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In this work we consider the dynamics of two tunnel coupled chains after a quench in the tunneling
strength is performed and the two systems are let evolve independently. We describe the form of
the initial state comparing with previous results concerning the dynamics after the splitting of a
one-dimensional gas of bosons into two phase coherent systems. We compute different correlation
functions, among which those that are relevant for interference measurements, and discuss the
emergence of effective temperatures also in connection with previous works.

I. Introduction

The study of the non-equilibrium dynamics in closed
quantum systems is a theoretical challenge that has been
posed long time ago [1–4] and it is now receiving enor-
mous interest thanks to the possibility of exploring this
regime in the laboratories, in particular in cold atomic
experiments [5]. These experiments allow one to access
the intrinsic quantum many-body dynamics of the system
without dissipation and in a controllable manner. Indeed,
in this set up the system can be driven out-of-equilibrium
by a sudden change of the interaction strength among the
atoms or of the confining potential. Among others, one
of the central questions in the field concerns the under-
standing of the relaxation of the system and the possi-
bility to describe the final state as a thermal one with a
well-defined effective temperature [4, 6].

In this respect, thanks to their analytical tractabil-
ity, one dimensional systems have been discussed quite
extensively and have shown, in particular for integrable
models, to lack equilibration to a Gibbs ensemble [7–12].
In many cases in fact correlation functions long after a
quench in integrable models have been found compatible
with a generalized Gibbs ensemble where many temper-
atures, one for each integral of motion, are introduced.
Very recently generalized Gibbs ensembles have been ob-
served experimentally [13]. Besides the characterization
of the stationary regime, the relaxation of these systems
has triggered lot of attention both theoretically [14, 15]
and experimentally [15, 16] and it has been shown to oc-
cur via a light-cone dynamics that emerges thanks to the
finite velocity of propagation of quasiparticles [14–16].

Remarkable setups to explore these questions of out
of equilibrium phyisics have been provided by atom-
chips experiments [13, 16–19] where one dimensional sys-
tems can be realized. In such experiments a one dimen-
sional gas of bosons is split coherently into two systems
by growing a potential barrier along the longitudinal
axes [16, 18, 19].

Coupled with theoretical analysis [16, 19–21] this study
revealed that, depending on the splitting process, the dy-
namics proceeds via a prethermalized state, which shows
certain equilibrium-like correlation functions despite be-
ing a non-equilibrium state. In particular, it was found
that despite the integrability of the model under study,

the system and its correlation functions are well described
by thermal ones, with an effective temperature that is in-
dependent of the initial temperature of the system.

However, while the Hamiltonian dynamics after the
splitting is well defined, more difficult is the description
of the initial state as prepared in the process of splitting.
In particular different splitting process give rise to cor-
relation functions that are better described by a many
temperature scenario [13].

In this paper we examine a related model in which a
similar analysis can be done in a controlled manner using
Luttinger liquid theory. We look at the dynamics of two
chains of bosonic particles that are equilibrated with a
large finite coupling between the two chains and that
are subsequently let evolve independently. This type of
protocol can be performed with cold atoms, for instance
in optical lattices where ladders have been realized [22].

In particular in precedent works on the splitting of the
gas [19, 20, 23] the initial state was taken as a Gaussian
squeezed state. This form of the initial state was justified
by the fact of recovering certain correlation functions at
time t = 0. In this work we give an alternative and more
microscopic justification to the squeezed form and at the
same time we discuss some differences found between the
state that was used in [19, 20, 23] and the one that we
derive in this work.

Moreover we also analyze the relaxation of the system
from the time dependent to the stationary state and we
discuss the possibility to define an effective temperature
long after the quench, by inspecting several correlation
functions.

The paper is organized as follows: in section II we
introduce the model under study and the way it is ana-
lytically treated; in section III A we discuss the form of
the initial state considered in previous works focussing
on the splitting of the condensate, in section III B we
describe the initial state that is recovered considering a
quench of the tunneling term between the two chains and
in section III C we discuss the comparison between the
two forms; in section IV we discuss the occupation of the
modes after the quench; in section V we derive the cor-
relation functions which are relevant for interference ex-
periments and in section VI we compute correlation func-
tions associated to the density and the current. Finally
in section VII we discuss our results and section VIII
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summarizes the work giving some perspectives.

II. Interacting condensates: quadratic
approximation

The system is prepared as two tunnel coupled one-
dimensional chains. The Hamiltonian of the two systems
at time t = 0 is well described within the Luttinger liquid
theory by [24]:

H1+2 = H1
LL+H2

LL−
t⊥
2π

∫
dx 2 cos(θ2(x)−θ1(x)) . (1)

Here Hα
LL is the Luttinger liquid Hamiltonian describing

each chain α = 1, 2:

Hα
LL =

~u
2

∫
dx
[ K
π

[∇θα(x)]2 +
π

K
[nα(x)]2

]
. (2)

K is the Luttinger parameter and u the sound velocity.
The effects of interactions are hidden in those two pa-
rameters. In the weakly interacting regime the Luttinger

parameter is K = ~π
√

ρ
mg in terms of the microscopic

parameters of the gas, where g is the effective interac-
tion constant and ρ the density. The hard core limit is
instead achieved for K = 1. The sound velocity is given
by u = ~πρ/mK and therefore u =

√
ρg
m in the weakly

interacting regime. The operators θα(x) and nα(x) rep-
resenting respectively the phase of the bosonic field and
the fluctuation of its density in the system α = 1, 2 are
canonically conjugated: [nα(x), θβ(x′)] = iδ(x − x′)δα,β .
The cosine term originates from the tunneling opera-

tor ψ†1(x)ψ2(x) + h.c. = 2 ρ cos(θ2(x)− θ1(x)), where we

used that ψα(x) ' √ρ eiθα(x). Therefore one can set
t⊥ = ~ Jρ.

The dynamics of this system can be studied by intro-
ducing symmetric and antisymmetric variables θA/S =
θ1 ∓ θ2 and nA/S = (n1 ∓ n2)/2. Indeed under the as-
sumption that the two systems are identical, symmetric
and antisymmetric modes decouple and in terms of those
variables one has H = HS

LL + HA
SG with HA

SG the Sine-
Gordon Hamiltonian for the antisymmetric modes:

HA
SG =

~u
2

∫
dx
[ K
π

[∇θA(x)]2 +
π

K
[nA(x)]2

]
− t⊥

2π

∫
dx 2 cos θA(x) ,

(3)

where K = K/2. In the following we will focus only on
the antisymmetric part of H.

A limit which is particularly relevant for the next dis-
cussion is the case of t⊥ = 0 when HA

SG reduces to the
Luttinger liquid Hamiltonian which in its diagonal form
reads:

HA
LL =

∑
p 6=0

~u|p|b†pbp +
~uπ
2K

n2
0 , (4)

made of non interacting sound wave modes. In order to
obtain (4) we have expanded the fields nA(x) and θA(x)
over the bosonic operators that diagonalize HA

LL:

θA(x) =
i√
L

∑
p 6=0

e−ipxe−α
2p2/2

√
π

2K|p|
(b†p − b−p)

+
1√
L
θ0

(5)

nA(x) =
1√
L

∑
p 6=0

e−ipxe−α
2p2/2

√
|p|K
2π

(b†p + b−p)

+
1√
L
n0 .

(6)

where α is a cutoff regularizing the integrals.
We treat the cosine term in (3) for t⊥ 6= 0 by mak-

ing a semiclassical expansion in θA around its minimum
θA(x) = 0. This approximation greatly simplifies the
problem, turning the Hamiltonian into a quadratic one.
Indeed, under these conditions, the Hamiltonian reads
(up to irrelevant constants):

HA
SC =

u~
2

∫
dx
[ K
π

[∇θA(x)]2 +
π

K
[nA(x)]2

]
+
t⊥
2π

∫
dx(θA(x))2 .

(7)

Such semiclassical expansion is well adapted when K is
very large, as in the experiments [19]. In order to di-
agonalize the Hamiltonian HA

SC (7) for generic t⊥ we
note that under the quadratic approximation all p-modes
are decoupled. The Hamiltonian (7) is made diago-
nal through the following transformation involving the
bosonic modes with p 6= 0:

η†p = coshϕpb
†
p − sinhϕpb−p

η−p = coshϕpb−p − sinhϕpb
†
p .

(8)

The operators {ηp, η†p} satisfy canonical bosonic commu-
tation relations and ϕp = ϕ−p is fixed by the condition:

tanh 2ϕp =
t⊥

t⊥ + 2K~u|p|2
ϕp =

1

2
log

ωp
u|p|

, (9)

with ωp =
√

(~up)2 + t⊥~u
K =

√
(~up)2 +m2, where we

set m2 ≡ ~ut⊥
K

. The p = 0 component of the Hamilto-

nian is made diagonal by the transformation:

η†p=0 =
1√
2

(
n0√
w
− i
√
w θ0) (10)

with w = mK
~uπ . With these transformations the Hamilto-

nian becomes:

HA
SC =

∑
p

~ωpη†pηp . (11)

With respect to the Luttinger liquid Hamiltonian we see
that the interaction t⊥ in (11) opens a gap and turns the
spectrum ωp at small p into a quadratic one.
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III. Initial state

A. Phenomenological derivation

As we mentioned in the introduction the theoretical
framework of the previous section, and in particular the
dynamics at t⊥ = 0, is relevant to be compared with
the description of experiments where a single gas is split
into two gases which are let evolve independently. In the
literature the initial state after the splitting of the system
is taken of the following form [19, 20]:

|ψ̃0〉 =
1

N
exp

[∑
p>0

W̃pb
†
pb
†
−p

]
|0〉|ψ̃p=0〉 (12)

and W̃p =
1− α̃p
1 + α̃p

, α̃p =
|p|K
πρ

, 〈n0|ψ̃p=0〉 = e−
1
2ρn

2
0 .

Here K is the Luttinger parameter and ρ the density. N
is the normalization of the state N =

∏
p>0(1−W̃ 2

p )−1/2.
This form of the initial state is taken to reproduce the
following correlation functions:

〈nA(p)nA(p′)〉(t = 0) =
ρ

2
δ−p,p′ ,

〈θA(p)θA(p′)〉(t = 0) =
1

2ρ
δ−p,p′ ,

(13)

resulting in local correlations in real space
〈nA(x)nA(x′)〉(t = 0) = ρ

2 δ(x − x
′). These correlation

functions should be considered with the delta function
smeared over the healing length scale ξh = ~u/gρ. This
form of state is chosen assuming that the splitting leads
to a random process where particles can go either left or
right with equal probability. In the limit of large number
of particles this process results in a Gaussian distribution
of particle number difference where density fluctuations
after the splitting are chosen to be proportional to the
density itself. The strength of phase fluctuations follows
considering the state as a minimum uncertainty state.
In the following we will give a different explanation of
how a state of the form (12) should be expected. The

analogous coefficient W̃p will be slightly different.

B. Quench in t⊥

In this section we take as initial state the one resulting
from a sudden quench of t⊥. This means that we assume
that the initial state is prepared equilibrating the system
in the ground state of the Hamiltonian (7) at large t⊥ and
then suddenly change t⊥ of a finite amount. In particular
we will compare this result with the one of the previous
section in the case where the dynamics is driven with
t⊥ = 0. Hereafter we will set ~ = 1. A similar situation
concerning a quench of the mass in a bosonic field theory
was considered in [25–27].

The Hamiltonian at time t = 0 is associated with a
bosonic operator η0

p such that the initial state is the vac-

uum of this operator η0
p|ψ0〉 = 0.

One can show that in terms of the bosonic operators
b†p, bp diagonalizing the Hamiltonian (7) with t⊥ = 0 the
initial state has a squeezed form of the type (12):

|ψ0〉 =
1

N
exp

[∑
p>0

Wpb
†
pb
†
−p

]
|0〉|ψp=0〉 , (14)

where the coefficients Wp are now different from (12).
Indeed, one can compute the action of the operator η0

p

over a state with a squeezed form as in (14), after per-
forming a Bogoliubov transformation as in (8). Taking
|ψ0〉 as in (14) and considering p 6= 0 one obtains:

η0
p|ψ0〉 =

(
coshϕ0

pbp − sinhϕ0
pb
†
−p

)
|ψ0〉

= coshϕ0
pWpb

†
−p|ψ0〉 − sinhϕ0

pb
†
−p|ψ0〉 .

(15)

Imposing η0
p|ψ0〉 = 0 one finds Wp = tanhϕ0

p =
1−αp
1+αp

=

1−u|p|
ω0
p

1+
u|p|
ω0
p

. This form of squeezed state was also found in [26].

The component p = 0 can be written as |ψp=0〉 ∝ e−
n2
0

2w |0〉
with θ0|0〉 = 0. In fact

η0
p=0|ψp=0〉 =

1√
2

(
n0√
w

+ i
√
w θ0)|ψp=0〉 = 0 (16)

where we used [θ0, n0] = −i and [θ0, f(n0)] =
[θ0, n0]f ′(n0).

C. Comparison of the two forms

Let us now compare the results of the phenomenologi-
cal derivation (12) with our ladder case (14). Considering

the values given after (12) one has to compare αp = u|p|
ω0
p

with α̃p = |p|K
πρ .

The two expressions present points of similarity and
of difference. Indeed, to go from one to the other one
has to change ω0

p →
πρu
K . In the limit of non-zero tun-

neling (which is the case for our initial state) and small

momenta one can approximate ω0
p ' m0 =

√
J0ρu
K

This calculation shows that a quench in t⊥ would lead to

a state with a squeezed form in b†pb
†
−p and the coefficients

that agree with the one used in (12) in the limit of small
momenta for what concerns the dependence in p but not
in the coefficient of proportionality.

IV. Effective temperature

It has been shown that the state (12) leads to corre-
lation functions that are well described by an effective
temperature Teff = πuρ

4K [19, 21].
In order to see the differences in the effective temper-

ature that emerges between |ψ̃0〉 in (12) and |ψ0〉 in (14)
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FIG. 1. Schematic figure representing the quench from high
to low tunnel-coupled systems. The two states are character-
ized respectively by a given tunneling strength t0⊥ and t⊥ and
Bogolioubov angles ϕ0

k and ϕk.

we now consider a quench from the squeezed state char-
acterized by ϕ0

p towards a situation where the barrier is
higher and the bosonic operator are associated with an
angle ϕp (see Fig, 1). The case of independent systems
and thus of infinite barrier corresponds to ϕp = 0. The
mapping between the operators diagonalizing the pre and
post quench Hamiltonian reads as follows:

ηp = cosh
(
ϕp − ϕ0

p

)
η0
p − sinh

(
ϕp − ϕ0

p

)
η0†
−p (17)

We note that:

∆p

2
= ϕp − ϕ0

p =
1

2
log

ωp
ω0
p

(18)

and the occupation of the modes reads:

cotanh
βeff(p)ωp

2
= 2〈η†pηp〉+ 1 =

1

2

(ωp
ω0
p

+
ω0
p

ωp

)
= cosh ∆p ,

(19)

which is the analogue of the formulas derived within other
quenches and quadratic models [9, 28]. This leads to p-
dependent effective temperatures:

βeff(p) =
1

ωp
log

cosh ∆p + 1

cosh ∆p − 1
=

2

ωp
log

ωp + ω0
p

|ωp − ω0
p|

(20)

as found in [29]. If one takes the limit of small mo-
menta and assume that m0 � m this formula gives

Teff = m0

4 = 1
4

√
J0uρ
K . One should therefore compare

this temperature with the one found in [19, 20] which

is T̃eff = πuρ
4K . Clearly, the two formulas show different

dependences on the density, the sound velocity and the
Luttinger parameter.

V. Dynamics of the phase

In the following we focus on the dynamics after the
quench of t⊥ and consider correlation functions that
are relevant for interference experiments. We define

np =
√
|p|K
2π (b†p + b−p) and θp = i

√
π

2K|p| (b
†
p − b−p). Un-

der the quench protocol described in the previous section
correlation functions at time t = 0 have the following
form:

〈ψ0|npnp′ |ψ0〉(t = 0) = δp′,−p
K

2πu
ω0
p

〈ψ0|θpθp′ |ψ0〉(t = 0) = δp′,−p
πu

2K

1

ω0
p

.
(21)

We consider the dynamics of the system when t⊥ = 0
and the two condensates evolve independently.

From the interference one is able to extract the follow-
ing correlation functions [16, 19, 30]:

Cθ(x, t) =
〈ψ1(x)ψ†2(x)ψ†1(0)ψ2(0)〉
〈|ψ1(x)|2〉〈|ψ2(x)|2〉

(22)

which involves the relative phase between the two con-
densate and reads:

Cθ(x, t) = 〈ei[θA(x,t)−θA(0,t)]〉 = e−
1
2 〈[θA(x,t)−θA(0,t)]2〉

(23)
where:

〈[θA(x, t)− θA(0, t)]2〉 =
1

π

∫
dp (1− cos px)e−α

2p2×

×
[

sin2(u|p|t) π2

K2p2
〈|np|2〉(0) + cos2(u|p|t) 〈|θp|2〉(0)

]
,

(24)
and α is a small cutoff regularizing the integral. In the
upper panel of Fig. 2 we show the correlation function
(23) as a function of space for four different times and
the stationary limit. The lower panel shows the same
correlation function as a function of time for three differ-
ent space differences.

The stationary limit of this correlation function reads:

lim
t→∞
〈[θA(x, t)− θA(0, t)]2〉 =

1

2πK

∫
dp (1− cos px)e−α

2p2
[ π
p2

1

2u

√
m2

0 + (up)2 +
πu

2

1√
m2

0 + (up)2

]
=

1

K

∫ ∞
0

dp (1− cos px)e−α
2p2 1

p
cosh ∆p ,

(25)

and it turns out to be different from the thermal equi- librium correlation function. Yet if m0α/u � 1 one can
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expand and obtain:

lim
t→∞
〈[θA(x, t)− θA(0, t)]2〉 ' 1

K

∫ ∞
0

dp (1− cos px)×

×e−α
2p2 m0

2up2

xm0/u�1
' πm0x

4uK
.

(26)
This asymptotic form should be compared with the equi-
librium:

〈[θA(x)− θA(0)]2〉Teff
=

1

K

∫ ∞
0

dp (1− cos px)e−α
2p2×

×1

p
cotanh

( u|p|
2Teff

)
' 1

K

∫ ∞
0

dp (1− cos px)e−α
2p2 2Teff

up2

(27)
recovering Teff = m0

4 . In the upper panel of Fig. 3
we show the asymptotic correlation function Cθ(x, t →
∞) = exp(− 1

2 limt→∞〈[θA(x, t) − θA(0, t)]2〉) as given in
(25) with a black line and the thermal one with Teff = m0

4
in blue. The two lines overlap remarkably and look in-
distinguishable.

VI. Dynamics of the density and current

In this section we consider the dynamics of the relative
density and current. The density can be experimentally
recovered by taking images of the two systems. We con-
sider again the dynamics at t⊥ = 0 which results in the
following correlation function:

Cn(x, t) = 〈nA(x, t)nA(0, t)〉 =
K

4π2

∫
dp eipx e−α

2p2×

×
[

sin2 ωpt
p2u

ω0
p

+ cos2 ωpt
ω0
p

u

]
.

(28)
The stationary value of this correlation function turns
out to be:

Cn(x, t→∞) =
K

4π2

∫
dp eipx e−α

2p2 1

2

[p2u

ω0
p

+
ω0
p

u

]
=

K

4π2

∫
dp eipx e−α

2p2 |p| cosh ∆p .

(29)
In the upper panel of Fig. 4 we show the correlation func-
tion Cn(x, t), as a function of the space distance for differ-
ent times together with the asymptotic stationary result.
From the plot one sees that for sufficiently large times
(e.g. tm0 = 2, 3, 6) the dynamical curves follow the sta-
tionary limit up to a distance that grows with time and
then departs from it.

time

0

0.2

0.4

0.6

0.8

1

C
θ
(x

,t
)

0 2 4 6 8 10
xm0

space

0

0.2

0.4

0.6

0.8

1

C
θ
(x

,t
)

0 2 4 6 8 10
tm0

FIG. 2. Correlation functions Cθ(x, t) (23), for different time
and length scales. Here K = 1, u = 1 and αm0 = 1. Up-
per panel: Cθ(x, t) as a function of the space distance for
four different times tm0 = 0.1, 1, 2, 3 shown, from top to bot-
tom, respectively with green, blue, red and yellow lines. The
black envelope is the asymptotic stationary correlation func-
tion. Lower panel: Cθ(x, t) as a function of the time, for
three different space distances xm0 = 1, 3, 5 shown respec-
tively with solid, dashed and dotted-dashed lines.

The equilibrium correlation function is given by:

〈nA(x)nA(0)〉Teff
=

K

4π2

∫
dp eipx e−α

2p2 |p|×

×cotanh

(
ωp

2Teff

)
.

(30)

In the lower panel of Fig. 3 we show the asymptotic cor-
relation function for the relative density (29) with a black
line and the same correlation function at thermal equi-
librium (30) at Teff = m0

4 with a blue line. Also in this
case the two functions are not the same but numerically
they look indistinguishable showing that for all practi-
cal purposes this state can be considered as a thermal
“equilibrium” state.

It is natural to compare the correlation functions of
the density with the ones involving the current jA(x) =
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t →∞
Teff

0

0.2

0.4

0.6

0.8

1
C
θ
(x

,t
)

0 2 4 6 8 10
xm0

t →∞
Teff

−0.01

0.01

0.03

0.05

C
n
(x

,t
)

0 2 4 6 8 10
xm0

FIG. 3. Upper panel: asymptotic correlation functions
Cθ(x, t → ∞) = exp(− 1

2
limt→∞〈[θA(x, t) − θA(0, t)]2〉) with

limt→∞〈[θA(x, t)− θA(0, t)]2〉 given in (25) and thermal cor-
relation function Cθ(x) = exp(− 1

2
〈[θA(x)− θA(0)]2〉Teff ) with

〈[θA(x)−θA(0)]2〉Teff given in (27) shown with black and blue
lines respectively. Lower panel: asymptotic correlation func-
tion of the relative density (29) (black line) compared with
the equilibrium one (30) (blue line). In both plots αm0 = 1,
K = 1, u = 1 and Teff = m0

4
. In both cases the two curves

look indistinguishable.

− 1
π∇θA(x). The corresponding correlation function

reads:

Cj(x, t) = 〈jA(x)jA(0)〉 =
1

4π2K

∫
dp eipx e−α

2p2×

×
[

sin2 ωpt
ω0
p

u
+ cos2 ωpt

u p2

ω0
p

]
(31)

The stationary limit of (31) is the same as (29) with the
substitution K → K−1. The same substitution gives the
equilibrium correlation function associated to the current
from (30). In the lower panel of Fig. 4 we show the
correlation functions Cj(x, t) as a function of the space
for different times. The black solid line is the asymptotic
result in the stationary limit.

tm0=1
tm0=2
tm0=3
tm0=6
tm0→∞

−0.01

0.01

0.03

0.05

0.07

C
n
(x

,t
)

0 2 4 6 8 10
xm0

tm0=1
tm0=2
tm0=3
tm0=6
tm0→∞

−0.01

0.01

0.03

0.05

0.07

C
j(

x,
t)

0 2 4 6 8 10
xm0

FIG. 4. Correlation functions of the density Cn(x, t) (upper
panel) and of the current Cj(x, t) (lower panel) as a function
of the space distance for different times. Times tm0 = 1, 2, 3, 6
are shown respectively with blue long dash dotted, red dash
dotted, green dashed and yellow dotted lines. In both plots
the black solid line is the asymptotic result in the stationary
limit. In both figures we set αm0 = 1, K = 1 and u = 1.
For the parameters used here the stationary curves in the two
plots are the same.

VII. Discussions

Let us now discuss some aspects of the results obtained
in the previous sections and the model we have used to
obtain them.

First we note that our results were obtained in the ap-
proximations of a quadratic expansion of the cosine term
that encodes the interaction between the two condensates
around the minimum θA = 0. Such an approximation is
expected to work better in the weakly interacting regime
(which is the one realized in [16, 18, 19]) where the cosine
term is very relevant.

Under these assumptions we have shown that the form
of the initial state is that of a squeezed state in terms
of the operators that diagonalize the final Hamiltonian
at t⊥ = 0. This form is qualitatively the same as the
one derived in [19, 20, 23] in order to describe the state
obtained from the splitting of a one dimensional gas into
two phase-coherent systems [16, 18, 19]. The coefficients
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appearing in the squeezed form are nonetheless different
and give raise to some differences in the physical quanti-
ties, as explained below.

Besides the characterization of the initial state, we
have computed the correlation functions of the relative
phase between the two systems, correlations that are rel-
evant for interference experiments. From Fig. 2 one sees
that these correlations initially show long range order
at large distances, implying high interference contrast,
and the value attained at large distances decays with
time. In comparison with the correlation functions com-
puted in [16] the qualitative form is similar with the ap-
pearance of a light cone that separates the length scales
into a region of short distances growing with time where
the correlation functions have relaxed and a region of
larger distances that keeps track of the initial correlation.
This light cone scenario has been observed also in other
works [9, 14, 15, 31] and it is justified with the creation
at time t = 0 of elementary excitations that propagate
in opposite direction and with finite velocity. In the case
of t⊥ = 0 the spectrum is linear and all quasi-particles
move coherently with the same group velocity and two
points at a given distance will equilibrate only when such
quasi-particles have the time to travel along that length
scale.

In addition to the correlation functions associated to
the relative phase we have computed the evolution of the
correlation functions describing the relative density and
current (see Fig. 4, upper and lower panel respectively).
These correlation functions do not show a clear light cone
dynamics as for the relative phase, however, in a similar
way, at large times the dynamical curves stay close to
the asymptotic stationary line up to distances that grow
with time.

For all phase, density and current correlation functions
we have considered the limit of long times when they all
become stationary. In this limit the analytical form of
correlation functions is not compatible with that at ther-
mal equilibrium, which is not surprising in view of the
integrability of the dynamics and the Gaussian form of
the initial state here considered. Nonetheless, numeri-
cally, stationary and thermal correlation functions are in
remarkable agreement, so that experimentally one should
not be able to distinguish between the two. The thermal
correlation functions that we have considered are associ-

ated with an effective temperature Teff = m0

4 = 1
4

√
J0ρu
K ,

where m0 is the gap characterizing the spectrum before
the quench, J0 is the amplitude of the initial tunneling,
ρ the density, u the speed of sound and K le Luttinger
parameter.

The agreement between the curves obtained as the sta-
tionary limit of the non-equilibrium process and the ones
drawn with the effective temperature Teff = m0

4 can be
justified if one develops the asymptotic form of correla-
tion functions at large m0α

u , where α is the cut-off, and
develops the equilibrium correlation functions at large
temperatures. However numerically one sees that the
agreement is good also at small values of m0α

u .

Moreover we note that that if one assigns a different
temperature to each mode by requiring the conservation
of their occupation numbers, as in (20), the tempera-
ture Teff = m0

4 is the one associated with the low energy
modes.

Such an effective temperature, obtained within our
quench protocol, should be contrasted with the one that
it is found with the initial state describing the splitting
process T̃eff = πuρ

4K [19]. The two expressions clearly indi-
cate a different dependence in the density. In particular,
in the weakly interacting regime where u

K is independent
of the density, the two procedures give raise respectively
to a temperature that goes with Teff ∝

√
ρ and one that

is linear in the density T̃eff ∝ ρ.
As we mentioned in the introduction, this quench pro-

tocol can be implemented experimentally, as ladders have
already been realized [22]. The same theoretical descrip-
tion can be applied to describe atom-chip experiments,
once two one dimensional gases are equilibrated with a
finite barrier which is subsequently increased in order to
suppress the tunneling between the two. In both cases
the effective temperature could be extracted from the de-
cay of the correlation functions sufficiently long after the
quench.

It would be therefore interesting to compare the results
obtained for the effective temperature in the splitting
process with the ones of the quench that we propose.

VIII. Conclusions

In this work we have considered two chains that are
tunnel coupled through an interaction parameter t⊥
which, at time t = 0, is suddenly set to zero. We have
shown that the form of the state after the quench is that
of a squeezed state, similar (but not equal) to what was
assumed in [19, 20] from phenomenological arguments.

We have computed the correlation functions of the rel-
ative phase which are directly probed in interference ex-
periments and the correlation functions of the relative
density and current. For all of them we have extracted
their asymptotic form as obtained at large times. We
have shown that the stationary correlations are formally
not compatible with the ones derived at thermal equilib-
rium. Nonetheless numerically all correlation functions
in the stationary state and those at thermal equilibrium
are in striking agreement. The effective temperature with
which these correlation functions are compared is quite
different from the one derived in [16, 19, 20]. In our
quench it is associated with the mass of the initial Hamil-
tonian and depends on the squared root of the density
while the effective temperature found in [16, 19, 20] is
linear in the density.

In view of this difference it would be interesting to
compare the effective temperature that is found after the
splitting of the condensate with the one that one recovers
considering the quench suggested in this work.

As a future work, it would be interesting to study the
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effect of the initial temperature on the subsequent dy-
namics, by considering as initial state a density matrix
instead of the ground state of the Hamiltonian for some
t⊥. In fact, in [16, 19, 20] it was found that the effec-
tive temperature is insensitive to the temperature of the
system before the splitting and it would be worth inves-
tigating up to which extent this property carries over in
our quench protocol.
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