Q(δ2) = ∅. Moreover,
if Q(ε) ⊂ Q(δ), where ε ∈ ∆d(L), then ε ⊃ δ and there
exists a unique simplex σ ⊂ ε colored with colors C. Since
color(σ) = C ⊃ color(δ), then σ ⊃ δ, which finishes the
proof of the (Disjoint Union) Lemma 3.

As a corollary of the (Disjoint Union) Lemma 3 we
obtain the following

Lemma 4 (Even Support). Let δ be a k-simplex not
belonging to the boundary of the lattice, δ ⊂ ∆′k(L), with
0 ≤ k < d. Then

|Q(δ)| ≡ 0 mod 2. (21)

Before we prove the (Even Support) Lemma 4, we ex-
plain its consequences. For CCd(x, z) to be a subsystem
code, where x+z ≤ d−2, the stabilizer generators have to
commute with each other, as well as with the gauge group
generators. Notice that for two arbitrary X- and Z-type
stabilizer generators to commute, the intersection of their
supports has to contain even number of elements. By
definition, X- and Z-type stabilizer generators be sup-
ported on δ ⊂ ∆′x(L) and σ ⊂ ∆′z(L), respectively. If
the intersection Q(δ) ∩ Q(σ) is non-empty, then due to
the (Intersection) Lemma 2 there exists a simplex τ such
that Q(δ) ∩ Q(σ) = Q(τ). Moreover, since δ is spanned
by x+1 vertices and σ by z+1 vertices, then τ is spanned
by at most x+ z+ 2 ≤ d vertices. Thus, τ is a k-simplex
with k < d, and the (Even Support) Lemma 4 applies,
|Q(δ) ∩ Q(σ)| = |Q(τ)| ≡ 0 mod 2, showing that X(δ)
and Z(σ) commute. The commutation of stabilizer gen-
erators with the gauge generators follows similarly.

Proof. The set of qubits supported on any k-simplex δ in
L\∂L with k < d can be decomposed as a disjoint union
of qubits supported on (d − 1)-simplices σ containing δ
and colored with a chosen set of d colors, C ⊃ color(δ).
Note that any (d − 1)-simplex σ ∈ ∆′d−1(L) separates
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two d-simplices, and then |Q(σ)| = 2, which immediately
yields

|Q(δ)| =
∑
σ⊃δ

σ∈∆′d−1(L)

color(σ)=C

|Q(σ)| ≡ 0 mod 2, (22)

showing the (Even Support) Lemma 4.

The property needed for the transversal implementa-
tion of the gate Rn, presented in Section IV, can be en-
capsulated in the following lemma

Lemma 5 (Bipartition of Qubits). The set of d-simplices
in L, ∆d(L), is bipartite.

Let us first explain the (Bipartition of Qubits)
Lemma 5 — the d-simplices in L can be split into two dis-
joint sets, where d-simplices in the first set share (d− 1)-
faces only with d-simplices from the second set, and vice
versa.

Proof. First, construct a graph G = (V,E) with the set
of vertices V = ∆d(L) and the set of edges E = ∆′d−1(L).
Two vertices v, w ∈ V are connected by an edge e ∈ E
iff d-simplices corresponding to v and w share a (d− 1)-
face corresponding to e. Since for all δ ∈ ∆′d−2(L) the
(Even Support) Lemma 4 gives |Q(δ)| ≡ 0 mod 2, and
every cycle in L is contractible, we obtain that every cycle
in the graph G is even. Using the (Graph Bipartition)
Lemma 1 we immediately obtain that G is bipartite. This
shows that the set of d-simplices in L, which is equal to
the set of qubits, ∆d(L) = Q, is bipartite.

IV. TRANSVERSAL GATES IN COLOR CODES

As mentioned in the introduction, transversal gates are
fault-tolerant. In this section, we first review some rel-
evant features of a class of CSS subsystem codes, which
includes the color codes defined in Section III. Then, we
examine transversal gates of codes in this class. We show
that CNOT is transversal in any such code and under
certain additional conditions the Hadamard and Rn can
be transversal, too. Finally, we show that the additional
conditions are satisfied by certain color codes.

A. Subsystem codes

A CSS subsystem code [32, 33] is specified by its gauge
group G, which is a subgroup of the Pauli group on physi-
cal qubits Q. Each X-type gauge group generator X(Gx)
consists of Pauli X operators applied to qubits Gx; sim-
ilarly for Z-type generators. The stabilizer group S ⊆ G
is the group generated by all Pauli operators X(Sx) and
Z(Sz) contained in G, which commute with every ele-
ment of G. (Note that a stabilizer code is a special case
of a subsystem code, for which G = S). The codewords

are the +1 eigenvectors of all elements of S. We say that
two codewords are equivalent if they differ by applica-
tion of a linear combination of elements of G \ S. This
allows one to decompose the subspace of codewords into
a tensor product of two spaces: logical qubits and gauge
qubits. Elements of G \ S have no effect on the state
of the logical qubits, but may change that of the gauge
qubits.

For a subsystem code, we say a unitary implements a
logical gate if it preserves the space of all codewords, and
has an action on the logical qubits which is independent
of any action on the gauge qubits. A logical gate U can
be implemented on the logical qubits |ψ〉 as a bare gate
Ubare which leaves gauge qubits |g〉 unchanged, Ubare :
|ψ〉|g〉 7→ (U |ψ〉)|g〉, or more generally as a dressed gate
Udressed, which can affect the gauge qubits too, Udressed :
|ψ〉|g〉 7→ (U |ψ〉)|g′〉.

Consider the class of CSS subsystem codes which

• encode one logical qubit,

• have bare logical X and Z implemented by X(Q)
and Z(Q).

Note that these codes are defined on an odd number of
physical qubits, |Q| ≡ 1 mod 2, since X and Z anti-
commute.

We can define a pair of inequivalent (and not normal-
ized) codewords, which are representatives of logical |0〉
and |1〉, namely

|0〉|gX〉 =
∑

X(G)∈G

X(G)|0〉, (23)

|1〉|gX〉 = X|0〉|gX〉, (24)

where |0〉 is a state with every physical qubit set to |0〉,
and |gX〉 is a fixed state of the gauge qubits. One can
verify that the states |0〉|gX〉 and |1〉|gX〉 are +1 eigen-
states of S, and satisfy Z|0〉|gX〉 = |0〉|gX〉, Z|1〉|gX〉 =
−|1〉|gX〉. They are also +1 eigenstates of every X-type
generator of G. All equivalent codewords can be gener-
ated from |0〉|gX〉, |1〉|gX〉 by application of a linear com-
bination of elements from G \ S. An alternative pair of
representatives of logical |0〉 and |1〉 is

|0〉|gZ〉 =
∑

X(S)∈S

X(S)|0〉, (25)

|1〉|gZ〉 = X|0〉|gZ〉, (26)

which are +1 eigenstates of all Z-type generators of G.

B. Transversal gates in subsystem codes

Consider a CSS subsystem code with one logical qubit,
and X and Z implemented by X(Q) and Z(Q). To check
that a physical unitary U implements a dressed logical
gate U in such a code, one can verify its action on |0〉|g〉,
and |1〉|g〉 for every state |g〉 of the gauge qubits. Alter-
natively, it is sufficient to verify that U has the correct
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action by conjugation onX and Z, and that it preserves∗∗

the gauge group G.
The logical gate CNOT can be implemented transver-

sally between two identical copies of this class of CSS sub-
system codes by applying a physical gate CNOT to every
pair of corresponding qubits in the first and the second
copy. This can be verified by checking that under con-
jugation by CNOT, XI 7→ XX, IX 7→ IX, ZI 7→ ZI,
IZ 7→ ZZ and G ⊗ G is preserved††.

If the CSS subsystem code is also self-dual, namely
it has X- and Z-type gauge group generators supported
on the same sets of qubits, G = 〈X(Gi), Z(Gi)〉, then
a dressed logical Hadamard gate can be implemented
transversally as H = H(Q). To see this, observe that
under conjugation by H(Q), X 7→ Z, Z 7→ X, X(G) 7→
Z(G) and Z(G) 7→ X(G), and thus G is preserved.

The last logical gate we analyze is Rn = diag
(

1, e
2πi
2n

)
,

for an integer n > 0. We aim to implement Rn transver-
sally as a bare logical gate by applying the same single-
qubit unitary to some subset T ⊂ Q of the physical
qubits, and applying that unitary’s inverse to the rest
of the qubits T c := Q \ T . Specifically, we now prove
that Rn is implemented by R = Rkn(T )R−kn (T c), for some
suitably chosen k ∈ {1, 2, . . . , 2n − 1}, provided that T
and G satisfy

∀X(G) ∈ G : |T ∩G| ≡ |T c ∩G| mod 2n. (27)

First, pick k such that

k(|T | − |T c|) ≡ 1 mod 2n. (28)

The existence of k is guaranteed by Bezout’s lemma, since
|Q| is odd, |T | − |T c| = 2|T | − |Q| ≡ 1 mod 2, and thus
gcd(|T | − |T c|, 2n) = 1. Noting that R±kn |0〉 = |0〉 and

R±kn X = e±
2πik
2n XR∓kn , we obtain

R|0〉|gX〉 =
∑

X(G)∈G

Rkn(T )R−kn (T c)X(G)|0〉 (29)

=
∑

X(G)∈G

e
2πik
2n |T∩G|e−

2πik
2n |T

c∩G|X(G)|0〉 (30)

=
∑

X(G)∈G

X(G)|0〉 = |0〉|gX〉, (31)

R|1〉|gX〉 = Rkn(T )R−kn (T c)X(Q)|0〉|gX〉 (32)

= e
2πik
2n |T |e−

2πik
2n |T

c|X(Q)R|0〉|gX〉 (33)

= e
2πi
2n X(Q)|0〉|gX〉 = e

2πi
2n |1〉|gX〉, (34)

∗∗ Note that preservation of the gauge group under the action of a
physical unitary U is a sufficient, but not a necessary condition
for U to implement a dressed logical gate.

†† Notice, that generators of G⊗G are mapped under conjugation to
another set of generators, namely X(G)⊗I(G) 7→ X(G)⊗X(G),
Z(G)⊗ I(G) 7→ Z(G)⊗ I(G), I(G)⊗X(G) 7→ I(G)⊗X(G) and
I(G)⊗ Z(G) 7→ Z(G)⊗ Z(G).

which shows that R correctly implements logical Rn
when the gauge qubits are in the state |gX〉. It remains
to show that R implements Rn for arbitrary states of
the gauge qubits. However, all other states of the gauge
qubits can be reached from |gX〉 by application of lin-
ear combinations of Z-type operators from G \ S, which
all commute with R (since it is diagonal in the Z-basis).
Therefore for any state |g〉 of the gauge qubits, it must

be that R : |0〉|g〉 7→ |0〉|g〉, |1〉|g〉 7→ e
2πi
2n |1〉|g〉, verifying

that R implements the bare logical gate Rn.
It may not be obvious that there exists a set T ⊂ Q

satisfying (27) for a given code. Later we will find such
a T for color codes in d dimensions, with n ≤ d. Condi-
tion (27) can be inferred from the following condition∣∣∣∣∣T ∩

m⋂
i=1

Gi

∣∣∣∣∣ ≡
∣∣∣∣∣T c ∩

m⋂
i=1

Gi

∣∣∣∣∣ mod 2n−m+1, (35)

where m = 1, . . . , n and {X(G1), . . . , X(Gm)} is any sub-
set of the X-type generators of the gauge group G. To
see the implication (35) =⇒ (27) notice, that for any
X(G) ∈ G, we can write X(G) as a product of genera-
tors, namely X(G) =

∏m
i=1X(Gi). Then

G = G1 YG2 Y . . . YGm, (36)

where we used the symmetric difference of sets, AYB :=
(A\B)∪(B\A). Using the Inclusion-Exclusion Principle
for symmetric difference‡‡ we obtain

|T ∩G| = |T ∩ (G1 YG2 Y . . . YGm)| (37)

=
∑
i

|T ∩Gi| − 2
∑
i 6=j

|T ∩ (Gi ∩Gj)|+

4
∑
i 6=j 6=k

|T ∩ (Gi ∩Gj ∩Gk)| − . . .

+(−2)m−1|T ∩ (G1 ∩G2 ∩ . . . ∩Gm)|,(38)

and a similar expression for |T c∩G|. Clearly, if condition
(35) holds, then |T ∩G|− |T c ∩G| ≡ 0 mod 2n, showing
(27). Moreover, condition (35) is easier to verify than
condition (27), since we only need to check it for the
X-type generators of G, rather than for every X-type
element of G.

We can summarize the discussion of the implementa-
tion of transversal Rn in the following lemma

Lemma 6 (Sufficient Condition). Consider a CSS sub-
system code encoding one logical qubit. Let the code be
defined on a set of physical qubits Q, where |Q| is odd and
with bare logical operators X = X(Q) and Z = Z(Q). If
there exists T ⊂ Q, such that for any m = 1, . . . , n:∣∣∣∣∣T ∩

m⋂
i=1

Gi

∣∣∣∣∣ ≡
∣∣∣∣∣T c ∩

m⋂
i=1

Gi

∣∣∣∣∣ mod 2n−m+1, (39)

‡‡ For sets A1, A2, . . . , Am, we have |A1YA2Y. . .YAm| =
∑
i |Ai|−

2
∑
i 6=j |Ai ∩Aj |+ . . . + (−2)m−1|A1 ∩A2 ∩ . . . ∩Am|.
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for every subset {X(G1), . . . , X(Gm)} of the X-type
gauge generators of the code, then

R = Rkn(T )R−kn (T c) (40)

implements logical Rn, where k is a solution to k(|T | −
|T c|) ≡ 1 mod 2n and T c = Q \ T .

C. Transversal implementation of Rn in color code

Here we show how to implement the logical gate Rn
transversely in the color code CCL(x, z), for any integer
n ≤ d/(d − 1 − z), where d = dim(L). One applies
R = Rkn(T )R−kn (T c) for some integer k, where T and
its compliment T c = Q \ T correspond to the bipartite
decomposition of qubits Q specified in the (Bipartition of
Qubits) Lemma 5. We make use of the following property

Lemma 7 (Property of T ). For any m-simplex σ in L\
∂L with m < d

|T ∩Q(σ)| = |T c ∩Q(σ)|. (41)

Proof. By the choice of the set T , every (d−1)-simplex δ
has one qubit in T , and one qubit in T c = Q\T , which is
equivalent to |T∩Q(δ)| = |T c∩Q(δ)|. Using the (Disjoint
Union) Lemma 3, we can decompose the set of qubits
Q(σ) supported on an m-simplex σ, where m < d, as a
disjoint union of qubits supported on (d − 1)-simplices
colored with a chosen set of d colors C ⊃ color(σ) , and
then we immediately obtain

|T ∩Q(σ)|−|T c ∩Q(σ)| = (42)∑
δ⊃σ

δ∈∆′d−1(L)

color(δ)=C

|T ∩Q(δ)| − |T c ∩Q(δ)| = 0, (43)

which shows the (Property of T ) Lemma 7.

Note that (39) in the (Sufficient Condition) Lemma 6
follows form the (Property of T ) Lemma 7. To see this,
observe first that every stabilizer generator X(δi) is sup-
ported on a (d− 2− z)-simplex δi, thus Gi = Q(δi) and
for m = 1, . . . , n we obtain

m⋂
i=1

Q(δi) = ∅ or

m⋂
i=1

Q(δi) = Q(τ), (44)

where τ is a simplex colored with colors C =⋃m
i=1 color(δi), such that τ ⊃ δ1, . . . , δm. The case of an

empty intersection is trivial. Since |color(δi)| = d−1−z,
then obviously |C| ≤ m(d−1−z) ≤ n(d−1−z), and for τ
to be at most a (d−1)-simplex, we need n ≤ d/(d−1−z).

Using the (Property of T ) Lemma 7 we obtain that for
any m = 1, ..., n:∣∣∣∣∣T ∩

m⋂
i=1

Q(δi)

∣∣∣∣∣−
∣∣∣∣∣T c ∩

m⋂
i=1

Q(δi)

∣∣∣∣∣ = (45)

|T ∩Q(τ)| − |T c ∩Q(τ)| = 0, (46)

which implies (39). The (Sufficient Condition) Lemma 6
implies that R implements the logical Rn. In particular,
one can implement Rd using the code CCd(0, d−2), since
z = d− 2, and thus bd/(d− 1− z)c = d.

V. UNIVERSAL TRANSVERSAL GATES WITH
COLOR CODES

A finite set of gates which is universal can be used to
implement any logical unitary, with arbitrary precision.
In particular, due to the Solovay-Kitaev [7, 8] theorem,
the number of applied gates scales poly-logarithmically
with the precision of approximation. Note that the set
{H,CNOT, Rn} is universal for any integer n > 2.

In this section, we show how to achieve a univer-
sal transversal gate set with color codes by using the
technique of gauge fixing to switch between different
codes. This technique allows one to take advantage of
the transversally implementable gates for different color
codes. We first illustrate the method with a simple ex-
ample of two 15-qubit codes [18, 19]. Then, we define a
partial order between color codes. One can switch be-
tween color codes which are comparable with respect to
the partial order to implement a universal gate set in
three or higher dimensions.

A. Switching between codes using gauge fixing

First, let us define matrices H1 and H2 given by

H1 =

 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

, (47)

H2 =


1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0 1 0 1 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

. (48)

These matrices have a property that each row in H1 is
orthogonal to every row in H1 and H2 (modulo 2). More-
over, for a binary matrix M , we define MX to be a matrix
obtained from M by the following substitutions, 0 7→ I
and 1 7→ X. Similarly for MZ , we substitute 0 7→ I and
1 7→ Z. Let CA be the stabilizer code with the stabilizer
group SA generated by rows of HX

1 , HZ
1 and HZ

2 , which
we denote by

SA = 〈HX
1 , H

Z
1 , H

Z
2 〉. (49)
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Let CB be the subsystem code with the stabilizer group
SB and the gauge group GB chosen as follows

SB = 〈HX
1 , H

Z
1 〉, GB = 〈HX

1 , H
X
2 , H

Z
1 , H

Z
2 〉. (50)

We can consider both codes CA and CB to be defined
on the same 15 physical qubits. One can check that
CA represents the [[15, 1, 3]] quantum Reed-Muller (stabi-
lizer) code [19, 34, 35] and CB is a [[15, 1, 3]] (subsystem)
code, which can be thought of as the [[15, 7, 3]] Hamming
code, with six of the seven logical qubits treated as gauge
qubits. Note also that SB ⊂ GA = SA and GB has X-
and Z-type generators supported on the same qubits (i.e.
CB is a self-dual subsystem code).

Since the X-type generators of SB coincide with the
X-type generators of SA, the codewords of CA and
CB are the same when the latter has a gauge state
|gZ〉. In other words, codewords |0̄〉, |1̄〉 for CA are the
same as codewords |0̄〉|gZ〉, |1̄〉|gZ〉 for CB , as defined
in Eqs. (25) and (26). On the other hand the codewords
|0̄〉|gX〉, |1̄〉|gX〉 for CB (as defined in Eqs. (23) and (24)),
are not valid codewords for CA.

Now we show that R⊗15
3 implements R3 transversally

in CA. Consider any three of the four X-type generators
for GA, and specify their support on subsets of qubits
G1, G2, G3, which correspond to rows of H1. One can
verify that |Ga| = 8 ≡ 0 mod 23, |Ga ∩ Gb| = 4 ≡ 0
mod 22, and |Ga ∩ Gb ∩ Gc| = 2 ≡ 0 mod 2, where
{a, b, c} = {1, 2, 3}. Therefore by the (Sufficient Con-
dition) Lemma 6, and by setting T to be an empty set,
T = ∅, we see that R⊗15

3 implements R3 transversally
in the code CA. In contrast for the code CB , the extra
X-type generators in GB \ GA do not satisfy these condi-
tions, and thus one cannot show that R3 is implemented
transversally in CB .

It is straightforward to verify that H is implemented
transversally by H⊗15 in CB . It swaps X and Z on any
physical qubit, and therefore acts on the representative
states as H⊗15 : |ψ〉|gZ〉 7→ (H|ψ〉)|gX〉. Since the state
of the gauge qubits has changed, H⊗15 is a dressed im-
plementation of H in CA. Clearly, H⊗15 does not imple-
ment H in CA, since it takes the state |ψ〉|gZ〉 ∈ CA to
(H|ψ〉)|gX〉 6∈ CA.

To implement H fault-tolerantly in CA, we use the
technique of gauge fixing. First, one should apply H⊗15,
resulting in mapping |ψ〉|gZ〉 to (H|ψ〉)|gX〉, which is a
codeword of CB , but not of CA. Then, to switch from
code CB to CA, one should sequentially measure each of
the six Z-type stabilizer generators generated by rows of
HZ

2 , i.e. those in SA \ SB . Note that it is possible to
fault-tolerantly measure the stabilizer generators [8]. If
the measurement reveals that a particular Z-type gen-
erator is not satisfied, then one should apply an X-type
Pauli operator which commutes with all generators in
HZ

2 and HZ
1 , except for the violated stabilizer genera-

tor (with which it must anti-commute). Such an X-type
Pauli operator always exists. Following this, the Z-type
generator will no longer be violated. Therefore, after this
procedure is carried out for all six generators in HZ

2 , the

state will have changed from (H|ψ〉)|gX〉 to (H|ψ〉)|gZ〉,
as required. Specifically, we use the term gauge fixing to
refer to the process of measuring and setting the gauge
qubits to a desired state, without affecting the logical
qubits.

To recap, in the [[15, 1, 3]] Reed-Muller code CA, one
can implement H fault-tolerantly with the following pro-
cedure

|ψ〉|gZ〉
H⊗15

7−−−→ (H|ψ〉)|gX〉
gauge fixing7−−−−−−−→ (H|ψ〉)|gZ〉. (51)

In combination with the transversal gates of CA, this
allows one to implement a fault-tolerant universal gate
set {H,CNOT, R3}. We will repeat essentially the same
procedure for color codes later.

B. Partial order of color codes

Given a d-dimensional lattice L, dimL = d, satisfy-
ing Conditions 1 and 2 in Section III B, we can catalog
all color codes defined on L. Namely, a pair of integers
x, z ≥ 0, such that x+ z ≤ d− 2, corresponds to a color
code, denoted as CCL(x, z), with X- and Z-type gauge
generators supported on (d − 2 − z)- and (d − 2 − x)-
simplices. Note that the X- and Z-type stabilizer gen-
erators of CCL(x, z) are supported on x-simplices and
z-simplices, respectively. In two dimensions, d = 2, there
is only one color code, CC2(0, 0) — a stabilizer code, with
both X- and Z-type stabilizer generators supported on
0-simplices, whereas in three dimensions, d = 3, there
are three color codes, CC3(1, 0), CC3(0, 1) — stabilizer
codes, and CC3(0, 0) — a subsystem code.

One can define a partial order for subsystem color
codes defined on the same lattice L if each codeword
of code C is also a codeword of the other code C ′. In
particular, we say that C � C ′ holds if

• C and C ′ encode the same number of logical qubits,
with identical bare logical Pauli operators,

• the gauge group G of C is contained in the gauge
group G′ of C ′, G ⊂ G′.

Note that G ⊂ G′ implies S ′ ⊂ S, thus any codeword of
C is also a codeword of C ′, and since the bare Pauli op-
erators for the logical qubit are the same in both codes,
it actually represents the same logical codeword in both
codes. Observe, that the partial order we have just de-
fined can be succinctly expressed as

CCL(x, z) � CCL(x′, z′) ⇐⇒ x ≥ x′ ∧ z ≥ z′, (52)

as illustrated in Fig. 3. This follows from the observation
that due to the (Disjoint Union) Lemma 3 the X-type
gauge generators of CCL(x, z), which are supported on
(d− 2− z)-simplices, can be expressed as the product of
the X-type gauge generators of CCL(x′, z′) supported on
(d− 2− z′)-simplices, since z ≥ z′. Similarly for Z-type
gauge generators. We represent the family of color codes
in Fig. 3, and show their partial order using arrows.
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(0, 0) (1, 0) (2, 0) (3, 0)

2

4

1 1

3 2 1 1

2 2

5

1 x

z
d = 5

d = 4

d = 3

d = 2

3

FIG. 3. (Color online) Family of color codes. For a given
lattice L, only color codes below the d th diagonal line can be
realized, where d = dimL and the point (x, z) corresponds to
the color code CCL(x, z). This constraint holds, since x and
z have to satisfy x+ z ≤ d− 2. An arrow from code C to C ′

indicates partial order between them, C � C ′. The number
placed at (x, z) indicates the maximum gate Rn which can
be implemented transversally with the stabilizer color code
CCd(x, z), with d = x+z+2, resulting in n = bd/(d− 1− z)c.

C. Universal fault-tolerant gate set in color codes

Here we apply the techniques just discussed to color
codes defined on the same lattice L. One can switch
back and forth between two codes which are comparable,
CCL(x, z) � CCL(x′, z′), as follows

• CCL(x, z) 7→ CCL(x′, z′): one does nothing,
since codewords of CCL(x, z) are codewords of
CCL(x′, z′),

• CCL(x′, z′) 7→ CCL(x, z): one can view the code-
words of CCL(x, z) as those for CCL(x′, z′) with
the additional gauge qubits present in CCL(x, z)
set to a particular state. To switch, one fixes the
state of the additional gauge qubits to the appro-
priate state.

Given a three-dimensional lattice L, dimL = 3, one
can implement a universal gate set starting with the
code CCL(0, 1). As explained earlier, one can transver-
sally perform the logical CNOT and R3 on that code.
To form a universal gate set, it suffices to also im-
plement logical H. This gate cannot be implemented
transversally in CCL(0, 1), but can be in CCL(0, 0). Note
that CC3(0, 0) ≺ CC3(0, 1), therefore any codeword in
CC3(0, 1) is a valid codeword in CC3(0, 0). In particular,
we can think of |ψ〉 ∈ CC3(0, 1) as |ψ〉|g〉 ∈ CC3(0, 0),

where |g〉 is a state of the gauge qubits of CC3(0, 0). By
applying H(Q) we perform the logical H on the logical
qubits of CC3(0, 0), which also changes the state of the
gauge qubits, namely

H(Q) (|ψ〉|g〉) =
(
H|ψ〉

)
|g′〉. (53)

Note that the resulting codeword
(
H|ψ〉

)
|g′〉 ∈ CC3(0, 0)

is not a valid codeword of CC3(0, 1), since the gauge
qubits are in the state |g′〉 6= |g〉. To return to CC3(0, 1),
one needs to fix the gauge qubits to the correct state,
namely |g′〉 7→ |g〉, and we obtain a codeword H|ψ〉|g〉 ∈
CC3(0, 1). Since CC3(0, 1) is a stabilizer code, it is pos-
sible to measure and correct the violated stabilizers in a
fault-tolerant way, just as in Section V A. Therefore, to
fix the gauge, one should first measure all Z-type stabi-
lizer generators supported on 1-simplices, and then apply
the appropriate X-type Pauli operators in order to cor-
rect any violated stabilizer generators. After this, assum-
ing no errors have occurred, all the stabilizer generators
for CC3(0, 1) are satisfied.

To summarize, we can perform the logical H on
CC3(0, 1) by first applying H(Q) and subsequently fixing
the gauge to return to the code space of CC3(0, 1),

|ψ〉|g〉 H(Q)7−−−→
(
H|ψ〉

)
|g′〉 gauge fixing7−−−−−−−−→

(
H|ψ〉

)
|g〉. (54)

Since CNOT and R3 can be performed transversally
in CC3(0, 1), one can fault-tolerantly implement a uni-
versal gate-set {H,CNOT, R3} in CC3(0, 1). This pro-
cedure can be directly generalized to fault-tolerantly im-
plement the universal gate set {H,CNOT, Rd} with the
code CCd(0, d− 2) in d dimensions.
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Appendix: Examples of color codes

1. Construction of a lattice in d dimensions

A recipe to obtain a lattice L satisfying Condi-
tions 1 and 2 in Section III B required to define color
codes in d dimensions is as follows (see Fig. 4 for an ex-

ample in d = 2).

(a) (b)

(c)

FIG. 4. (Color online) Construction of a lattice for a color
code in 2D. (a) Take a 2-simplex δ, with vertices colored in
red, green and blue. (b) Divide δ into “smaller” simplices with
matching colors. This is a 3-colorable homogeneous simplicial
2-complex K. (c) Place K inside a 2-simplex τ and attach
2-simplices between τ and K. The resulting homogeneous
simplicial 2-complex L is 3-colorable, and thus we can define
a color code on the lattice L.

1. Start with a d-simplex δ, with vertices which are
colored with d+ 1 colors Zd+1.

2. Construct a homogeneous simplicial d-complex K
from δ by dividing k-faces of δ into k-simplices.
We also require that the coloring is preserved, i.e.
every k-face σ ⊂ δ colored with C = color(σ) is di-
vided into k-simplices colored with C and the whole
complex K is (d+ 1)-colorable.

3. Place the d-complex K inside a d-simplex τ colored
with Zd+1.

4. For every k-face ρ ( τ and for every (d − k − 1)-
simplex ω ⊂ K obtained from a (d−k−1)-face σ ⊂
δ with complementary colors, color(ω) = Zd+1 \
color(ρ), attach a d-simplex spanned by ρ and ω.

5. Choose L to be the collection of all d-simplices
added in Step 4, together with simplices belong-
ing to K and τ . This can be used to define a color
code on the lattice L as specified in Section III.

Note that in the above recipe, step 2 is not fully speci-
fied. Any homogeneous simplicial d-complex K obtained
from a d-simplex δ will work, as long as K is (d + 1)-
colorable. Such lattices always exist — below we give an
explicit example of a family of lattices in any dimension
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d ≥ 2. Following steps 3–5, we always obtain a lattice on
which we can define a color code in d dimensions.

Our explicit family of lattices results in (fractal) color
codes in d dimensions, for which there is an explicit recipe
for K. The resulting codes neither have spatially local
generators nor have macroscopic distance, and therefore
do not result in topological color codes. The prescription
is as follows.

1. The first member is defined on the lattice L1, ob-
tained from the recipe by setting K to be a d-
simplex.

2. The i + 1 member of the family is defined on the
lattice Li+1, obtained from the recipe by setting
K = Li.

The first three members of the family of the two-
dimensional (fractal) color codes given by this construc-
tion are illustrated in Fig. 5.

In Ref. [15], a systematic construction in two and three
dimensions for families of color codes with spatially local
generators is presented. In two dimensions, K is chosen
to be part of a triangular lattice (as in Fig. 4), whereas in
three dimensions, K is part of a BCC lattice. Bomb́ın’s
constructions result in topological color codes.

(a)

(b)

(c)

FIG. 5. (Color online) The family of (fractal) color codes
in two dimensions. The first three members of the family —
two-dimensional color codes encoding one logical qubits using
(a) 7, (b) 13 and (c) 19 physical qubits.

2. Quantum Reed-Muller codes as color codes

There exists a family of codes known as the quantum
Reed-Muller codes [19, 34, 35]. Here we are concerned
with the subfamily of quantum Reed-Muller codes with
members labeled uniquely by an integer m ≥ 3 with pa-
rameters [[2m − 1, 1, 3]], i.e. encoding one logical qubit
into 2m− 1 physical qubits, with a distance of three. We
denote by QRM(m) the mth member of this subfamily.
These codes are defined in terms of matrices Mi satisfy-
ing the recursion relations

M1 = (1), Mi+1 =

(
Mi 0 Mi

0 . . . 0 1 1 . . . 1

)
. (A.1)

Note that the set of columns of Mm is the set of all non-
zero binary vectors of length m. By M⊥m we denote a
matrix dual to Mm, namely a matrix with rows being
a basis of the kernel of Mm. Clearly, Mm(M⊥m)T = 0.
We can define QRM(m) as the stabilizer code with the
stabilizer group Sm generated by rows of Mm and M⊥m
with 0’s and 1’s replaced by I’s and X’s or Z’s, namely

Sm = 〈MX
m , (M

⊥
m)Z〉. (A.2)

We now show that QRM(m) is the same as the sta-

bilizer color code CCm−1(0,m − 3) obtained from the
construction described in Appendix 1 by taking the sim-
plicial complex K to be a (m − 1)-simplex δ, K = δ. In
other words, QRM(m) is equal to the first member of the
(fractal) color code family in m−1 dimensions (see Fig. 5
(a) for m = 3 case). In particular, QRM(3) is Steane’s
7-qubit code and QRM(4) is the 15-qubit Reed-Muller
code.

(a) (b)

FIG. 6. (Color online) Quantum Reed-Muller code QRM(m)
as a special case of a (stabilizer) color code CCm−1(0,m −
3) for (a) m = 3 — Steane’s 7-qubit code, and (b) m = 4
— the 15-qubit Reed-Muller code. Steane’s code with all
the possible transversal gates have recently been implemented
experimentally [36].

To prove this equivalence, it is sufficient to show that
there is a one-to-one identification of physical qubits of
QRM(m) with those of CCm−1(0,m − 3) such that the
logical Pauli operators X and Z are identical, and that
the X-type stabilizer generators are identical. Note that
this completely specifies the stabilizer group S, since the
Z-type generator matrix is a dual to the X-type gen-
erator matrix. In particular, we show that the X-type
generator matrix M ′m for CCm−1(0,m − 3) is the same
as Mm for QRM(m) up to a permutation of columns,
which corresponds to relabelling of physical qubits.

Using the construction described in Appendix 1, and
taking the simplicial complex K = δ, where δ is an
(m−1)-simplex, results in a lattice L, with dimL = m−1.
The total number of (m − 1)-simplices in L is 2m − 1.
This is because we attach (m− 1)-simplices between ev-
ery (k − 1)-face ρ ⊂ τ , for every 1 ≤ k ≤ m − 1, and
the (m− k − 1)-face σ ⊂ δ colored with the complemen-
tary colors, color(σ) = Zd+1 \ color(ρ). We can pick
a subset of k vertices of τ in

(
m
k

)
different ways and

thus the number of newly attached (m − 1)-simplices is



14(
m
1

)
+
(
m
2

)
+ . . .+

(
m
m−1

)
= 2m − 2. Therefore, including

a qubit placed at δ, there are exactly 2m − 1 physical
qubits in CCL(0,m − 3). On the other hand, there are
exactly m vertices in L \ ∂L, and thus there are m dis-
tinct X-type stabilizer generators in CCL(0,m−3). The
weight of a column in M ′m, corresponding to a qubit sup-
ported on a (m − 1)-simplex π, is given by the number
of X-type stabilizer generators supported on that qubit,
i.e. the number of vertices belonging to π but not to ∂L.

There are exactly
(
m

m−k
)

(m − 1)-simplices containing k
vertices not belonging to ∂L and each of them contains
a different set of k vertices. Thus, there are

(
m
k

)
different

columns of weight k in M ′m and the only way this can
occur is if the columns of M ′m are the set of all non-zero
binary vectors of length m. Thus, up to a relabeling of
physical qubits, M ′m and Mm are identical. Also note
that the logical operators of both codes are X = X(Q)
and Z = Z(Q). Therefore the codes are the same.
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