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A common experimental strategy for demonstrating non-classical correlations is

to show violation of a Bell inequality by measuring a continuously emitted stream

of entangled photon pairs. The measurements involve the detection of photons by

two spatially separated parties. The detection times are recorded and compared

to quantify the violation. The violation critically depends on determining which

detections are coincident. Because the recorded detection times have “jitter”, coin-

cidences cannot be inferred perfectly. In the presence of settings-dependent timing

errors, this can allow a local-realistic system to show apparent violation–the so-called

“coincidence loophole”.

Here we introduce a family of Bell inequalities based on signed, directed distances

between the parties’ sequences of recorded timetags. Given that the timetags are

recorded for synchronized, fixed observation periods and that the settings choices

are random and independent of the source, violation of these inequalities unambigu-

ously shows non-classical correlations violating local realism. Distance-based Bell

inequalities are generally useful for two-party configurations where the effective size

of the measurement outcome space is large or infinite. We show how to systemati-

cally modify the underlying Bell functions to improve the signal to noise ratio and

to quantify the significance of the violation.

PACS numbers: 03.65.Ud, 42.50.Xa, 02.50.Cw

I. INTRODUCTION

Quantum mechanical systems can give rise to measurement correlations that local realis-
tic (LR) systems are unable to produce. Physical theories that satisfy the principle of local
realism (LR) posit a set of hidden variables associated with the physical systems. The hidden
variables cannot be influenced by spacelike-separated events. They are not observable, but
they determine the outcomes of all measurements. The existence of hidden variables con-
strains the probability distributions that can describe LR systems. In 1964 Bell constructed
an inequality that is satisfied by all correlations accessible by LR and showed that correla-
tions between spacelike-separated measurements on two quantum systems can violate this
inequality [1]. The realization that quantum mechanics allows more general probability dis-
tributions than LR has motivated many experimental tests that have shown Bell-inequality
violations (see Ref. [2] for a review). In addition to the fundamental importance of tests of
LR, systems violating LR can be used for quantum information tasks such as quantum key
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distribution [3–5] and secure randomness generation [6–8]. For these cryptographic applica-
tions, one must demonstrate violation of LR with high statistical significance in the presence
of adversarial effects, such as a hacker who has tampered with the system in an attempt to
learn a secret key.

So far, all tests of LR have invoked additional assumptions about the types of LR theories
governing their experiments. Examples include the assumption that photon detection prob-
abilities are not correlated with the measurement choices or photon polarizations (the “fair
sampling” assumption), the assumption that measurement choices at one location cannot
influence events at another location even when they are not spacelike separated, and the
assumption that the sequence of measurement choices and outcomes in an experiment are
independent and identically distributed (i.i.d.). For a review see [9]. Various experiments
have been able to relax some of these assumptions, but no single experiment has been able to
reject the most general LR theories. Due to recent advances in entangled photon generation
and photon detection, we anticipate that an optical experiment that is free of additional
assumptions will be accomplished in the near future.

To test a Bell inequality in an experiment, one repeats the preparation and joint mea-
surement of spatially separated systems some finite number N times. We call each such
repetition a “trial” of the experiment. During a trial, entangled systems are sent to two or
more measurement locations. At each location, a random choice is made that determines
which property will be measured. Ideally, each trial is clearly identifiable so that mea-
surement choices and outcomes at the various locations can be matched with one another.
However, in many experiments this trial identification cannot be achieved with perfect cer-
tainty. A popular experiment design involves the continuous pumping of a nonlinear crystal
that produces photon pairs through spontaneous parametric down-conversion. In these ex-
periments, the entangled pairs are produced randomly in time. Furthermore, the detectors
used at the two measurement locations (“Alice” and “Bob”) have nonzero timing jitter.
These effects can create confusion about which events at Alice correspond to which events
at Bob.

To resolve this confusion one typically defines a “coincidence window” in time, so that if
the period of time between photon detections at Alice and Bob is less than the coincidence
window width, the two events are considered to be part of the same trial. If Alice or Bob
observe multiple detections within one coincidence window, more sophisticated algorithms
can be used to attempt to match Alice’s and Bob’s detections. The choice of the coincidence
window width depends on balancing the expected inter-arrival time between entangled pair
creations and the detector timing jitter, so that the probability for a trial to contain multiple
photon pairs is small, and the probability for a photon to be lost by falling outside of the
coincidence window is also small.

Unfortunately, local realistic theories or hackers can use this uncertainty about trial iden-
tification to produce apparent violation of Bell inequalities. The photons being measured
could have correlations between their measurement outcomes and arrival times. Correla-
tions could also exist between multiple photon pairs detected during the same coincidence
window. Previous tests of LR that use continuously pumped spontaneous parametric down-
conversion have (often implicitly) assumed that such correlations do not exist. Therefore
these experiments do not reject the most general LR theories; they only reject LR theories
that do not allow timing or cross-pair correlations. Experiments requiring these assumptions
are said to suffer from the “coincidence loophole”. Larsson and Gill described local realistic
theories that exploit the coincidence loophole and methods to defeat them in [10]. Their
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closure of this loophole requires a bound on the probability that a true coincidence is missed.
This bound cannot be measured without additional assumptions and must be trusted.

In this paper we describe a different method for closing the coincidence loophole that does
not require additional assumptions about the systems being measured. Instead, we define a
“trial” as all events occurring within a predetermined time interval. The data produced by
the trial are the measurement choices at Alice and Bob and the lists of times at which Alice
and Bob detected photons (the “timetags”). The trial may be many times longer than the
expected time between photon pair creations, and Alice and Bob may observe many photon
detection events during one trial. (In practice the length of a trial will be constrained if
one desires to achieve spacelike separation between measurement choices on one side and
detections on the other.)

To test LR with such trial data, we develop distance-based Bell inequalities. The use
of distances and triangle inequalities was suggested by Schumacher [11] in the case of the
conventional correlation-based Bell inequalities. Signed, directed distances between trial
outcomes that measure the dissimilarity between Alice’s and Bob’s lists of timetags are
defined such that they obey a directed triangle inequality. These distances are closely
related to edit distances used to compare words in spell checking or to align DNA sequences in
computational biology. Using LR to compute the expectation value of sums of these distances
yields an inequality satisfied by all LR theories. These distance-based Bell inequalities
provide a rigorous analysis of tests of LR based on continuously emitting sources; they
enable the rejection of a larger class of LR theories than previously known methods. Also,
the triangle inequality can be a powerful tool for finding new Bell inequalities in other
contexts. It is explored in the works of Dzhafarov and Kujala [12] and of Kurzynski and
Kaslikowsi [13].

In Sect. II we introduce basic notions and define relevant mathematical notation. In
Sect. III we explain the experimental setup of “timetag Bell tests” in more detail and describe
a simple LR model that exploits the coincidence loophole for an apparent violation of a Bell
inequality. In Sect. IV we define “distance” functions between measurement outcomes that
obey the directed triangle inequality. We then use the triangle inequality to derive Bell
inequalities satisfied by any LR theory regardless of the choice of distance function. In
Sect. V we describe functions for computing the distance between timetag sequences and
obtain the associated Bell inequalities. In Sect. VI we introduce non-signaling equalities
that constrain all theories that prohibit Alice from sending information to Bob by use of
her measurement choice (and vice-versa). Although both quantum and LR theories obey
the non-signaling equalities, these equalities can be used to transform Bell inequalities and
improve the signal-to-noise ratio (SNR) of the inequalities’ violation in an experiment. In
Sect. VII we provide a protocol that sets aside an initial segment of the data as a training set
to determine a good distance function. In Sect. VIII we discuss the relationship between the
SNR for the violation of a Bell inequality and p-value bounds for rejecting LR. Bounds on p-
values can be computed with Gill’s martingale-based protocol [14, 15] or the prediction-based
ratio (PBR) protocol [16, 17]. The main result of this section is a method for truncating
distance functions to enable application of these protocols. The technique is general and
can be used on any Bell function derived from a triangle inequality. Here, a useful step is
to balance the violation between the measurement settings by means of the non-signaling
equalities. In Sect. IX we apply timetag Bell inequalities to simulated data. We discuss the
effects of detector inefficiency and detector jitter on the violation of timetag Bell inequalities
and on the p-value bounds computed with the PBR protocol. We quantify the violation and
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p-value bounds as functions of the jitter distribution’s width and quote lower bounds on the
maximum jitter width at which violation can be observed for photon detection efficiencies
ranging from 0.74 to 0.95. The simulations include an LR model that exploits the coincidence
loophole while closely mimicking the measurement statistics of a Poisson source of entangled
photons measured with jittery detectors. In the Appendix we describe numerical methods to
optimize parameters of the distance functions to give high inequality violation, to compute
distances for timetag Bell inequalities, and to compute the SNR of the violation of an
inequality. The Appendix also contains further details of the coincidence-loophole-exploiting
LR model.

II. PRELIMINARIES

We consider experiments to test LR, where an experiment consists of a sequence of trials.
The trials’ measurement outcomes need not be independent from one trial to the next, but
before the next trial, there is a probabilistic description of the next trial’s outcome, where
the probabilities may depend on the past and current conditions. The class of LR models
of interest is defined by specifying constraints on these probabilities. We consider the case
where a trial consists of observations by two parties, A and B, each of whom can choose
one of two measurement settings for their observation. We leave extensions to more parties
and settings for future work. The full trial outcome includes the settings chosen as well
as the measurement outcomes. In many cases, the measurement outcomes are two-valued.
For example, the outcome may indicate whether a photodetector “clicked” or not. Here
we consider arbitrary outcome spaces, but focus on the case where a party’s measurement
outcome is an ordered sequence of timetags of events, for example detection events. Thus,
there is no bound on the size of the outcome space

We denote the random variable for a trial’s outcome including the settings by T . This
random variable is a tuple of four random variables T = (OA, SA, OB, SB) where OX is
X’s measurement outcome and SX is X’s chosen setting. The two possible settings are
denoted by 1̄ and 2̄. We also use the notation TX = (OX , SX). We follow the notational
convention that random variables (O, S, T, . . .) are denoted by roman upper case letters.
This is also true of party labels, but the distinction should be clear from context. The range
of random variable R is denoted by R. Observed values of random variables are denoted
by their corresponding lower-case letters; for example, r denotes an observed value of R.
Superscripts and subscripts serve to identify members of a family of conceptually related
random variables or to select out parts of tuple-valued random variables. Formally, the
random variables for a trial are functions on an underlying probability space that includes
any “hidden” variables that may play a role, but we do not need to explicitly refer to this
space here.

A deterministic LR model must, before a trial and independent of the settings, commit
to a specific measurement outcome dXc for each party X = A,B and each setting c = 1̄, 2̄. A
general LR model is a probabilistic mixture of deterministic models. (One can imagine that
a hidden random variable selects which deterministic model controls a trial’s measurement
outcomes.) Thus, an LR model is described by a random variable DLR = (DA

1̄ , D
A
2̄ , D

B
1̄ , D

B
2̄ ),

where T relates to DLR according to T = (DA
SA , S

A, DB
SB , S

B). Although the parties cannot
simultaneously measure both settings 1̄ and 2̄ in a single trial, the LR model allows for
that possibility by pre-assigning measurement outcomes to both settings. That such a
pre-assignment exists is the essential claim of realism. Quantum theory does not pre-assign
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outcomes and disallows the possibility that the two settings can be measured simultaneously.
Quantum theory can thereby achieve a larger set of trial probability distributions.

In an idealized test of LR, the settings choices are made randomly and independently of
DLR according to a probability distribution that is under experimenter control. In this case,
LR models satisfy that S = (SA, SB) is independent of D, and the probability distribution
of S is known before the trial. This defines LR models satisfying the free choice assumption.
For the remainder of the paper, LR models are assumed to satisfy free choice, and by default
the settings distribution is uniform.

From a mathematical and statistical point of view, a successful test of LR shows that
probabilistic LR models are statistically inconsistent with the data. Interpretation of the
inconsistency requires additional analysis and can depend on the experimental context.
In fact such interpretations could attribute the inconsistency to the presence of so-called
“loopholes” rather than to the falsity of LR. An experimental goal is to convincingly exclude
the presence of such loopholes.

III. TIMETAG BELL TESTS

A common method for performing Bell tests is to use a source that continuously emits
pairs of polarization entangled photons. The photons are delivered to two measurement
setups. A trial consists of choosing the settings and then recording photodetection events
for a fixed observation window. We focus on the simplest case, where the measurement setups
involve polarizers whose angles determine the settings. Each setup has one photodetector
that records photons that passed through the polarizer. Thus, the record of a trial includes
two timetag sequences recording the times at which photons were detected. The experiments
reported in [18, 19] used this setup.

One way to think about such an experiment is that fundamentally, each photon pair’s
emission and detection constitutes a trial. In this case, the first step in an analysis is to
identify the detection pattern for each emitted pair. The record does not identify when
neither photon was detected, but the Bell inequalities used can be chosen so that the total
Bell-inequality violation is insensitive to the number of photon-pair trials where neither
photon was detected. Thus, the analysis requires identifying coincidences, that is, pairs of
detections that are due to one photon pair. Identifying coincidences is complicated by the
fact that the recorded timetags have “jitter”, that is, the difference between the timetag t
and the “true” time of arrival of a photon t0 is a random variable with non-negligible width
j (to be defined in Sect. IX for specific jitter distributions). Furthermore, since photon pairs
are continuously emitted, their creation times and their times of arrival are also random.
Pair emission can usually be modeled as a Poisson process. Denote the mean inter-arrival
time between successive photon pairs as τ . It is necessary to determine which pairs of close
timetags t and r of A and B are due to the same photon pair. This cannot be done without
error, as there is always the possibility that photons detected by A and B around the same
time are from two different photon pairs that were created with small time separation. The
probability of this event grows with j/τ .

Given that coincidences cannot be identified exactly, it is necessary to determine how
this affects the interpretation of a Bell-inequality violation. In cases where the nominal
mean violation per photon pair is small and j/τ is relatively large, the evidence against LR
may be weakened substantially. An example of this situation is the experiment reported
in Ref. [18], which aimed to close the fair sampling loophole with photons. The violation
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was limited by the overall detection efficiency realized in the experiment. To interpret the
violation, one can analyze the effects of coincidence identification error by making the as-
sumptions that the source is idealized Poisson, the jitter is settings independent, the photon
pairs’ states are independent and identical, and the method for recording detections is mem-
oryless. Parts of such an analysis are in [20]. But these are highly idealizing assumptions
unlikely to be satisfied in a real experiment. Relying on them precludes making strong
claims on having demonstrated non-LR effects. Of particular concern is that the presence
of jitter in combination with a conventional coincidence analysis requires a fair coincidence
sampling assumption [10]. For conventional analyses, this assumption can be avoided by us-
ing “pulsed” trials, which can significantly reduce the rate of detections. Such an experiment
was reported in Ref. [19].

Unfair coincidence sampling can arise from local, settings-dependent properties of the
detectors, including the associated settings-related apparatus such as polarization filters.
A simple LR model that exploits unfair coincidence sampling to show violation of a Bell
inequality is illustrated in Fig. 1. Suppose that for A, the difference t − t0 between the
recorded timetag and the photon arrival time is 0 on setting 1̄ and ∆ on setting 2̄. For B,
suppose that the difference is 0 on setting 1̄ and −∆ on setting 2̄. To identify coincidences,
one can choose a coincidence window width w and declare that timetags of A and B whose
separation is less than w are coincident. It is necessary to have a method for resolving
coincidence conflicts such as when a timetag of A is within w of more than one timetag of
B. Here we just assume that j/τ is small enough for this not to be considered an issue.
Suppose that the coincidence window width is chosen to be w = 1.5∆. If the LR model
for the photon pair is to “detect” no matter what the setting is, then A and B record
coincidences on all settings except 2̄2̄, where the two detections are inferred as being non-
coincidence detections. This LR model strongly violates commonly used Bell inequalities,
such as the one introduced in Sect. IV, Eq. (2), whose violation is increased by anticorrelation
between A’s and B’s detections on the 2̄2̄ setting. The choice of w may seem arbitrary, but
a natural way to choose w is to optimize the violation on a training set or on preliminary
data. In this case, w = 1.5∆ is an optimal choice. Note that locality assumptions and the
assumption that settings-choices are uniformly random and independent of hidden variables
affecting the measurement outcomes are satisfied in this example.

A detailed theoretical treatment of unfair coincidence sampling is given in Ref. [10], in-
cluding a more sophisticated example that can respond to the continuous angular settings
choices available when measuring photons. Given the assumptions in Ref. [10], there are
valid adjustments to a Bell inequality based on knowledge of the probability of missing a co-
incidence. Our approach based on timetag Bell inequalities does not require such additional
knowledge.

It may seem like the presence of unfair coincidence sampling due to a dependence of
detector timing on settings can be excluded by checking that there is no widening of the time-
separation distribution of the nearest timetags of A and B for the 2̄2̄ settings compared to the
others. Further, one can attempt to choose w after studying this distribution to ensure that
the fraction of missed coincidences for the 2̄2̄ setting is sufficiently small. Any such attempt
would require an hypothesis test (or some other way to quantify evidence) for the claim that
no unfair coincidence sampling is present in the experiment. Depending on how the data
for these tests is acquired, additional assumptions on consistency of detector behavior may
be needed. In pursuing this approach, one must then decide at what significance level one
wishes to exclude excessive unfair coincidence sampling. This significance level should be
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FIG. 1: Illustration of an LR model that uses setting dependent detection times to violate a Bell

inequality. Detection time t − t0 proceeds along the horizontal axis. Each row above the time

axis corresponds to one measurement setting combination used by A and B. Photons are detected

by A and B at the times labeled “A” and “B”. (At the 1̄1̄ setting, both A and B detect their

respective photons near 0.) The shaded regions indicate coincidence windows of width 1.5∆. At

the 2̄2̄ setting, the photons detection times are separated by 2∆, so A and B can never observe

coincidences with 2̄2̄.

similar to the claimed significance of the violation. This may not be feasible in an experiment
without greatly weakening the significance of the result.

Coincidence sampling effects can also be exploited directly by an LR source. The simplest
example just simulates the detector timing issue. There are two operationally different
versions of this example. In the first, the local hidden variable of a photon also identifies
the time at which the detector records it in a setting-dependent way. One could imagine
that once the photon arrives at the detector and senses the setting, it “pauses” a variable
amount of time. It now suffices to emit photon pairs where photon A’s local variable assigns
“detect” at time t on setting 1̄ and “detect” at time t + ∆ on setting 2̄, whereas photon
B’s variable assigns “detect” at time t on setting 1̄ and “detect” at time t − ∆ on setting
2̄. Such photons seem impossible to realize, but the following version of the example may
be realizable. The source sends a photon to B at time t − ∆, a pair to A and B at time
t, and another to A at time t + ∆. The first photon is prepared so as to be detected by B
only on setting 2̄. The two middle photons are detected only on setting 1̄. The last photon
is prepared so as to be detected by A only on setting 2̄. When A and B compare their
timetags and use w = 1.5∆ for their coincidence analysis, they again see coincidences on
all settings except for 2̄2̄. An LR source that wishes to hide having manipulated emission
times can intersperse a small number of photons with the emission pattern above with
regular LR pairs of photons that ensure equality for the Bell inequality of interest. Other
opportunities to hide the presence of unfair coincidence sampling from the experimenters
exist. The LR source can systematically introduce LR photons with varying timing features,
and it can conditionally omit “normal” photon pairs to make it more difficult to see excess
numbers of close detections outside the coincidence window. While these possibilities may
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seem physically unrealistic, they are of concern in cryptographic applications of experimental
configurations for violating Bell inequalities. To show that these concerns are justified, in
Sect. IX we show simulation results for an LR source whose statistics would be difficult to
distinguish from a quantum source in an experimental setting. The conventional coincidence
analysis shows a false violation of a Bell inequality for this source.

IV. DISTANCE-BASED BELL FUNCTIONS

Distance-based Bell functions and associated Bell inequalities generalize the conventional
two-party, two-setting Bell inequalities such as the CHSH [21] and CH inequalities [22] (the
abbreviations stand for the authors’ initials). Consider two parties A and B, where each
can choose from two settings labeled 1̄ and 2̄ and the physical meaning of the setting labels
depends on the party. Suppose that the measurement outcomes at a given setting are −1 or
1. Let OX and SX be the measurement outcome and setting of party X, respectively. One
of the CHSH inequalities for this configuration is

〈OAOB|SA = 2̄, SB = 2̄〉
− 〈OAOB|SA = 2̄, SB = 1̄〉
− 〈OAOB|SA = 1̄, SB = 1̄〉
− 〈OAOB|SA = 1̄, SB = 2̄〉 ≥ −2, (1)

where 〈U〉 denotes the expectation of U . This inequality is satisfied by all LR models. Let
l(x, y) = |x− y|. Since OAOB = 1− l(OA, OB), Eq. (1) can be rewritten as

〈l(OA, OB)|SA = 2̄, SB = 1̄〉
+ 〈l(OB, OA)|SA = 1̄, SB = 1̄〉
+ 〈l(OA, OB)|SA = 1̄, SB = 2̄〉
− 〈l(OA, OB)|SA = 2̄, SB = 2̄〉 ≥ 0. (2)

A deterministic LR model assigns a specific value dXc for the measurement outcome of each
party X and setting c before the experiment. In this case, the left-hand side of Eq. (2) is
given by l(dA2̄ , d

B
1̄ ) + l(dB1̄ , d

A
1̄ ) + l(dA1̄ , d

B
2̄ ) − l(dA2̄ , d

B
2̄ ). This is at least 0 because l satisfies

the triangle inequality as illustrated in Fig. 2 and observed by Schumacher in Ref. [11].
The inequality of Eq. (2) follows because general LR models are probabilistic mixtures of
deterministic ones. We have switched the A and B arguments of l in the contribution for
the 1̄1̄ setting in preparation for applying asymmetric functions l.

The Bell inequalities of Eq. (1) and (2) are expressed in terms of quantities that are
conditional on settings. Since measurement settings need to be chosen randomly, experi-
mentally estimating these quantities requires dividing by the actual number of times the
relevant settings are chosen. This complicates the estimation of experimental uncertainty.
To avoid this complication, recall that the probability distribution of the settings is known
beforehand and is independent of the LR model. Let pab be the probability that A and B
choose settings a and b, respectively. Then the left-hand side of Eq. (2) is equal to〈

(−1)[SA=2̄&SB=2̄]l(OA, OB)/pSASB

〉
, (3)
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FIG. 2: Illustration of the twice-iterated triangle inequality. Each node represents one of the four

potential measurement outcomes in dLR, and each directed edge represents one of the lengths

l in Eq. 4. The edges on the path correspond to “compatible” measurements pairs that are

experimentally measured. The locations of the nodes are arbitrary in this illustration.

where the expression [φ] in the exponent of −1 evaluates to 1 when the logical formula φ is
true and to 0 when it is false. Eq. (3) is the expectation of a function of the settings and
measurement outcomes. This function is the Bell function for the inequality of Eq. (2). For
our default assumption of a uniform settings probability distribution, pSASB = 1/4.

In general, we define a Bell function to be a function of trial outcomes whose expectation
with respect to every LR model is non-negative, where the probability distribution of the
settings is fixed. We now obtain such Bell functions from functions l : (x, y) ∈ O × O 7→
l(x, y) ∈ R that satisfy the twice-iterated triangle inequality l(x1, x4) ≤ l(x1, x2)+ l(x2, x3)+
l(x3, x4), where O is a common measurement outcome space for all parties and settings.
Unlike a true distance, we do not require l to be non-negative or symmetric. Note that
the twice-iterated triangle inequality follows from the usual triangle inequality d(u,w) ≤
d(u, v) + d(v, w) by substituting the right-hand side of d(x1, x3) ≤ d(x1, x2) + d(x2, x3) for
d(x1, x3) in the inequality d(x1, x4) ≤ d(x1, x3)+d(x3, x4). While it is convenient to construct
functions satisfying the twice-iterated triangle inequality from functions satisfying the usual
triangle inequality, we do not require that l satisfy the usual triangle inequality. Note that
in the context of metrics and quantum information, the twice-iterated triangle inequality
is occasionally referred to as a “quadrilateral inequality” [11] or a “quadrangle inequality”
(these terms have other meanings depending on context).

Consider a deterministic LR model given as above by its outcome assignments dLR =
(dA1̄ , d

A
2̄ , d

B
1̄ , d

B
2̄ ). The elements of dLR obey the inequality

0 ≤ l(dA2̄ , d
B
1̄ ) + l(dB1̄ , d

A
1̄ ) + l(dA1̄ , d

B
2̄ )− l(dA2̄ , d

B
2̄ ), (4)

obtained by arranging the twice-iterated triangle inequality as illustrated in Fig. 2. The
reversal of the parties in the term l(dB1̄ , d

A
1̄ ) (the middle edge of the indirect path) requires

argument reversals in the expressions below.
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We can define a Bell function based on l as follows:

Bl(t) =

 4l(oB, oA) if sA = 1̄ and sB = 1̄,
4l(oA, oB) if sA 6= sB,
−4l(oA, oB) if sA = 2̄ and sB = 2̄,

(5)

where t = (oA, sA, oB, sB) is a trial outcome. The factor of 4 originates as the inverse of the
probability 1/4 of each of the settings. Consider an LR model with measurement outcome
random variables DX

c . In the trial outcome random variable T , OA = DA
SA and OB = DB

SB .
Because the settings are independent of the DX

c , the expectation of Bl can be computed as

〈Bl(T )〉LR = 〈l(DA
2̄ , D

B
1̄ )〉LR + 〈l(DB

1̄ , D
A
1̄ )〉LR + 〈l(DA

1̄ , D
B
2̄ )〉LR − 〈l(DA

2̄ , D
B
2̄ )〉LR ≥ 0, (6)

where the factors of 4 were canceled by the probabilities of the settings. The inequality can
be checked directly for deterministic LR models, by replacing the random variable DX

c with
the constant dXc . For general LR models both sides can be integrated with respect to the
appropriate distributions over deterministic LR models. For a general settings distribution,
the values of l in Eq. (5) are multiplied by the inverse of the applicable settings’ probability
so that the expression for the expectation in Eq. (6) is unchanged.

Eq. (6) is the Bell inequality associated with the Bell function Bl. To test it in an
experiment involving a sequence Tk of trial outcomes, one computes the values Bl(tk) on
the actual trial outcomes tk. The sum v =

∑
k Bl(tk) is then an estimate of

∑
k〈Bl(Tk)〉,

that can be compared to 0. The test is considered successful if v < 0, and the difference
between v and 0 is statistically significant. According to the conventional approach, this
involves determining an uncertainty for v. See Appendix. A for an effective method for
obtaining such an uncertainty that takes into account the known probability distribution of
the settings. While this prescription is seemingly straightforward, care must be taken when
interpreting the results for trials that may not be independent and identical [14, 23, 24].
Statements on the strength of evidence against LR require additional analysis based on
statistical hypothesis testing, see Sect. VIII.

For our applications to timetag sequences, we further generalize the Bell functions by
allowing l to depend on the settings. Consider functions lab of two measurement outcomes
that satisfy the following version of the iterated triangle inequality:

0 ≤ l2̄1̄(dA2̄ , d
B
1̄ ) + l1̄1̄(dB1̄ , d

A
1̄ ) + l1̄2̄(dA1̄ , d

B
2̄ )− l2̄2̄(dA2̄ , d

B
2̄ ). (7)

We call such an l a CH function. For the first and shorter expression in the next definition,
we use the notation l̃1̄1̄(o1, o2) = l1̄1̄(o2, o1) and l̃ab(o1, o2) = lab(o1, o2) for ab 6= 1̄1̄. A Bell
function Bl can now be defined by generalizing Eq. (5) according to

Bl(t) = 4(−1)[sA=2̄&sB=2̄]l̃sAsB(oA, oB)

=

 4lsAsB(oB, oA) if sA = 1̄ and sB = 1̄,
4lsAsB(oA, oB) if sA 6= sB,
−4lsAsB(oA, oB) if sA = 2̄ and sB = 2̄.

(8)

We call Bl a CH Bell function. It satisfies Eq. (6) after adding the appropriate indices to
the occurrences of l.
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We remark that every Bell function for a two-party, two-settings configuration can be
put in the form of a CH Bell function for some choice of CH function l. Thus many of the
techniques discussed in the remainder of the paper are generally applicable. Consider an
arbitrary Bell function B(oA, sA, oB, sB) standardized as above so that 〈B(T )〉LR ≥ 0 for the
settings probability distribution pab. We can define

lB,ab(o1, o2) =

 B(o2, a, o1, b)pab if ab = 1̄1̄,
B(o1, a, o2, b)pab if a 6= b,
−B(o1, a, o2, b)pab if ab = 2̄2̄.

(9)

Since there are no constraints on the measurement outcomes in deterministic LR models,
the Bell inequality implies the iterated triangle inequality of Eq. (7). To show this, fix the
LR model so that it is deterministic according to dLR, where dLR is arbitrary. Then

0 ≤ 〈B(T )〉LR

=
∑
ab

pab〈B(OA, a, OB, b)|ab〉LR

=
∑
ab

pabB(dAa , a, d
B
b , b)

= lB,2̄1̄(dA2̄ , d
B
1̄ ) + lB,1̄1̄(dB1̄ , d

A
1̄ ) + lB,1̄2̄(dA1̄ , d

B
2̄ )− lB,2̄2̄(dA2̄ , d

B
2̄ ).

V. BELL FUNCTIONS FOR TIMETAG SEQUENCES

For our construction of CH functions for general timetag sequences, we require functions
lab whose domains are two lists of real numbers representing the timetag sequences at settings
ab, whose ranges are the real numbers, and that satisfy the iterated triangle inequality. Our
general strategy is to construct lab so that it computes a quantity similar to an edit distance,
which quantifies the degree of dissimilarity between the timetag sequences obtained by A and
B. (However our CH functions may be negative and are not symmetric in their arguments,
so they are not strictly distances.) As mentioned in the introduction, edit distances are
commonly used to compare strings and are defined by the minimum number (or cost) of
elementary edits required to convert one string to another. Here, the edits consist of deleting
timetags or moving them, where the cost of the move is related to the distance of the move.
In particular, our implementation matches timetags of A with timetags of B and assigns a
cost to the difference between the matched timetags and a cost to unmatched timetags.

To compute the cost for matched timetags we use function-tuples (fab)a,b∈{1̄,2̄}, where the
fab : x ∈ R 7→ fab(x) ∈ R satisfy that for all x, y, z ∈ R, f2̄2̄(x + y + z) ≤ f2̄1̄(x) + f1̄1̄(y) +
f1̄2̄(z). We denote the set of such function-tuples by T4. The goal is to compare timetags
r and t obtained at settings ab by computing fab(t − r). To construct a function-tuple in
T4 from any given f2̄1̄, f1̄1̄ and f1̄2̄, we can choose f2̄2̄ such that f2̄2̄(u) ≤ infx,y∈R(f2̄1̄(x) +
f1̄1̄(y)+f1̄2̄(u−x−y)), provided the expression on the right-hand side is bounded from below.
This condition is satisfied if the given fab are lower bounded. Three immediate examples of
members of T4 are the linear tuples with fab(x) = λx, the constant tuples with fab(x) = cab
where c2̄1̄ + c1̄1̄ + c1̄2̄ = c2̄2̄ (an exact and constant function-tuple), and fab(x) = [x ≥ 0].
Here, we again used the convention that for a logical formula φ, [φ] = 1 if φ is true and 0
otherwise. To construct other members of T4 it helps to apply closure properties of T4.
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Theorem 1 The set of function-tuples T4 is closed under the following operations.

(A) Component-wise addition and multiplication by a positive real number (T4 is a convex
cone).

(B) The reflection defined by f ′ab(x) = fab(−x).

(C) Component-wise maximum of two function-tuples.

(D) For real numbers tab satisfying t2̄2̄ =
∑

ab6=2̄2̄ tab, the shift transforming the components

according to f ′ab(x) = fab(x+ tab).

(E) For non-negative function-tuples and c ≥ 0, the transformation defined by f ′ab(x) =
min(fab(x), c).

(F) Let f and f ′ be function-tuples with f ′2̄2̄ monotone non-decreasing. Then the function-
tuple defined by f ′′ab = f ′ab ◦ fab is a function-tuple. If f2̄2̄ is also monotone non-
decreasing then so is f ′′2̄2̄.

Proof. (A) can be checked by direct application of the definitions. (C) follows from the
observation that the maximum is monotone in each argument and the maximum of two
matched sums is at most the sum of the maximums of the terms. (B) and (D) follow from
invariance of the defining inequalities under reflection and under the shift specified in (D).
To check (E) note that f ′2̄2̄(x+ y + z) ≤ f2̄2̄(x+ y + z) ≤ f2̄1̄(x) + f1̄1̄(y) + f1̄2̄(z). If a term
on the right-hand side is greater than c, non-negativity implies that the right-hand side is
at least c, an upper bound on the left-hand side by definition of f ′2̄2̄. If not, the right-hand
side is equal to f ′2̄1̄(x) + f ′1̄1̄(y) + f ′1̄2̄(z). The following inequalities show (F):

f ′′2̄2̄(x+ y + z) = f ′2̄2̄(f2̄2̄(x+ y + z))

≤ f ′2̄2̄(f2̄1̄(x) + f1̄1̄(y) + f1̄2̄(z))

≤ f ′2̄1̄(f2̄1̄(x)) + f ′1̄1̄(f1̄1̄(y)) + f ′1̄2̄(f1̄2̄(z))

= f ′′2̄1̄(x) + f ′′1̄1̄(y) + f ′′1̄2̄(z), (10)

and the composition of monotone non-decreasing functions is monotone non-decreasing.

Here are a few more examples of function-tuples in T4.

(1) fab(x) = |x| = max(x,−x). In this case, the condition is just the twice-iterated triangle
inequality for the reals.

(2) One-sided threshold functions. Let real numbers (tab)a,b satisfy t2̄2̄ =
∑

ab 6=2̄2̄ tab and

define fab(x) = [x ≥ tab]. Note that this is an application of the shift in Thm. 1 (D)
with parameters (−tab)a,b to the function-tuple gab(x) = [x ≥ 0].

(3) Half-linear functions. For tab as in (2), a positive slope m and an exact constant
function-tuple cab, define fab(x) = max(m(x − tab), cab). That this tuple is in T4

follows from the closure properties applied to the generating examples given above.
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x

1

FIG. 3: Illustration of the linear-edge window functions. See the text for the definitions.

(4) Linear-edge window functions. Choose thresholds tl,ab ≤ th,ab such that for d = l and
for d = h, td,2̄2̄ =

∑
ab 6=2̄2̄ td,ab, and positive slopes ml and mh. Define

fab(x) = min(1,max(0,mh(x− th,ab),ml(tl,ab − x))). (11)

As illustrated in Fig. 3, these functions are 0 between tl,ab and th,ab, and rise linearly
away from these thresholds up to a value of 1. That they form tuples in T4 follows
from the closure properties.

In our applications, we use the linear-edge window functions. In spot checks using linear
programming, they appear to optimize the sought for violations among non-negative tuples
in T4 that are 1 outside a fixed interval.

We now construct a CH function lf for pairs of timetag sequences from an arbitrary
function-tuple f = (fab)a,b∈{1,2} in T4. Let r, t be two ordered timetag sequences, r =
(r1 ≤ ... ≤ rm) and t = (t1 ≤ ... ≤ tn). Let M be the family of partial, non-crossing
matchings between r and t. Such matchings M can be identified with one-to-one, partial,
monotone functions M : k ∈ dom(M) ⊆ [m] 7→ M(k) ∈ [n]. Monotonicity implies that if
k, l ∈ dom(M) and k < l, then M(k) < M(l). (We use the notation [j] = {1, . . . , j}.) Let
lf,ab(r, t) be the minimum over all M ∈M of the “cost”

l(fab,M, r, t) = m− |dom(M)|+
∑

k∈dom(M)

fab(tM(k) − rk). (12)

One way to think of this is as the minimum total cost of editing r into t by deleting timetags
in r at a cost of 1 (assessed by m − |dom(M)|), deleting timetags of t at no cost, and by
shifting the remaining timetags of r by x at a cost of fab(x) (assessed by the sum over
k ∈ dom(M)), where each timetag can be shifted at most once and the final time ordering
is the same as the initial one. We can also view this as a maximum weighted bipartite
non-crossing matching problem, where the matching is between indices of r and indices of
t with the weight of (k, l) being (1 − fab(tl − rk)). The cost is then given by m minus the
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FIG. 4: Example of a timetag-distance calculation. The beginnings of two timetag sequences are

shown. The grey circles are positioned at the recorded times of the timetags. The settings may

be assumed to be 1̄1̄. The cost function is f1̄1̄(x) = min(1, |x/τ |). The edit action is indicated,

with ’x’ marking a deleted timetag and arrows showing the order-preserving moves. The costs are

shown above the edit action. The total cost of the edits shown here is 3.7.

weight of the maximum-weight matching. An example of the cost computation is in Fig. 4.

Theorem 2 Suppose that the measurement outcome space O consists of timetag sequences.
Let f be a function-tuple in T4. Then lf (as defined before Eq. (12)) is a CH function.

Proof. Consider deterministic LR outcomes dXc as introduced previously, but with out-
comes consisting of timetag sequences. Let Mab be the cost-minimizing matchings for which
l(fab,Mab, d

A
a , d

B
b ) = lf,ab(d

A
a , d

B
b ) if ab 6= 1̄1̄, and l(f1̄1̄,M1̄1̄, d

B
1̄ , d

A
1̄ ) = lf,1̄1̄(dB1̄ , d

A
1̄ ). We can

construct a matching M ′ from dA2̄ to dB2̄ by composing M ′ = M1̄2̄ ◦M1̄1̄ ◦M2̄1̄, with domain
consisting of those indices for which the composition is defined. Then M ′ is monotone and
l(f2̄2̄,M

′, dA2̄ , d
B
2̄ ) ≥ lf,2̄2̄(dA2̄ , d

B
2̄ ). Therefore, it suffices to show that

l(f2̄2̄,M
′, dA2̄ , d

B
2̄ ) ≤ l(f2̄1̄,M2̄1̄, d

A
2̄ , d

B
1̄ ) + l(f1̄1̄,M1̄1̄, d

B
1̄ , d

A
1̄ ) + l(f1̄2̄,M1̄2̄, d

A
1̄ , d

B
2̄ ). (13)

The composition of functions defining M ′ terminates at the first step where the mapped-to
index fails to be in the domain of the next matching. This allows us to associate with each
index not in the domain of M ′ a unique index along the way that is “deleted” in the next
step. Indices in the domain pass through each matching and accumulate separate distances
that bound the corresponding distance in M ′. To formalize this idea, for each index k of
dA2̄ , we define N(k) as a pair consisting of an index and a party/setting label as follows:
If k 6∈ dom(M2̄1̄), then let N(k) = (k,A2̄). Else, if M2̄1̄(k) 6∈ dom(M1̄1̄), then let N(k) =
(M2̄1̄(k), B1̄). Else, if M1̄1̄(M2̄1̄(k)) 6∈ dom(M1̄2̄), then let N(k) = (M1̄1̄(M2̄1̄(k)), A1̄). If
none of these conditions apply, k is in the domain of M ′ and we let N(k) = (M ′(k), B2̄).
The definition implies that N is one-to-one, k ∈ dom(M ′) iff the second component of N(k)
is B2̄, and if k 6∈ dom(M ′), then the first component of N(k) is not in the domain of one of
M2̄1̄, M1̄1̄ or M1̄2̄. This ensures that all members of dA2̄ deleted according to M ′ are matched
to deleted members of one of the timetag sequences in the composition. In particular, the
deletion cost on the left-hand side of Eq. (13) is at most that on the right-hand side.

We now focus on the shift costs contributing to Eq. (13). Let (dXc )k be the k’th timetag
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of dXc . It remains to be shown that∑
k∈dom(M ′)

f2̄2̄

(
(dB2̄ )M ′(k) − (dA2̄ )k

)
≤

∑
k∈dom(M2̄1̄)

f2̄1̄

(
(dB1̄ )M2̄1̄(k) − (dA2̄ )k

)
+

∑
k∈dom(M1̄1̄)

f1̄1̄

(
(dA1̄ )M1̄1̄(k) − (dB1̄ )k

)
+

∑
k∈dom(M1̄2̄)

f1̄2̄

(
(dB1̄ )M2̄1̄(k) − (dA2̄ )k

)
. (14)

Because all shift costs are positive, it suffices to show that∑
k∈dom(M ′)

f2̄2̄

(
(dB2̄ )M ′(k) − (dA2̄ )k

)
≤

∑
k∈dom(M ′)

[
f1̄2̄

(
(dB2̄ )M ′(k) − (dA1̄ )M1̄1̄◦M2̄1̄(k)

)
+f1̄1̄

(
(dA1̄ )M1̄1̄◦M2̄1̄(k) − (dB1̄ )M2̄1̄(k)

)
+ f2̄1̄

(
(dB1̄ )M2̄1̄(k) − (dA2̄ )k)

)]
, (15)

in which terms on the right-hand side that are not included in the composed matchings have
been neglected. For each k ∈ dom(M ′),

f2̄2̄

(
(dB2̄ )M ′(k) − (dA2̄ )k

)
= f2̄2̄

(
(dB2̄ )M ′(k) − (dA1̄ )M1̄1̄◦M2̄1̄(k)

+(dA1̄ )M1̄1̄◦M2̄1̄(k) − (dB1̄ )M2̄1̄(k)

+(dB1̄ )M2̄1̄(k) − (dA2̄ )k
)

(16)

≤ f1̄2̄

(
(dB2̄ )M ′(k) − (dA1̄ )M1̄1̄◦M2̄1̄(k)

)
+f1̄1̄

(
(dA1̄ )M1̄1̄◦M2̄1̄(k) − (dB1̄ )M2̄1̄(k)

)
+f2̄1̄

(
(dB1̄ )M2̄1̄(k) − (dA2̄ )k)

)
, (17)

according to the defining inequality of function-tuples. These summands are separate con-
tributions (for distinct k ∈ dom(M ′)) to the right-hand side of Eq. (13), completing the
proof.

An algorithm to compute the minimum costs lf,ab(r, t) is described in Appendix B.

VI. NON-SIGNALING ADJUSTMENTS TO CH FUNCTIONS

The non-signaling conditions are a set of equalities that constrain probability distributions
describing A’s and B’s measurement outcomes. They ensure that each party’s outcome
distribution is independent of the other party’s setting. Otherwise, one party could signal
their setting to the other party. Formally, given non-signaling and any real-valued function
h on O, 〈h(OA)|SA = a, SB = 1̄〉 = 〈h(OA)|SA = a, SB = 2̄〉 and similarly for reversing
the roles of A and B. Although both quantum and LR theories obey the non-signaling
equalities, using these equalities to transform Bell inequalities can increase the signal-to-
noise ratio (SNR) of a Bell-inequality violation observed in an experimental test of LR.

Consider the general iterated triangle inequality for a CH function l. We can modify l
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by defining

l′ab(x, y) = lab(x, y) +

{
−f1̄(y)− g1̄(x) if a = 1̄ and b = 1̄,
fa(x) + gb(y) otherwise.

(18)

where fa and gb are arbitrary real-valued functions. Replacing l by l′ leaves the right-hand
side of Eq. (7) unchanged, so l′ is also a CH function. Furthermore, we have 〈Bl(T )〉 =
〈Bl′(T )〉 for any model satisfying the non-signaling conditions. We call l′ a non-signaling
adjustment of l. Note that the functions

lA,ab(x, y) =

{
−f1̄(y) if a = 1̄ and b = 1̄,
fa(x) otherwise

(19)

and

lB,ab(x, y) =

{
−g1̄(x) if a = 1̄ and b = 1̄,
gb(y) otherwise

(20)

are CH functions, and l′ab = lab + lA,ab + lB,ab.
Non-signaling adjustments can be used to improve the SNR of the empirical estimate of

a Bell function Bl obtained from a sequence of trials. As a simple example with a two-point
outcome space, considerN trials to test a version of the inequality of Eq. (6). The experiment
is configured so that each trial involves emission of exactly one photon pair with some
probability (and emission of nothing otherwise), and the measurement outcomes 1 and 0
correspond to whether a photon was detected or not. We start with lab(x, y) = max(x−y, 0),
which is a CH function. Let pXc be the probability that X detects a photon at setting c in
a trial. Let cab be the probability of coincident detections when the parties use settings ab.
The expected value of the Bell function of Eq. (5) is then

〈4[SA = 2̄&SB = 1̄]l2̄1̄(OA, OB)〉
+ 〈4[SA = 1̄&SB = 1̄]l1̄1̄(OB, OA)〉
+ 〈4[SA = 1̄&SB = 2̄]l1̄2̄(OA, OB)〉
− 〈4[SA = 2̄&SB = 2̄]l2̄2̄(OA, OB)〉

 =


〈4[SA = 2̄&SB = 1̄][OA = 1&OB = 0]〉
+ 〈4[SA = 1̄&SB = 1̄][OB = 1&OA = 0]〉
+ 〈4[SA = 1̄&SB = 2̄][OA = 1&OB = 0]〉
− 〈4[SA = 2̄&SB = 2̄][OA = 1&OB = 0]〉

=


pA2̄ − c2̄1̄

+ pB1̄ − c1̄1̄

+ pA1̄ − c1̄2̄

− (pA2̄ − c2̄2̄).

(21)

Note that the terms pA2̄ cancel in this expression. (Note that the last expression matches half
of the original CH inequality in the paragraph of Eq. B8 of Ref. [22] after relabeling and a
change of sign.) However, when estimating the expectation by evaluating the Bell function
on the trials, the two pA2̄ s are contributed by values at different settings, namely 2̄1̄ and
2̄2̄. Consequently, two sources of counting statistics variability associated with detections
of A at setting 2̄ affect the the SNR of the Bell function. We can eliminate this problem
by defining f2̄(x) = −x in Eq. (18). (Here, fa and gb are set to zero if not explicitly
assigned.) By the non-signaling constraints and construction, the modified Bell function
has the same expectation as the original Bell function. This Bell function was used to show
a Bell-inequality violation in the experiment reported in Ref. [18]. A further improvement of
the SNR is obtained by “distributing” the terms whose expectations are pB1̄ and pA1̄ over the
different settings. It is equivalent to averaging them over the other party’s setting choices
and involves setting f1̄(x) = −x/2 and g1̄(x) = x/2 in Eq. (18), in addition to setting
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f2̄(x) = −x. This modification was introduced for the explicit purpose of improving the
SNR of the violation in Ref. [19].

VII. PROTOCOL FOR DATA ANALYSIS

When analyzing a set of timetag-sequence pairs from trial measurement outcomes, it
is necessary to choose a Bell function Bl that, before the experiment, can be expected to
show good results. It may not be feasible to make a good choice of Bl on purely theoretical
grounds. One can instead acquire a statistically useful training set consisting of the outcomes
from the first Nt trials and set aside the remainder in the analysis set. The notion of
“statistically useful” is not formalized here. The training set is used to choose the parameters
required for analyzing the rest of the data. The training set is excluded from the final
analysis. The main task is to determine a function-tuple in T4 and non-signaling adjustments
to use for defining Bl. In principle, one can optimize the function-tuple on the training set.
That is, one can compute Bl for all such function-tuples and pick the one that minimizes the
empirically computed value of Bl. This optimization is difficult, but one can use non-linear
optimization on the 8 independent parameters of the linear-edge window functions. We
note that on spot checks, this subset of T4 appears to contain the optimal solution among
function-tuples of T4 whose members are constrained to be 1 outside a fixed interval [−u, u].
In the simulations below, the number of independent parameters was reduced to 2 by taking
advantage of symmetries. The suggested non-linear optimization can still be too resource
intensive. In our simulations we used an effective approximation; see Appendix C. We do
not discuss methods for optimizing the non-signaling adjustments here. In the simulations,
we just use the ones described in the last paragraph of Sect. VI. An even more ambitious
optimization could seek to optimize the SNR or the statistical significance of the violation
of the inequality rather than the expected value of Bl.

VIII. BELL FUNCTION TRUNCATION FOR p-VALUE BOUNDS

Consider N trials whose trial outcomes are tk and a Bell function B. A direct way to
analyze the trial outcomes is to compute bk = B(tk), let f =

∑
k bk, and determine the

sample standard error for f as σe =
√
N
∑

k(bk − f/N)2/(N − 1). The violation can then
be quantified by the “number of standard deviations of violation”, −f/σe, which is the SNR
of the total violating signal. This number needs to be interpreted with care, particularly if it
is very large–a desirable outcome of an experiment. If the trials are i.i.d., then f/N ± σe/N
is an approximate 68 % confidence interval for the expectation of B. (A better method that
takes advantage of the fact that the settings probability distribution is known is given in
Appendix A.) However, even in the case of i.i.d. trials, −f/σe does not quantify how strongly
the experiment “rejects” LR models. This is because the central limit theorem cannot be
reliably used to estimate extreme tail probabilities. Furthermore, the assumption that the
trials are identical rarely holds to high precision, and independence cannot be assumed in
applications to cryptographic protocols. For more details on these issues, see [16, 17].

To determine the statistical significance of a Bell-inequality violation, one can compute
a bound on the largest probability with which any LR model could produce a violation
at least as large as that observed. This upper bounds a p-value according to the theory
of statistical hypothesis testing with respect to the composite null hypothesis consisting of
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all possible LR models. Typical Bell inequality experiments thus aim for extremely small
p-values. Given a p-value bound p, it is convenient to quantify the violation in terms of
the (negative) log -p-value bound, formally defined as − log2(p). In many cases, for example
when reporting a discovery in particle physics, p-values are converted to equivalent standard
deviations with respect to the one-sided tail probabilities of the standard normal distribution.
For comparison, the log -p-values corresponding to 1, 2, 3, 4 and 5 standard deviations are
2.7, 5, 9.5, 14.9 and 21.7.

The first rigorous method for computing such a bound was given by Gill [14, 15] and
is based on martingale theory. This “martingale-based protocol” does not require that
trials be independent from one trial to the next, or that they have identically distributed
measurement outcomes, an important feature for its application to quantum randomness
expansion [6]. The bound obtained by the martingale-based protocol is suboptimal, but
there is a protocol, the PBR protocol [16], that is optimal in an asymptotic sense. Like the
martingale-based protocol, the PBR protocol also does not require independent or identical
outcomes. The PBR protocol has the advantage that it does not require a predetermined
Bell inequality. Nor does it require that the number of trials be decided in advance: It gives
valid p-value bounds for any stopping rule (see the last paragraph of this section). The full
PBR protocol is computationally infeasible when the measurement outcome spaces or the
number of settings are large, but there is a simplified and efficient version of the protocol
that still outperforms the martingale-based protocol [17] while retaining the advantages of
the full protocol.

The PBR protocol is based on the following observation. Suppose that before the k’th
trial, we can determine a “test factor” Pk on the space of possible trial outcomes such that
Pk ≥ 0 and for all LR models, 〈Pk(Tk)〉LR ≤ 1, where the bound holds regardless of what

happened before the k’th trial in the experiment. Then P = 〈
∏N

k=1 Pk(Tk)〉LR ≤ 1. Thus,
given LR, according to the Markov inequality, the probability that P > 1/p is bounded
above by p, and therefore 1/P is a p-value bound. In general, candidate test factors R can
be obtained from Bell functions B bounded above by z according to R = (z − B)/z. More
generally, given a collection of candidate test factors Ri ≥ 0 satisfying 〈Ri(T )〉LR ≤ 1, any
convex combination of the Ri can be used as Pk. (The collection may depend on k.) The
simplified PBR protocol takes as input such a collection (Ri)

m
i=0 and chooses Pk before the

k’th trial by optimizing the convex combination on the outcomes of the previous trials. (R0

is always chosen to be the “trivial” test factor 1.) Specifically, it maximizes the empirical

estimate of the log -p-value increase per trial given by
∑k−1

i=1 − log2(Pk(ti))/(k − 1). For
more details, see Ref. [17]. The possibility of adjusting the test factors for the upcoming
trial after each trial makes it possible to avoid making predetermined choices for the Bell
function parameters.

In practice, there is little gained by re-optimizing the test factors before every trial,
and instead the factor is reused until sufficiently many new trials have been obtained. In
principle, the number of trials before Pk can be productively updated may be determined
from statistical considerations. (Our implementations so far are largely based on heuristic
considerations.) The simplest method is to determine the optimal test factor from the
training set and use it uniformly on the analysis trials. For example, the starting Bell
functions can include multiple choices of parameters. The optimal convex combination of
the corresponding test factors can then be determined empirically on the training set and
can be directly applied to the trials in the analysis set.

To apply the PBR protocol to timetag data, we make two modifications to the CH
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Bell functions. The first modification ensures that we have a set of Bell functions that are
bounded from above as required by the simplified PBR protocol. Finite bounds are normally
not available for the timetag-sequence Bell functions discussed so far, or the bounds are too
high to be useful, so we describe a truncation strategy below. Our second modification
increases the expected log -p-value bound produced by the PBR protocol by shifting the CH
functions so that the contributions to the violation of the CH Bell inequality are equalized
across measurement settings.

Consider a CH function l. To obtain a bounded CH Bell function, it suffices to modify
l by composition with a function-tuple fab in T4 for which f2̄2̄ is monotone non-decreasing
and the fab are bounded. We call such an fab a monotone and bounded function-tuple. To
see that this preserves the desired inequalities, consider Eq. (7) and define l′ab(d

X
a , d

Y
b ) =

fab(lab(d
X
a , d

Y
b )). Because of monotonicity of f2̄2̄, Thm. 1 (F) ensures that l′ satisfies the

inequality in Eq. (7), thus l′ is also a CH function.
A convenient family of monotone and bounded function-tuples in T4 is provided by

gab(x; b, u, c) = min(max(x+ bab, 0), c)− uab, (22)

where bab and uab are exact constant tuples in T4 and c ≥ 0. That g is a function-tuple
follows from the closure properties of T4 (Thm. 1). If l is modified to l′ by means of a
function-tuple of the form gab, the Bell function Bl′ is guaranteed to be bounded above by
the maximum of c − u1̄1̄, c − u1̄2̄, c − u2̄1̄, u2̄2̄. The following is a method for systematically
choosing the truncation parameters.

Consider a collection of training trials. Let lab = (lab,k)
Nab
k=1 consist of the observed values

of lsAsB(oA, oB) for the trials where sA = a and sB = b. Let l̄ab =
∑

k lab,k/Nab. The bounds
bab can be chosen as a compromise between having small bounds on the Bell function and
preserving the variation in the values of lab,k. The violating signal is reduced if we truncate
the values of l2̄2̄ so that the maximum value is too close to the mean l̄2̄2̄. This truncation
point is determined by solving x2̄2̄ + b2̄2̄ = c, that is x2̄2̄ = c − b2̄2̄. (The upper or lower
truncation point is the value of x for which gab reaches its upper or lower bound.) Similarly,
we should not truncate the other lab so that their minimum values are too close to their
means l̄ab. These truncation points are at xab = −bab. Let wab be a “safe” separation
between the truncation points and l̄ab, to be determined from the distributions of the lab,k
(see the end of the next paragraph). For ab 6= 2̄2̄, we can set bab by solving −bab = l̄ab−wab.
This determines b2̄2̄ =

∑
ab 6=2̄2̄ bab. We can then choose c so that c− b2̄2̄ = l̄2̄2̄ + w2̄2̄.

The next step is to choose uab so as to ensure that the contributions to the violation
conditional on the settings are equalized. This is done to improve the expectation of the
log -p-value bound by exploiting the concavity of the logarithm. Let l′ab,k = gab(lab,k; b, 0, c)

with b and c as obtained so far. Define l̄′ab accordingly. We choose uab so as to balance the
average violation for the different settings. This is accomplished by defining

uab = l̄′ab − (−1)[a=2̄&b=2̄](l̄′1̄1̄ + l̄′1̄2̄ + l̄′2̄1̄ − l̄
′
2̄2̄)/4, (23)

If we then use gab as defined in Eq. (22) and modify l as described there with fab(x) =
gab(x; bab, uab, c), this ensures that each trial contributes the same estimated violation −v =
(l̄′1̄1̄ + l̄′1̄2̄ + l̄′2̄1̄ − l̄

′
2̄2̄)/4 on average. If this violation is not negative, then this truncation is

not helpful for use in the PBR protocol. Assuming there is an empirical violation according
to the original l̄ab, the separations wab need to be increased until a violation remains visible
in the l̄′ab. In this case, if the violation persists in future trials, the PBR protocol can take
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advantage of the truncation. In our implementation, rather than attempting to find the
optimal choice for wab, we consider a small set of good candidates, obtain the associated
Bell functions and convert them to the non-trivial test factors Ri, i ≥ 1 that are then
convexly combined with the trivial test factor by the simplified PBR protocol as described
above. We found that the convex combination chosen by the protocol normally involved
more than one choice of wab, suggesting that a single choice is not optimal.

We remark that the shift uab can be expressed as trivial non-signaling adjustments by
constant functions. In addition to increasing the SNR overall, a goal of non-signaling ad-
justments might be to equalize the SNR conditional on the settings, but we did not attempt
to achieve this.

The truncation and shifting strategy above results in factors Pk (and candidate test factors
Ri) whose predicted expectations are upper bounded by 4/3, according to the training set.
To see this we show that the upper bound z of the modified Bell function that determines a
candidate test factor is at least 3v, while by construction, the predicted expectation is −v.
Here, v depends on the training data and choice of wab for this test factor. Since the test
factor is given by R = (z − B)/z, we find that the predicted expectation of R is at most
(z+v)/z ≤ 4/3. The upper bound is given by z = maxab,x(−1)[a=2̄&b=2̄]gab(x; bab, uab, c). The
expression for gab shows that maxx gab(x; bab, uab, c) = c− uab and maxx−g2̄2̄(x; b2̄2̄, u2̄2̄, c) =
u2̄2̄. Consider u2̄2̄, which is the sum of the other uab (by definition of exact constant tuples
and by construction). For ab 6= 2̄2̄, the lower bound on gab(x; bab, uab, c) is −uab. But the
sample mean at setting ab of the truncated Bell function is −v, which requires that its lower
bound satisfies −uab ≤ −v. It follows that u2̄2̄ ≥ 3v, which completes the argument.

A consequence of this observation is that the expected increase in the log -p-value per trial
is bounded by log2(4/3), and it is not possible to take advantage of seemingly strong violating
signals per trial. To some extent, this is unavoidable: We are making no assumptions on
the probability distribution of the timetag sequences, and an extremely adversarial LR
model could take advantage of this in future trials given our choice of parameters for the
PBR protocol. For the purpose of making the most of the PBR protocol, it is therefore
advantageous to design the individual trials to have statistically small violating signals. In
particular, it is favorable to have the one-trial SNR be well below 1. A simple way to
accomplish this and get a better overall log -p-value bound is to shorten the durations of the
trials and increase the number of trials proportionally.

We finish this section by explaining our comment that the PBR protocol can be used
with any stopping rule, such as one according to which one collects trials until a desired p-
value bound is observed. To see this, virtually replace the experiment with the stopping rule
by one that performs a fixed, large number of trials, larger than the maximum number of
trials that could be performed by the original experiment. When the original experiment’s
stopping rule says “stop”, the new experiment sets all future test factors to 1. This is
justified because, the experimenter’s choice of the test factors for trial k is only constrained
by Pk ≥ 0 and 〈Pk(Tk)〉LR ≤ 1, which are satisfied by Pk = 1. The two experiments have
the same statistics for the p-value bounds obtained and the virtual experiment’s p-value
bounds are valid according to the theory of the PBR protocol. We remark that the PBR
protocol can be viewed as an application of the theory of test-supermartingales as reviewed
in Ref. [25].
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IX. DEMONSTRATIONS ON SIMULATED DATA

To illustrate timetag-sequence analysis we simulated experiments intended to test in-
equalities such as Eq. (5) and its non-signaling variations. The situation is as described in
Sect. III with a Poisson source of polarization-entangled photon pairs and high overall effi-
ciency. We assume that both arms of the experiment have identical efficiency η. In principle,
such tests can succeed if η > 2/3 [26]. We explored the effects of uniform jitter (defined
in the next paragraph) on the performance of such experiments at an efficiency of η = 0.8.
We also found lower bounds on the maximum uniform and exponential jitter (defined in
the next paragraph) for which our techniques can show LR violation for η ≥ 0.74. For
each efficiency being considered, we first optimized the violation of the CHSH inequality in
Eq. (1) by varying the settings choices and the parameter θ in the family of unbalanced Bell
states defined by cos(θ)|||00〉〉〉+sin(θ)|||11〉〉〉. Given the efficiency, an optimal state and settings,
we computed the probabilities of the measurement outcomes conditional on the settings.

We considered two families of timetag jitter distributions for the difference between the
recorded timetag and the true arrival time of a photon. The first is the uniform distribution
on an interval of width ju. That is, given the true arrival time t, the recorded timetag
t′ is uniformly distributed in the interval [t, t + ju]. The second family is an exponential
distribution with density γe−γ(t′−t) for t′ ≥ t. The two families of distributions were chosen
for ease of calculation and to illustrate the effect of no tail versus long tail behavior, with
long tails leading to greater loss of violating signal.

The procedures for simulating and analyzing an experiment were automated. We gen-
erated simulated photon pairs at a normalized rate of 1 per (arbitrary) unit of time. Thus
the numerical value of τ (the mean photon-pair inter-arrival time) is 1 in these units. From
here on, time quantities such as ju are given as numerical values with respect to these units.
The procedure is based on a choice of observation window T for the timetag sequences,
number of training trials Nt and number of analysis trials Na. In principle these can be
chosen before the simulation is started to ensure sufficient data for determining the needed
analysis parameters from the training set. We recall that for the PBR analysis to take full
advantage of the SNR, it is a good idea to choose T so that the SNR for one trial is below
1. On the other hand, if T is too small, loss of coincidences near the boundary due to
jitter leads to an additional reduction of the violating signal. To reflect the conditions of
experiments with always-on pump lasers, we start generating photon pairs 2 units of time
before the beginning of the observation window. The data presented below uses T = 1000,
Nt = 10000, Na = 200000. With these parameters and given the jitter distribution, the
procedure for generating and analyzing data is as follows:

1. Generate the trials for the training and analysis sets. For each trial, first produce
the sequence of times at which photon-pairs arrive at the detectors according to a
Poisson process of rate 1 as described above. The jitter distribution is used to delay
the recorded time of detection independently for the two parties. The timetags inside
the observation window are saved to the parties’ timetag sequences.

2. Determine the analysis parameters from the training set. Three studies are performed,
each of which requires optimized parameters. The first is a conventional coincidence
analysis, for which the coincidence window width is determined by optimizing the
resulting violation on the training set. The second computes the timetag-sequence
distances based on the linear-edge window function-tuples. The function-tuple pa-
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rameters are optimized on the training set. The tuples are restricted to be reflection
symmetric around 0, and the thresholds for the settings other than 2̄2̄ are taken to be
identical. Thus only two parameters need to be optimized. (The optimization algo-
rithm is described in Appendix C). The third is the PBR analysis on the truncated
Bell function. The truncation method and optimization of the anticipated log -p-value
increase per trial described in Sect. VIII are used.

3. Perform the three analyses on the analysis set using the parameters determined from
the training set.

The conventional coincidence analysis used in this procedure is equivalent to using iden-
tical window functions with infinite edge-slopes to compute the distances between each pair
of timetag sequences according to the prescription for using function-tuples. Because the
function-tuple effectively used is not in T4, there is no guarantee that the targeted Bell in-
equality is strictly satisfied by LR models. The coincidence loophole examples demonstrate
that such an inequality requires additional assumptions on the nature of the detection events.
We remark that the analysis described in [27] is related to using window functions with infi-
nite edge-slopes, but the width of the window function for setting ab = 2̄2̄ is three times the
width of that used for the other settings. This set of window functions is a function-tuple
in T4 and produces an analysis free of the coincidence loophole.

A. Uniform jitter distributions at efficiency = 0.8

We simulated experiments where the jitter has a uniform distribution on the interval
[0, ju], where ju ∈ [0.001, 0.225]. This covers most of the range for which the conventional
coincidence analysis shows a violating signal. Fig. 5 shows the nominal SNRs for the conven-
tional and the timetag analyses. The nominal SNR is the ratio of the violating signal to the
sample standard deviation. Positive values are violating, negative ones are non-violating.
We refer to this SNR as “nominal” because it cannot be interpreted in terms of gaussian
tail distributions. See [17] for a discussion of this issue. Our method for determining the
SNRs is given in Appendix A. The figure also shows the log -p-value bounds from the PBR
analysis on a matched scale. The log -p-value bound and the timetag analysis’ SNR both
drop to zero around ju = 0.06.

We next considered the question: for what ju does there exist an LR source that has the
same statistics as our simulated source? We do not have a definite answer to this question.
However, we constructed an LR source whose one- and two-point statistics closely match
those of the ideal Poisson source of quantum photon pairs for ju ≥ 0.11. More generally, we
tweaked the LR source so that for all positive values of ju it looks like the Poisson source
that we simulated for the data in Fig. 5, except that it may have more coincidences at the
2̄2̄ setting depending on the jitter. Further details are in Appendix D. Fig. 6 shows the
results from applying the conventional and timetag analysis methods to data generated by
a simulation of the LR source. As expected, the timetag analysis shows no violation. But
the conventional analysis falsely shows violation. For ju ≥ 0.11 the violation is similar if
somewhat lower than that for the corresponding quantum photon pairs in Fig. 5.
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FIG. 5: Comparison of methods for simulated timetag data from a quantum source and detectors

with efficiency η = 0.8 and uniform jitter. The nominal SNRs for the standard and the timetag

analyses are shown on the right axis. Negative SNRs mean that the signal is positive and therefore

not violating. The log -p-value bound for the PBR analysis is shown on the left axis. The horizontal

axis shows the relative jitter width ju/τ . To match the two vertical axes with one another, we

converted log -p-values to equivalent gaussian SNRs by computing the value for which the one-sided

tail probability for the standard normal distribution matches the p-value bound. The computed

log -p-value bounds are 0 for ju above approximately 0.06 and not shown on the plot.

B. Jitter thresholds for efficiency ≥ 0.74

The simulations discussed above show that when there is too much jitter, a nominally
violating source of entangled photon pairs produces timetag data that becomes indistin-
guishable from that produced by an LR model. While we cannot determine the minimum
jitter at which this happens, it is possible to lower bound the maximum jitter at which
the timetag analysis methods can see LR violation. We simulated the photon-pair source
and measurement configuration introduced above at various efficiencies and varied the jitter
distribution. We considered the uniform jitter model and the exponential jitter model and
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FIG. 6: Comparison of methods on LR-generated timetag data. The conventional coincidence

analysis shows a false violation over almost the entire range. The timetag analysis shows no

violation. The log -p-value bounds from the PBR analysis are 0 everywhere and are not shown.

The SNR of the Poisson quantum source whose one- and two-point statistics are approximated by

the LR source for jitter larger than ju/τ ≥ 0.11 is also shown.

determined the maximum jitter widths at which the timetag analysis found violation. The
results are shown in Tbl. I in terms of the median of the jitter delay of the recorded timetags.

X. CONCLUDING REMARKS

We have given a strategy based on the twice-iterated triangle inequality for constructing
arbitrary two-party, two-settings Bell inequalities and applied it to the problem of analyzing
data from Bell trials with timetag-sequence measurement outcomes. We believe that the
strategy can be used to analyze any Bell experiment where settings are changed slowly
compared to the rate of detections. The benefit of considering all the data while the settings
are held fixed as contributing to one trial is that loopholes associated with independence
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Efficiency Uniform jitter Exponential jitter

median (ju/2) median

0.74 0.013 0.0033

0.76 0.018 0.0049

0.78 0.024 0.0070

0.80 0.031 0.0095

0.85 0.052 0.017

0.90 0.07 0.029

0.95 — 0.051

TABLE I: Lower bounds on maximum jitter at which the timetag analysis can still detect violation

of LR. The rows give the maximum median jitter at which our simulations showed a violation

as determined by the log -p-value being strictly positive. The simulation parameters other than

jitter are the same as for the other simulations. The jitter bounds are shown for the uniform and

for the exponential distribution. For ease of comparison, they are parametrized in terms of the

median delays of the recorded timetags. For low violation, unfeasibly large training and analysis

sets are required to make the violation apparent in a simulation. Thus, the entries in the table

are lower bounds on the maximum jitter at which the timetag analysis can still detect violation.

The missing entry was not computed due to excessive computational resource requirements for our

implementation.

and stability assumptions can be closed. For applications involving continuously emitting
sources, our strategy also closes any timing loopholes such as the coincidence loophole. We
explored the behavior of the timetag Bell functions in simulated data where jitter makes it
difficult to assign coincidences reliably. The simulations demonstrate the practicality of the
method and also demonstrate that the coincidence loophole can be exploited surreptitiously,
with little sign of the exploit in the statistics of the detections.
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Appendix A: Determining the violation’s nominal SNR

The trials of an experiment result in a sequence of Bell function values (bi)
N
i=1, one for each

trial. Let si be the settings of trial i and Nab the number of trials at settings ab. A standard
approach to estimating the violation is to compute the sample mean B̂ab =

∑
i:si=ab

bi/Nab

and define the estimated total violation as N
∑

ab B̂ab/4. The variance of this value can then
be estimated to first order with respect to the variance of Nab from the sample variances
of the subsequences (bi)i:si=ab. Instead of this procedure, we used a method that makes no
first-order approximations and can be meaningfully applied even if the trials’ Bell function
values Bi are not independent. We consider this method better motivated, and it gives
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results that are statistically close to those obtained by the standard approach. Here we
describe the method for the case of i.i.d. trials.

The goal is to estimate the expectation of the sum of the trials’ Bell function values and
obtain a nearly tight bound on the variance of the estimate. The method is adaptive and
applied to the analysis data given some initial training data. (Calibration data or theoretical
predictions can be used instead.) The desired expectation is B̄tot =

∑
i〈Bi〉. (Since we are

considering i.i.d. trials, the distribution of Bi is the same for all i.) Before considering the
i’th trial, we use the previous trials and the training set to obtain four unbiased estimates
B̂i,ab of 〈Bi|Si = ab〉, where Si is the settings random variable for the i’th trial. This estimate

can be obtained by any means desired. We used the formula for B̂ab given above and applied
it to the training set and the first i− 1 trials. For the i’th trial, we then define the random
variables Fi = B̂i,Si

and ∆i = Bi − Fi. Because the settings probability distribution is

known, so is the expectation of Fi: 〈Fi〉 =
∑

ab B̂i,ab/4. We then record δi = bi − fi for the
i’th trial and continue. Note that∑

i

〈Bi〉 =
∑
i

〈Bi − Fi〉+
∑
i

〈Fi〉

=
∑
i

〈∆i〉+
∑
i,ab

B̂i,ab/4. (A1)

We can therefore empirically estimate B̄tot as B̂tot =
∑

i δi+
∑

i,ab B̂i,ab/4, which ensures that

〈B̂tot〉 = B̄tot. We are considering the case of i.i.d. trials only, so v̂ =
∑

i δ
2
i is an estimate of

the variance of B̂tot that is biased high. This is because the variance of a random variable
W is the minimum of 〈(W − a)2〉 over a. Since ∆i is designed to asymptotically converge to
a zero-mean random variable, the variance estimate is asymptotically unbiased. The SNRs
for the conventional coincidence analysis and the timetag-sequence analysis shown in Figs. 5
and 6 are defined as B̂tot/

√
v̂ multiplied by the sign of the violation.

Appendix B: Determining function-tuple-based distances

For general timetag-sequence pairs, computing a CH function lf (see Eq. (12)) can be
accomplished by dynamic programming. The simplest implementation of this technique has
a quadratic time cost. For sequences such as those produced by our simulations, which are
associated with detections and coincidences generated uniformly randomly in time, this cost
can be reduced to average linear time.

Let d = (r1 ≤ . . . ≤ rm) and e = (t1 ≤ . . . ≤ tn) be timetag sequences. We wish to
determine the distance lf,ab(d, e). For this purpose, let dk = (r1, . . . , rk) and el = (t1, . . . , tl)
be their initial segments. Let c(k, l) = lf,ab(dk, el). We can determine c(k, l) inductively.
We have c(k, 0) = k and c(0, l) = 0. Suppose we have determined c(k′, l′) for k′ < k and
l′ ≤ l. Let Mk,l be the (not-yet-known) matching minimizing l(fab,M, dk, el). There are
two possibilities to consider. Either k 6∈ dom(Mk,l), in which case c(k, l) = c(k − 1, l) + 1;
or Mk,l(k) = l′ ≤ l, in which case c(k, l) = c(k − 1, l′ − 1) + fab(tl′ − rk). This reduction
works because Mk,l is monotone. Thus c(k, l) can be determined as the minimum of these
possibilities. In an algorithm, one can store the c(k, l) in an (m + 1) × (n + 1) matrix and
fill its entries in the order suggested by this inductive construction. It is possible to reduce
memory requirements by filling the matrix row by row and discarding the rows no longer
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needed. However, if it is desirable to extract the cost-minimizing matching after c(m,n) has
been determined, it helps to keep the full matrix, and work backward from the (m,n) entry
to determine which of the cases above was used when the entry encountered was computed.
The next entry as we work backwards is determined by the case used, and the relationships
in the matchings arise from the encountered entries where the second case was used.

The construction as given above can be too resource intensive for long timetag sequences.
For pairs of sequences with sufficiently low rates of timetags, a simple way to speed up the
algorithm is to break up the sequences at sufficiently large gaps and apply the algorithm
to each resulting pair of subsequences. The subsequence costs are added. To formalize this
idea, let u > 0 be such that for all x 6∈ [−u, u] and for all ab, fab(x) ≥ 1. In this case, no
pair of indices k, l with |tl − rk| ≥ u needs to be considered for matching. Break up the two
sequences into pairs of subsequences d(ki,1, ki,2) = (rki,1 ≤ . . . ≤ rki,2) and e(li,1, li,2) = (tli,1 ≤
. . . ≤ tli,2) such that max(d(ki,1, ki,2), e(li,1, li,2))+u ≤ min(d(ki+1,1, ki+1,2), e(li+1,1, li+1,2)) for
every i for which both sides of the inequality are defined. (The maximum of a collection of
sequences given as arguments to max is defined as the maximum of the set of all timetags
occurring in the arguments, and similarly for min.) The algorithm is then applied to each
corresponding pair of subsequences and the costs computed are added to determine the cost
of the original sequence.

Appendix C: Optimizing function-tuple parameters

When performing the timetag-sequence analysis on simulated data, we optimized the
parameters of the linear-edge window function-tuple using a set of training data. To simplify
the optimization, we restricted the linear-edge window functions in Eq. (11) to be reflection
symmetric around 0, so that ml = mh := m and tl,ab = th,ab := tab. We also fixed t1̄1̄ =
t1̄2̄ = t2̄1̄ := t. By definition of the linear-edge window function-tuple, t2̄2̄ = 3t, so only
the slope m and truncation point t remain to be optimized. Instead of direct optimization,
we used a simpler approximate optimization strategy based on compressing the relevant
information in the timetag sequences. This is accomplished as follows: For each pair of
training-set timetag sequences r and t at setting ab contributing to Bl, we first determine
the optimum matching M for the “compression” function-tuple fab(x) = min(λ|x|, 1). In
the simulations, λ = 1. In general, λ needs to be chosen so that the timetag differences ∆
for which the analysis function-tuple may be less than 1 satisfy fab(∆) < 1. Our choice of
λ is given by the photon-pair creation rate. But it should suffice to choose λ so that few
entangled photon pairs have recorded timetags that are separated by more than 1/λ. For
each index k of r in the domain of M , we determine the differences xk = (tM(k)− rk), where
the notation for timetags of r and t is as before. We then collect all such timetag differences
for all pairs r and t at setting ab in a single sequence yab. For the optimization, we assume
that the matchings M obtained in the construction of yab are close in cost to the optimal
matchings on the training set that would be obtained according to function-tuples with the
parameters we are optimizing. Since we are working on the training, not the analysis set,
our computations can be approximate. Given this assumption, we can use yab to compute
an approximation of the ab contribution to the Bell function Blg for a given function-tuple
g. Let Xab be the maximum number of deletions that can contribute to the ab-cost. This
is given by the sum over all timetag-sequence pairs at settings ab in the training set of the
number of timetags in the first (when ab 6= 1̄1̄) or second (when ab = 1̄1̄) timetag sequence
in each pair of sequences. Then the estimated difference between the ab-cost and Xab−|yab|



28

is given by the sum of the values of gab applied to the timetag differences in yab. (Here, |yab|
is the number of timetag differences in yab.) These sums can be computed much faster than
one can compute the exact minimum ab-cost for gab. The approximate costs are used to
optimize g, and the resulting g is subsequently used for the timetag analysis of the analysis
set. We note that the objective function in the optimization has irregularities that can result
in high sensitivity of the parameters of g to statistical noise.

Appendix D: An LR source that exploits the coincidence loophole

In this section we describe the LR source whose false violation of a Bell inequality under a
standard coincidence window analysis is shown in Fig. 6. This LR source can closely mimic
the one- and two-point statistics of a Poisson source of entangled photon pairs detected by
detectors with uniform jitter distribution of width ju ≥ 0.11.

An LR source generates four timetag sequences tXc , where X ∈ {A,B} and c ∈ {1̄, 2̄}, for
each trial. These sequences are the sequences that may be recorded by A and B depending
on their settings. After the experiment, only the two sequences corresponding to the actually
chosen settings are visible to the parties. The goal is to match the visible statistics of the
LR source to those of a Poisson source of quantum photon pairs with jitter. We consider the
uniform jitter distribution of width ju and a Poisson source whose detection statistics are
determined by the single-pair settings-conditional outcome probabilities p(oAoB|ab) and the
uniform distribution for settings. We ensure that the LR source exhibits the same marginal
detection rates p(oX |ab). But since we are interested in how readily the conventional coinci-
dence analysis can be deceived, we allow the LR source to adjust the apparent coincidence
rates. Note that the inferred coincidence rates depend on the method used to determine
coincidences. The construction of the LR source uses probabilities p′(oAoB|ab) as a tem-
plate in an attempt to deceive the experimenter into believing p′. The template satisfies
p′(oX |ab) = p(oX |ab). The apparent coincidence rates are the same except at the 2̄2̄ setting,
where we set p′(11|2̄2̄) = p(11|2̄2̄) + δc, p

′(00|2̄2̄) = p(00|2̄2̄) + δc, p
′(01|2̄2̄) = p(01|2̄2̄)− δc,

p′(10|2̄2̄) = p(10|2̄2̄) − δc, and p′ = p otherwise. The coincidence rate adjustment δc is
chosen to maximize the rate at which the LR source can successfully introduce an apparent
violating signal. For ju & 0.11, we found that it is possible to match the coincidence rates
(δc = 0).

For successful deception, the LR source’s timetag-sequence statistics should match that
of a Poisson source with template frequencies given by p′. (These frequencies account for
the photon states, source statistics and the jitter distribution.) We aimed for matching
detection rates and correlation functions. While our source does not match the correlation
functions exactly (see below), the residual correlation mismatches are sufficiently small to
either escape detection or to be hidden by the typically much larger correlation artifacts
of the same order as the jitter introduced by the detection apparatus. We also note that
in an experiment, the source and jitter distributions are not known beforehand, making a
statistical test for correlation artifacts introduced by the LR source difficult. Comparisons
of the correlation functions for ju = 0.11 are in Fig. 7. Note that the mean time separation
between 2̄2̄ coincidences seems to match that for other settings. That is, there is no tell-
tale broadening that might be expected from the earlier coincidence-loophole examples in
Sect. III.

Here is a sketch of the LR source construction. To generate LR timetag sequences ac-
cording to p′ and ju, we first decompose p′ = λlrplr + λprppr, where λlr is maximized subject
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to plr being an LR probability distribution and ppr a Popescu-Rohrlich (PR) box’s [28] prob-
ability distribution. Here, the PR box is perfectly correlated on all settings except at 2̄2̄,
where it is perfectly anti-correlated. To create an apparent PR box signal, we proceed as
follows. Let J(x, ju) be the distribution of the time separation x between pairs of initially
coincident timetags both of which are jittered uniformly with width ju. The density J(x, ju)
has a triangle shape centered at 0, supported on [−ju, ju], with J(0, ju) = 1/ju. Let pXc be
the detection rate of X at setting c. We begin by generating timetags for A at setting 2̄
at a uniform rate pA2̄ . This gives the timetag sequence tA2̄ . For each timetag t thus gen-
erated, with probability λpr/2, we wish to generate a corresponding timetag of tB2̄ that is
generally far enough from t to be missed as a coincidence by the conventional analysis and
is indistinguishable from background. The trick is to do this while preserving the ability
to generate B’s detections at setting 2̄ according to a uniform process of rate pB2̄ . A first
attempt is to generate timetags for tB2̄ so that the rate of detections at s is λprJ(s− t, 3ju)
(three times the apparent jitter width). For fixed t, the probability of at least one detection
for tB2̄ thus generated is 1− e−λpr . If there is at least one such detection, we allocate it to a
“hidden” coincidence for purposes of keeping track of the detection statistics. The hidden
coincidence will be attributed to a PR-like anticorrelation if this detection is not recognized
as a coincidence.

Note that detections generated at a uniform rate r can be realized by independently
generating detections according to rate distributions ρi where

∑
i ρi = r. Thus, if ρ1(s) =∑

t λprJ(s − t, 3ju) ≤ pB2̄ , we can generate further detections to get the desired marginal
statistics for B at setting 2̄. Actually, we need to exclude the rate of coincidences, p′(11|2̄2̄)
from pB2̄ in this inequality, because these “original” coincidences are to be added separately
later. In addition, to ensure that ρ1 is below the corrected bound pB2̄ − p

′(11|2̄2̄), we have
to deal with the problem that for nearby timetags of tA2̄ , the distributions J(s − t, 3ju)
overlap. For this purpose we made λpr = λpr(t) depend on the timetag t and used a linear
programming technique to maximize

∑
t∈tA

2̄
λpr(t) subject to the bound. The actual rate of

apparent PR boxes is affected by the result. These rates were determined by a Monte Carlo
method as a function of the jitter and matched to λpr/2 by adjusting δc as needed.

The PR boxes inserted into the timetags at setting 2̄2̄ by hiding coincidences need to be
extended to recognizable coincidences at the other settings. We first fill in these coincidences
by spreading them across the 2̄1̄, 1̄1̄ and 1̄2̄ settings at the regular jitter width ju by dividing
the hidden coincidences’ 2̄2̄ separations equally into the separations involving the timetags
at the non-2̄ settings. Extra coincidences with normal jitter width are then added to get the
desired coincidence rates at the non-2̄2̄ settings. The resulting marginal detection rates are
subtracted from the uniform rates pX1̄ and extra detections are then filled in accordingly.

While our implementation required substantial elaboration of the above outline, the suc-
cess of the strategy is witnessed by the false violation discovered by the conventional co-
incidence analysis visible in Fig. 6 and the empirical auto- and cross-correlation functions
shown in Fig. 7. The figure shows the correlation functions for an LR source that simulates
the quantum sources used for the analyses shown in Fig. 5 with ju = 0.11. In this case, the
LR source’s apparent coincidence rate at the 2̄2̄ setting matches the corresponding quantum
source’s rate. Small deviations from the quantum source’s correlation functions are visible
in the plots. In practice, such deviations are common and therefore hard to distinguish from
normal experimental artifacts. Thus, we expect that it would be difficult to find true LR
violation in the quantum data, even if its statistics cannot be exactly simulated by an LR
source. For comparison, the maximum jitter for which the timetag analysis finds a violation
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is about ju ≈ 0.06.
The estimated correlation functions shown in Fig. 7 are determined from binned data

as follows: Let r and t be two timetag sequences and wb a bin width. Let T be the total
observation period of the timetag sequences and assume that the initial time is 0. We
construct functions bs : {0, 1, . . . , N = dT/wbe} → N for s = r and s = t by defining bs(k)
to be the number of timetags s in s with kwb ≤ s < (k + 1)wb. The estimated correlation

function for r and t is defined by c(d, r, t) =
∑i+d=N

i=0 br(i)bt(i + d). (Note that we do not
normalize the correlation function.) The empirical values shown in the figure are the sample
means of the c(d, r, t) over the appropriate pairs of timetag sequences from 200000 trials.
Note that the autocorrelation functions are of the form c(d, r, r) and are symmetric about
d = 0, so only the half with d ≥ 0 is shown.

We end with a brief note on how an adversary might realize the LR model of this section.
Suppose that the adversary can surreptitiously manipulate the measurement instruments of
each party so that the polarization angles of the two settings are approximately orthogonal.
Also suppose that the true jitter of the detectors is small but the experimenter does not
realize this. In this case, for each trial, the adversary can randomly generate four timetag
sequences according to the LR model and, for each event in the timetag sequences, send a
photon at the event’s time to the appropriate party with the polarization that ensures it
is only detected at the intended setting. Because of the way that the LR model’s timetag
sequences are generated, the detections will appear to be detections from photon-pairs with
detector jitter. The manufacturer of the measurement instruments can build-in the features
that the adversary needs to exploit in this scenario. It is therefore unlikely that a protocol
relying on a conventional coincidence analysis can achieve device-independent security. We
leave open the question of whether an LR model based on our techniques can be realized by
an adversary who can control only the source, when the characteristics of the measurement
instruments are fixed and known to the experimenter.
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FIG. 7: Auto- (ACF) and cross-correlation functions (CCF) (unnormalized) for LR-generated

timetag data. Each subfigure is labeled with the measurement setting(s) used to record the timetag

data. The points with error bars show estimated correlation function values and their associated

approximate 68 % confidence intervals for the LR timetag data determined from 200000 trials. The

LR source was designed to match timetag data from the quantum source with an efficiency η = 0.8

and uniform jitter ju = 0.11 that was used for the results shown in Fig. 5. The continuous curves

are the corresponding theoretical correlation functions for the quantum source. See the text for

the definition of correlation functions used here. The bin width is wb = ju/4. The “lag” is defined

as d ∗ wb.
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