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Fermionic superfluidity in atomic Fermi gases across a Feshbach resonance is normally described by the

atom-molecule theory which treats the closed channel as a noninteracting point boson. In this work we present

a theoretical description of the resonant superfluidity in analogy to the two-band superconductors. We employ

the underlying two-channel scattering model of Feshbach resonance where the closed channel is treated as

a composite boson with binding energy ε0 and the resonance is triggered by the microscopic inter-channel

coupling U12. The binding energy ε0 naturally serves as an energy scale of the system, which has been sent to

infinity in the atom-molecule theory. We show that the atom-molecule theory can be viewed as a leading-order

low-energy effective theory of the underlying fermionic theory in the limit ε0 →∞ and U12 → 0 while keeping

the phenomenological atom-molecule coupling finite. The resulting two-band description of the superfluid

state is in analogy to the BCS theory of two-band superconductors. In the dilute limit ε0 → ∞, the two-band

description recovers precisely the atom-molecule theory. The two-band theory provides a natural approach to

study the corrections because of a finite binding energy ε0 in realistic experimental systems. For broad and

moderate resonances, the correction is not important for current experimental densities. However, for extremely

narrow resonance, we find that the correction becomes significant. The finite binding energy correction could be

important for the stability of homogeneous polarized superfluid against phase separation in imbalanced Fermi

gases across a narrow Feshbach resonance.

PACS numbers: 03.75.Ss, 05.30.Fk, 67.85.Lm, 74.20.Fg

I. INTRODUCTION

It is widely accepted that a crossover from the Bardeen-

Cooper-Schrieffer (BCS) superfluidity to the Bose-Einstein

condensation (BEC) of molecules can be realized in an attrac-

tive Fermi gas by tuning the attraction from weak to strong

[1]. This interesting phenomenon has been experimentally

observed in ultracold Fermi gases of Alkali-metal atoms [2]

(such as 6Li and 40K). In these experiments, the attractive

strength is effectively tuned by means of the Feshbach reso-

nances (FR). The basic mechanism of the FR is the coupling

between different scattering channels in Alkali-metal atoms in

a magnetic field [3, 4].

The scattering channels of the Alkali-metal atoms are char-

acterized by the eigenstates of the single particle hyperfine

Hamiltonian in a magnetic field B. The main contribution to

the atom-atom interaction is the electrostatic central poten-

tial which also induces the couplings among different scatter-

ing channels. Because of these inter-channel coupling, a FR

occurs when the bound state level of a certain closed chan-

nel coincides with the threshold of a certain open channel. A

schematic plot for this mechanism is shown in Fig. 1. In the

vicinity of an s-wave FR, the low-energy scattering amplitude

for the open channel is given by

f (p) =
1

p cot δ(p) − ip
, (1)

where the scattering phase shift can be well parameterized as

[3, 4]

p cot δ(p) = − 1

abg

E − γ(B − B0)

E − γ(B − B0) + γB∆
. (2)

Here E = p2/M is the scattering energy with M being the

atom mass, B0 is the resonance point, B∆ is the resonance

width, γ is the difference of the magnetic moments between

the two-channels, and abg is the background scattering length.

The units ~ = kB = 1 will be used throughout. The magnetic

detuning δ(B) = γ(B − B0) then tunes the effective scattering

length of the open channel. Near the FR, p cot δ(p) can be

expanded as

p cot δ(p) ≃ − 1

aeff

+
1

2
reff p2

+ · · · (3)

with an effective scattering length

aeff = abg

(

1 − B∆

B − B0

)

(4)

and a negative effective range

reff = −
2

MabgγB∆
(5)

For many-body system with total density n, we normally de-

fine a Fermi wavevector kF = (3π2n)1/3 and corresponding

Fermi energy εF = k2
F
/(2M). So far most of the experimen-

tal studies focus on broad resonances where kF|reff | ≪ 1. In

this case, the many-body physics near the FR is universal and

can be well described by a single-channel model. The uni-

versal many body physics can be obtained from Monte Carlo

simulations [5] by using any short-ranged potential with the

same scattering length aeff and negligible effective range. Re-

cently, resonantly interacting Fermi gas with a large effective

range has been experimentally realized by using the narrow

resonance of 6Li at B ≃ 543.3G [6]

For general resonances, a popular effective model is the

atom-molecule model [7–10] which precisely reproduces the

low energy scattering amplitude parameterized by (2). The
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FIG. 1: (Color-online) A schematic plot for the mechanism of Fes-

hbach resonance. The red and blue solid lines show the potential

energy (in proper units) as a function of the distance (in proper units)

for the closed and open channels, respectively. The red and blue

dashed lines show the scattering thresholds for the closed and open

channels, respectively. The closed channel has a bound state with

binding energy ε0. This bound state level can be tuned by changing

the magnetic field. When it coincides with the scattering threshold

of the open channel, a Feshbach resonance occurs.

model Hamiltonian can be written as

H = Hf + Hb + Hfb, (6)

where the atom part

Hf =

∑

σ=↑,↓

∫

d3rψ†σ

(

− ∇
2

2M

)

ψσ + u0

∫

d3rψ
†
↑ψ
†
↓ψ↓ψ↑, (7)

the molecule part

Hb =

∫

d3rφ†m

(

− ∇
2

4M
+ δ0

)

φm, (8)

and the atom-molecule coupling part

Hbf = g0

∫

d3r
(

φ†mψ↓ψ↑ + φmψ
†
↑ψ
†
↓

)

. (9)

Here ψσ denotes the open-channel fermions and φm denotes

the closed-channel molecules. The couplings g0, u0 and the

detuning δ0 are bare quantities. They should be renormalized

by using the physical background scattering length abg, reso-

nance width B∆, and detuning δ = γ(B − B0). In this model,

the closed channel is treated as a point boson and the FR is

triggered by the atom-molecule coupling g0.

Another idea to study the narrow resonance is to use a well

plus barrier potential [11] which can reproduce a large and

negative effective range. However, it is essentially a single-

channel model which lacks the information of the closed chan-

nel. Actually, it has been shown that the closed channel dom-

inates in the narrow resonance limit [10]. In this paper, we go

back to the underlying two-channel Hamiltonian which treats

both the open and closed channels as fermions [12]. We will

show the (renormalized) atom-molecule coupling g is related

to the underlying inter-channel coupling U12 and the closed-

channel binding energy ε0 through

g = U12

√

(Mε0)3/2

2π
. (10)

The binding energy ε0 of the closed-channel bound state,

which serves as a natural energy scale of the system, is auto-

matically sent to infinity in the atom-molecule model. We will

show explicitly that the atom-molecule model can be viewed

as a low-energy effective theory of the underlying two-channel

theory in the limit ε0 → ∞ and U12 → 0 while keeping g

finite. For many-body physics, the resonant Fermi gas can

be viewed as a two-band superfluid with a large band offset

ε0. Therefore, the underlying two-channel Hamiltonian will

be referred to as a two-band model in this paper. In the di-

lute limit εF/ε0 → 0, the prediction of the many-body physics

becomes essentially the same as the atom-molecule model.

However, in realistic experimental systems, the ratio εF/ε0 is

small but finite. For broad and moderate resonances, the cor-

rection due to nonvanishing εF/ε0 is not important. However,

for extremely narrow resonance, this correction becomes sig-

nificant.

The paper is organized as follows. In Sec. II we briefly re-

view the atom-molecule model description of resonant super-

fluidity. In Sec. III we calculate the low energy scattering am-

plitude in a two-band model and show that the atom-molecule

model can be viewed as a low-energy effective theory. We

formulate the resonant Fermi gas as a two-band superfluid in

Sec. IV and study its dilute limit in Sec. V. We apply the

two-band description to study the narrow resonance of 6Li in

Sec. VI. The paper is summarize in Sec. VII.

II. REVIEW: ATOM-MOLECULE THEORY

In this section, we briefly review the atom-molecule theory

of resonant superfluidity in atomic Fermi gases. We will in-

troduce the renormalization of the atom-molecule model and

its description of the superfluid state [8–10].

A. Renormalization of the model

To renormalize the model, we first calculate the two-body

scattering amplitude f (p). The Lippmann-Schwinger equa-

tion for two fermion scattering can be expressed by using an

energy dependent interaction vertex

V(E) = u0 +
g2

0

E − δ0

. (11)

The resulting T-matrix reads

T (E) =
V(E)

1 − V(E)Π(E)
, (12)
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where the two-particle bubble function Π(E) is given by

Π(E) =
∑

k

1

E + iǫ − 2εk

. (13)

The integral over k is divergent and we introduce a cutoff Λ.

Completing the integral we obtain

Π(E) = −MΛ

2π2
+

M

4π

√

−M(E + iǫ). (14)

The scattering amplitude f (p) = − M
4π

T (E) takes the form of

Eq. (1), where p cot δ(p) reads

p cot δ(p) = −2Λ

π
− 4π

M













u0 +
g2

0

E − δ0













−1

. (15)

Next we match the above result to the physical result (2).

The renormalizability of the model requires that the following

equality

−2Λ

π
− 4π

M













u0(Λ) +
g2

0
(Λ)

E − δ0(Λ)













−1

= − 1

abg

E − δ
E − δ + γB∆

(16)

holds for arbitrary value of the scattering energy E through

proper cutoff dependence of the bare couplings and the de-

tuning. Defining the renormalized couplings u = 4πabg/M,

g =
√
γB∆u, and detuning δ = γ(B − B0), we obtain

u0(Λ) =
u

1 − η(Λ)u
,

g0(Λ) =
g

1 − η(Λ)u
,

δ0(Λ) = δ +
g2η(Λ)

1 − η(Λ)u
, (17)

where η(Λ) = MΛ/(2π2). When the background scattering

length is neglected, i.e., u = 0, only the detuning needs renor-

malization. In this case, we have g0 = g and δ0 = δ + g2η(Λ).

B. Superfluid state

The partition function of the many-body system can be ex-

pressed as

Z =
∫

[dψ][dψ†][dφm][dφ†m] exp
(

−Sψ,φ
)

, (18)

where the action Seff reads

Sψ,φ =
∫

dx
∑

σ=↑,↓
ψ†σ(x) (∂τ − µ)ψσ(x)

+

∫

dx φ†m(x) (∂τ − 2µ) φm(x) +

∫ β

0

dτH. (19)

Here x = (τ, r) with τ being the imaginary time and β = 1/T

with T being the temperature of the system. Here we have

introduced the chemical potential µ conjugated the total par-

ticle number. To decouple the four fermion interaction term,

we introduce an auxiliary field ϕ(x) = u0ψ↓(x)ψ↑(x). By per-

forming the Hubbard-Stratonovich transformation, we obtain

Z =
∫

[dϕ][dϕ†][dφm][dφ†m] exp (−Seff) (20)

where the effective action reads

Seff =

∫

dx φ†m(x)

(

∂τ −
∇2

4M
+ δ0 − 2µ

)

φm(x)

−
∫

dx
|ϕ(x)|2

u0

−
∫

dx Tr ln G−1[ϕ, φm] (21)

with the inverse fermion Green’s function given by

G−1
=

(

−∂τ + ∇
2

2M
+ µ ϕ + g0φm

ϕ† + g0φ
†
m −∂τ − ∇

2

2M
− µ

)

δ(x − x′). (22)

In the superfluid phase, the two boson fields φm and ϕ gen-

erate nonzero expectation values. We define

∆b = g0〈φm(x)〉, ∆f = 〈ϕ(x)〉. (23)

In the mean-field approximation, the grand potential at T = 0

is given by

Ω0 =
δ0 − 2µ

g2
0

|∆b|2 −
|∆f |2
u0

+

∑

|k|<Λ
(ξk − Ek) , (24)

where ξk = εk − µ and Ek =

√

ξ2
k
+ |∆|2 with ∆ = ∆b + ∆f .

The next step is to remove the cutoff dependence by using the

physical quantities u, g, and δ.

To renormalize the grand potential, we note that ∆b and ∆f

are cutoff dependent and therefore not physical quantities [8].

To show this, we use the stationary condition

∂Ω0

∂∆∗
b

=
δ0 − 2µ

g2
0

∆b −
∑

k

∆

2Ek

= 0,

∂Ω0

∂∆∗
f

= −∆f

u0

−
∑

k

∆

2Ek

= 0 (25)

to obtain

∆b =
g2

0

2µ − δ0

∆f

u0

. (26)

Then we have

∆b =
g2

0
/(2µ − δ0)

u0 + g2
0
/(2µ − δ0)

∆,

∆f =
u0

u0 + g2
0
/(2µ − δ0)

∆. (27)
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Therefore,∆b and ∆f are cutoff dependent. To renormalize the

grand potential, we should regard them as dependent quanti-

ties and express the grand potential in terms of the finite quan-

tity ∆. Finally we obtain

Ω0(∆) = − |∆|2

u0 + g2
0
/(2µ − δ0)

+

∑

|k|<Λ
(ξk − Ek) . (28)

Using the fact that

1

u0 + g2
0
/(2µ − δ0)

=
1

ueff

− η(Λ), (29)

we obtain a cutoff-independent expression

Ω0(∆) = −|∆|
2

ueff

+

∑

k

(

ξk − Ek +
|∆|2
2εk

)

, (30)

where

ueff = u +
g2

2µ − δ . (31)

The gap equation can be derived from ∂Ω0/∂∆ = 0. We

have

1

ueff

=

∑

k

(

1

2εk

− 1

2Ek

)

. (32)

Meanwhile, the total density n is obtained through n =

−∂Ω0/∂µ. We obtain

n =
∑

k

(

1 − ξk

Ek

)

+ nm, (33)

where the contribution from the closed channel is given by

nm =
2|∆|2

g2

(

1 − u

ueff

)2

. (34)

From the above coupled equations, we can solve the pair-

ing gap ∆, the chemical potential µ, and the closed-channel

fraction nm/n at given detuning δ. For sufficiently large cou-

pling g, the result reproduces the universality predicted by the

single-channel model. For finite temperature properties and

beyond-mean-field treatment, we refer to Ref. [8–10].

III. A TWO-BAND MODEL FOR FESHBACH

RESONANCE

The precise prediction of the FRs relies on solving the mi-

croscopic multi-channel scattering problem with known mi-

croscopic interaction potentials. However, the scattering prob-

lem near a specific FR can be attributed to an effective two-

channel problem. Let us consider a two-channel Hamiltonian

H = H0 + Hint [12], where

H0 =

∑

n=1,2

∑

σ=↑,↓

∫

d3rψ†nσ(r)

(

− ∇
2

2M
+ εnσ

)

ψnσ(r). (35)

Here n = 1 and n = 2 correspond to the open channel and the

closed channel, respectively. The interaction part is

Hint =

∑

m,n=1,2

∫

d3r

∫

d3r′ϕ†m(r)Vmn(|r − r′|)ϕn(r′), (36)

where we use the notation

ϕn(r) = ψn↓(r)ψn↑(r). (37)

In this second quantization form, the thresholds εn
th
= εn↑ +

εn↓ are put into the free part H0. Therefore, the interaction

potential V(|r − r′|) → 0 for |r − r′| → ∞. It includes both

intra- and inter-channel interactions.

The threshold energies εnσ can be further simplified. With-

out loss of generality, we set

ε1↑ = ε1↓ = 0, ε2↑ = ε2↓ =
1

2
εth. (38)

For many-body system, the difference between εn↑ and εn↓ can

be absorbed into the definition of the chemical potentials.

A. Low energy scattering amplitude

The effective range r0 of the microscopic potential V(|r−r′|)
introduces an energy scale

εr =
1

Mr2
0

(39)

At low scattering energy E ≪ εr, the shape of the micro-

scopic interaction potential V(|r − r′|) is not important. It can

be safely replaced by a contact one Vδ(r − r′). For many-

body physics, this means that all kinds of short-ranged po-

tential V(|r − r′|) leads to the same predictions in the dilute

limit kFr0 → 0 [12]. By making use of the contact potential,

the Lippmann-Schwinger equation of the scattering T-matrix

becomes an algebra equation

(

T11(E) T12(E)

T21(E) T22(E)

)−1

=

(

V11 V12

V21 V22

)−1

−
(

B1(E) 0

0 B2(E)

)

,(40)

where the two-particle bubble functions are given by

Bn(E) =
∑

k

1

E + iǫ − εn
th
− 2εk

(41)

Here ǫ = 0+ and εk = k2/(2M). Note that we have set ε1
th
= 0

and ε2
th
≡ εth(B) without loss of generality. The cost of the

contact interaction is that the integral over the fermion mo-

mentum k becomes divergent. We introduce a cutoff Λ for |k|
and obtain

Bn(E) = −MΛ

2π2
+ Πn(E), (42)

where

Π1(E) =
M

4π

√

−M(E + iǫ),

Π2(E) =
M

4π

√

−M(E + iǫ − εth). (43)
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The divergence can be removed by using the renormalized

coupling matrix U. It is related to the bare coupling matrix

V by [12]

(

U11 U12

U21 U22

)−1

=

(

V11 V12

V21 V22

)−1

+

(

η(Λ) 0

0 η(Λ)

)

. (44)

Without loss of generality, we set U12 = U21 > 0. Then the

Lippmann-Schwinger equation becomes cutoff-independent,

(

T11(E) T12(E)

T21(E) T22(E)

)−1

=

(

U11 U12

U21 U22

)−1

−
(

Π1(E) 0

0 Π2(E)

)

.(45)

Next we relate the elements of U to physical observables.

In general, both the coupling U and the threshold energy εth

depend on the magnetic field B. However, near the FR we

may safely neglect the B-dependence of the coupling U. The

threshold energy εth can be well parameterized as

εth(B) = ε0 + δ(B) (46)

where ε0 is the binding energy of the close-channel molecule

and δ(B) = γ(B − B0) is the magnetic detuning. The binding

energy ε0 serves as another energy scale of the system. For

atomic system, we normally have the hierarchy ε0 ≪ εr. For

the problem of FR, low energy scattering means that the scat-

tering energy E ≪ ε0. This is actually the simplest model for

FR in atomic systems. If we know the explicit B-dependence

of the microscopic interaction potential V(|r − r′|) and the

threshold energy εth, we can have better description of the B-

dependence [12].

Solving Lippmann-Schwinger equation, we obtain the T-

matrix for the open channel,

T−1
11 (E) =













U11 +
U2

12
Π2(E)

1 − U22Π2(E)













−1

− Π1(E). (47)

A Feshbach resonance occurring at B = B0 requires that

T11(E = 0) diverges at B = B0. Since Π1(0) = 0, we obtain

1

U22

= Π2(0) =
M

4π

√

Mε0. (48)

This equation clearly shows that the bound state level of the

closed channel coincides with the threshold of the open chan-

nel when FR occurs. The scattering amplitude for the open

channel is defined as f (p) = − M
4π

T11(E). At low scattering

energy E = p2/M ≪ ε0, Π2(E) is real and Π1(E) = − M
4π

ip.

Therefore, f (p) takes the form of Eq. (1), where p cot δ(p) is

given by

p cot δ(p) = − 4π

MU11

√
Mε0 −

√
M(ε0 + δ − E)

√
Mε0 −

√
M(ε0 + δ − E) +

U2
12

U11 U22

√
M(ε0 + δ − E)

(49)

At low scattering energy E ≪ ε0 and near the FR (δ ≪ ε0), it

can be well approximated as

p cot δ(p) ≃ − 4π

MU11

E − δ

E − δ + 2U2
12

U11U22
ε0

(50)

Thus the coupling constants are related to the physical observ-

ables through the following relations

U11 =
4πabg

M
, U22 =

4π

M

1
√

Mε0

, γB∆ =
2U2

12

U11U22

ε0. (51)

In terms of U12 and ε0, the effective range reff can be explicitly

expressed as

reff = −
16π2

M2U2
12

(Mε0)3/2
, (52)

which indicates that the effective range is always negative.

From Fig. 1, we find that the binding energy ε0 equals the

Zeeman energy splitting EZ at the resonance B = B0 [12], i.e.,

ε0 = EZ(B = B0). (53)

B. Atom-molecule model as a low-energy effective theory

The phenomenological coupling g in the atom-molecule

model is related to physical observables as g =
√
γB∆u. From

Eq. (51) we can identify u = U11. Therefore, g can be ex-

pressed in terms of ε0 and U12 as

g = U12

√

(Mε0)3/2

2π
. (54)

This expressions shows explicitly how the phenomenological

coupling g is related to the microscopic parameters. In the fol-

lowing we show that the atom-molecule model can be viewed

as a low-energy effective theory in the limit ε0 → ∞ while

keeping the phenomenological coupling g finite (hence U12 →
0). In this limit, we have U12 ∼ O(ε

−3/4

0
), U22 ∼ O(ε

−1/2

0
), and

U11 ∼ O(1), which leads to U2
12
≪ |U11U22|. Therefore, the
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relations between U and V can be well approximated as













V11 −
V2

12

V22













−1

=













U11 −
U2

12

U22













−1

− η(Λ)

≃ 1

U11

− η(Λ),













V22 −
V2

12

V11













−1

=













U22 −
U2

12

U11













−1

− η(Λ)

≃ 1

U22













1 +
U2

12

U11U22













− η(Λ),

V12

V22













V11 −
V2

12

V22













−1

=
U12

U11U22 − U2
12

≃ U12

U11U22

. (55)

Comparing with the atom-molecule model, we identify

u = U11, u0 = V11 −
V2

12

V22

. (56)

To arrive at the atom-molecule model we introduce an aux-

iliary field Φm(x) = V22ψ2↓(x)ψ2↑(x) and integrate out the

closed-channel fermions. Then the effective action can be ex-

pressed as Seff = Sf + Sb + Sbf , where

Sf =

∫

dx

















∑

σ=↑,↓
ψ†σ(x)

(

∂τ −
∇2

2M
− µ

)

ψσ(x) +













V11 −
V2

12

V22













ψ
†
↑(x)ψ

†
↓(x)ψ↓(x)ψ↑(x)

















Sb =

∫

dx

[

−|Φm(x)|2
V22

− Trln

(

−∂τ + ∇
2

2M
+ µ − 1

2
εth Φm(x)

Φ
†
m(x) −∂τ − ∇

2

2M
− µ + 1

2
εth

)]

Sbf =

∫

dx
V12

V22

[

Φm(x)ψ
†
↑(x)ψ

†
↓(x) + Φ†m(x)ψ↓(x)ψ↑(x)

]

(57)

Here we have introduced the chemical potential µ and used

ψσ ≡ ψ1σ to denote the open-channel fermions. Using the

fact V11 − V2
12
/V22 = u0 we find that the fermion part Sf cor-

responds precisely to the atom part Hf of the atom-molecule

model.

Next we consider the molecule part Sb and the atom-

molecule coupling part Sbf . The inverse propagator for the

boson field Φ(x) is given by

D−1
m (x, x′) =

δ2Sb[Φ
†
m,Φm]

δΦ
†
m(x)δΦm(x′)

. (58)

In the momentum space, it can be explicitly evaluated as

D−1
m (ω, q) = − 1

V22

+

∑

k

1

ω + iǫ + 2µ − 1
2
εq − εth − 2εk

(59)

At low energy, i.e., ω, εq ≪ ε0, it can be expanded in terms of

ω and εq. We have

D−1
m (ω, q) ≃ d0 + d1

(

ω − q2

4M

)

, (60)

where

d0 =
M

4π

√

M(εth − 2µ) −
(

1

V22

+
MΛ

2π2

)

,

d1 =
M2

8π
√

M(εth − 2µ)
. (61)

It becomes evident in the following that the low-energy ex-

pansion (59) corresponds to the leading-order expansion in

1/
√

Mε0. For large ε0, we have δ, µ ≪ ε0. Therefore, d0 and

d1 can be well approximated as

d1 ≃ α =
M2

8π
√

Mε0

(62)

and

d0 ≃
M

4π

√

M(εth − 2µ) − 1

U22

−
U2

12

U11U2
22

+
V2

12

V22(V11V22 − V2
12

)

=
M

4π

[ √

M(ε0 + δ − 2µ) −
√

Mε0

]

+

(

V12

V22

)2
1

u0

−
(

U12

U22

)2
1

u

≃ α















δ − 2µ +
1

αu0

(

V12

V22

)2

− 1

αu

(

U12

U22

)2














. (63)

Then we define a normalized molecule field

φm(x) =
√
αΦm(x), (64)

which corresponds to the molecule field used in the atom-
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molecule model. The effective actions become

Sb ≃
∫

dx φ†m(x)

[

∂τ −
∇2

4M
− 2µ

+δ +
1

αu0

(

V12

V22

)2

− 1

αu

(

U12

U22

)2 ]

φm(x),

Sbf ≃
∫

dx
1
√
α

V12

V22

[

φm(x)ψ
†
↑(x)ψ

†
↓(x) + H.c.

]

. (65)

Using the relations between U and V in Eq. (54) we obtain

1
√
α

V12

V22

=
1
√
α

U12

U11U22

u0 =
g

1 − η(Λ)u
= g0 (66)

and

δ +
1

αu0

(

V12

V22

)2

− 1

αu

(

U12

U22

)2

= δ +
g2

0

u0

− g2

u
= δ +

g2η(Λ)

1 − η(Λ)u
= δ0. (67)

Here we have used the definition of the atom-molecule cou-

pling

g =
√

γB∆u =

√

2U2
12

U22

ε0 = U12

√

(Mε0)3/2

2π
. (68)

Therefore, we have shown that the atom-molecule model

is a low-energy effective theory of the two-band model in the

limit ε0 → ∞ (and hence U12 → 0) while keeping the phe-

nomenological atom-molecule coupling g finite. In the atom-

molecule model, the energy scale ε0 is hidden and is automat-

ically sent to infinity.

We can also work out the next-to-leading order low-energy

expansion of the molecule part Sb. It is quartic in φm and

corresponds to the two-body interaction of the closed-channel

bound states. We have

SNLO
b =

1

2

4πam

2M

∫

dx |φm(x)|4, (69)

where am ≃ 2/
√

Mε0 is the scattering length of the closed-

channel molecules. In the limit ε0 → ∞, this contribution

can be safely neglected. However, for realistic systems, ε0 is

large but finite, this term may be important for the stability of

polarized superfluidity [13].

IV. RESONANT FERMI GAS AS A TWO-BAND

SUPERFLUID

Starting from the two-channel Hamiltonian (35) and (36),

we naturally have a two-band description of the superfluid

state which is analogous to the BCS theory of two-band super-

conductors [14, 15]. The molecule binding energy ε0 appears

explicitly in this theory as the band offset. In the dilute limit

εF/ε0 → 0, we expect that the two-band description recovers

the atom-molecule model description.

A. Superfluid Phase

Following the standard field theoretical treatment, we intro-

duce the auxiliary pairing fields

Φ(x) =

(

Φ1(x)

Φ2(x)

)

=

(

V11 V12

V21 V22

) (

ϕ1(x)

ϕ2(x)

)

, (70)

where x = (τ, r) with τ being the imaginary time, apply the

Hubbard-Stratonovich transformation, and integrate out the

fermion fields. The partition function of the system can be

expressed as

Z =
∫

[dΦ†][dΦ] exp (−Seff). (71)

The effective action Seff reads

Seff = −
∫

dx Φ†(x)V−1
Φ(x) −

∑

n=1,2

Tr ln G−1
n [Φn(x)], (72)

where the inverse fermion Green’s functions are given by

G−1
n =

(

−∂τ + ∇
2

2M
+ µn Φn(x)

Φ
∗
n(x) −∂τ − ∇

2

2M
− µn

)

δ(x − x′). (73)

Here we have defined µ1 = µ and µ2 = µ − εth/2 with µ being

the fermion chemical potential.

In the superfluid phase, the pairing fields have nonzero ex-

pectation values. We write

Φn(x) = ∆n + φn(x), (74)

where the constants ∆1 and ∆2 serve as the order parameters

of superfluidity. Note that both Φ1 and Φ2 are superpositions

of the pair potentials ϕ1 and ϕ2. The order parameters ∆1 and

∆2 are both finite quantities, in contrast to the atom-molecule

model. The effective action can be expanded in terms of the

fluctuations φn(x). In the following, we will evaluate the effec-

tive action up to the Gaussian fluctuations, i.e., Seff ≃ S0+Sg.

Firstly we consider the mean-field part S0. It can be evaluated

as S0 = βVΩ0, where the grand potential Ω0 is given by

Ω0 = −∆†U−1
∆ +

∑

n=1,2

∑

k

(

ξnk − Enk +
|∆n|2
2εk

)

− 2T
∑

n=1,2

∑

k

ln
(

1 + e−Enk/T
)

. (75)

Here ∆ = (∆1,∆2)T and the dispersions are defined as ξnk =

εk − µn and Enk =

√

(ξnk)2 + |∆n|2. Note that we have used

the renormalized coupling U. The grand potential Ω0 here

is free from the cutoff Λ for arbitrary values of ∆1 and ∆2.

Therefore, ∆1 and ∆2 are two independent physical quantities

in the present two-band theory.

The contribution from Gaussian fluctuations is given by

Sg =
1

2

∑

Q

φ†(−Q)M(Q)φ(Q), (76)
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where Q = (iων, q) withων = 2νπ/T (ν integer) and φ†(−Q) =

(φ∗
1
(Q), φ1(−Q), φ∗

2
(Q), φ2(−Q)). The inverse boson propaga-

tor M(Q) is a 4 × 4 matrix and can be expressed as

M(Q) = −U−1 ⊗ I2 +H(Q), (77)

where I2 is a 2 × 2 identity matrix. The matrix H(Q) can be

expressed as

H(Q) = diag(H1(Q),H2(Q)). (78)

The two blocks Hn(Q) are 2 × 2 matrices. Their elements

satisfies H11
n (Q) = H22

n (−Q) and H12
n (Q) = H21

n (Q). Using the

fermion propagatorGn(K), we have

H11
n (Q) =

∑

K

G22
n (K)G11

n (K + Q),

H12
n (Q) =

∑

K

G12
n (K)G21

n (K + Q), (79)

where Gn(K) can be obtained from

G−1
n (K) =

(

iωm − ξnk ∆n

∆
∗
n iωm − ξnk

)

. (80)

Here K = (iωm, k) with ωm = (2m + 1)π/T (m integer). Their

explicit forms are given by

Hn11(Q) =
∑

k

[

(1 − fn+ − fn−)

(

u2
n+u

2
n−

iων − En+ − En−
− υ2

n+υ
2
n−

iων + En+ + En−

)

+
1

2εk

+( fn+ − fn−)

(

υ2
n+u2

n−
iων + En+ − En−

− u2
n+υ

2
n−

iων − En+ + En−

) ]

,

Hn12(Q) =
∑

k

|∆n|2
2En+En−

[

(1 − fn+ − fn−)
En+ + En−

(En+ + En−)2 − (iων)2
+ ( fn+ − fn−)

En+ − En−
(En+ − En−)2 − (iων)2

]

. (81)

The notations in the above expressions are defined as En± =
Enk±q/2, u2

n± =
1
2

(1 + ξn±/En±), υ2
n± =

1
2

(1 − ξn±/En±), and

fn± = f (En±) with f (E) ≡ 1/(eE/T
+ 1) being the Fermi-Dirac

distribution. The contribution of the Gaussian fluctuations to

the grand potential can be formally expressed as

Ωg =
1

2β

∑

Q

ln det M(Q). (82)

The order parameters ∆n and the chemical potential µ

should be determined by the stationary condition or the gap

equation ∂Ω0/∂∆n = 0 together with the constraint for the to-

tal density n = −∂Ωt/∂µ where Ωt = Ω0 + Ωg is the grand

potential including Gaussian fluctuations [16]. The gap equa-

tion can be expressed as














(

U11 U12

U21 U22

)−1

−
(

F1(∆1) 0

0 F2(∆2)

)















(

∆1

∆2

)

= 0, (83)

where Fn is given by

Fn(∆n) =
∑

k

[

2 f (Enk) − 1

2Enk

+
1

2εk

]

. (84)

We conclude that ∆1 and ∆2 vanish at the same critical tem-

perature, in analogy to the BCS theory of two-band supercon-

ductors [14]. Meanwhile the number equation is given by

n = n1 + n2 + ng, (85)

where ng = −∂Ωg/∂µ is the fluctuation contribution and

nn =

∑

k

[

1 − ξnk

Enk

(1 − 2 f (Enk))

]

. (86)

Note that the gap equation can also be expressed as













U11 +
U2

12
F2(∆2)

1 − U22F2(∆2)













−1

= F1(∆1),

∆2

∆1

=
U12

U11 − F2(∆2) det U
. (87)

The first equation shows explicitly the resonance effect on the

open channel. As we will show below, these equations be-

come essentially the same as the atom-molecule model in the

dilute limit εF/ε0 → 0.

B. Superfluid Transition Temperature

The superfluid order parameters ∆1 and ∆2 vanish simulta-

neously at some critical temperature Tc. At a given chemical

potential µ, the critical temperature is determined by

det















(

U11 U12

U21 U22

)−1

−
(

F1(0) 0

0 F2(0)

)















= 0. (88)
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After some manipulations, we obtain













U11 +
U2

12
F2(0)

1 − U22F2(0)













−1

= F1(0). (89)

To express Tc in terms of the density n or εF, we need to

solve the chemical potential µ through the number equation

n = n1+n2+ng. The mean-field contributions can be simplified

as

nn = 2
∑

k

f (εk − µn). (90)

We have n2 ≃ 0 for Tc ≪ ε0. The fluctuation contribution ng

is given by ng = −∂Ωg/∂µ. For vanishing order parameters,

the effective action Sg can be simplified as

Sg =

∑

Q

φ†(−Q)Γ−1(Q)φ(Q). (91)

Here φ†(−Q) = (φ∗
1
(Q), φ∗

2
(Q)) and the inverse boson propa-

gator Γ−1(Q) becomes a 2 × 2 matrix,

Γ
−1(Q) = −

(

U11 U12

U21 U22

)−1

+

(

χ1(Q) 0

0 χ2(Q)

)

, (92)

where the pairing susceptibilities χn(Q) reads

χn(Q) =
∑

k

















1 − f (ξnk+q/2) − f (ξnk−q/2)

iων + 2µn − q2

4M
− 2εk

+
1

2εk

















. (93)

We note that the superfluid transition temperature is also given

by detΓ−1(0, 0) = 0, which is the generalized Thouless crite-

rion for two-band systems. Finally, the contributionΩg can be

expressed as

Ωg = −
∑

q

∫ ∞

−∞

dω

π

1

eβω − 1

[

δ1(ω, q) + δ2(ω, q)
]

, (94)

where δn(ω, q) = −Im ln[Γ−1
n (ω + iǫ, q)] with the two vertex

functions given by

Γ
−1
1 (iων, q) = −













U11 +
U2

12
χ2(Q)

1 − U22χ2(Q)













−1

+ χ1(Q),

Γ
−1
2 (iων, q) = −













U22 −
U2

12

U11













−1

+ χ2(Q). (95)

The first contribution corresponds to the usual NSR approach

with an energy-dependent scattering length [17]. The second

contribution can be attributed to the presence of the closed-

channel. Actually, for ε0 → ∞, we have

U2
12
χ2(Q)

1 − U22χ2(Q)
≃ g2

iων − q2

4M
+ 2µ − δ

,

Γ
−1
2 (iων, q) ≃ −α

(

iων −
q2

4M
+ 2µ − δ + γB∆

)

. (96)

We expect that the term γB∆ in Γ−1
2

(iων, q) controls the closed-

channel contribution. For broad resonance with γB∆ ≫ εF,

this contribution can be safely neglected and we recovers the

single-channel description.

V. DILUTE LIMIT: ε0 →∞

In this section, we study the dilute limit of the two-band the-

ory. The dilute limit means ε0/εF → ∞. The closed-channel

binding energy ε0 is equal to the Zeeman energy splitting at

the resonance B = B0 [12]. Considering the resonance oc-

curs at high magnetic field, we estimate ε0 ∼ γB0. For 6Li

atom, its broad resonance and the narrow resonance occur at

B = 834.1 G and B = 543.25 G, respectively. The typical

density of atoms realized in current experiments is 1013−1014

cm−3. Therefore, we estimate that the ratio ε0/εF is of order

103 in current experimental systems, which satisfies well the

dilute condition εF ≪ ε0.

For the sake of simplicity, we focus on the zero tempera-

ture case and employ the mean field theory. We will show

that in the mean field approximation, the predictions from the

two-band theory become essentially the same as the atom-

molecule model in the dilute limit. The coupled gap equations

for the pairing gaps ∆1 and ∆2 can be expressed as

1

U11 + C(∆2)
= F1(∆1),

∆2

∆1

=
C(∆2)

U11 + C(∆2)

1

U12F2(∆2)
, (97)

where C(∆2) is defined as

C(∆2) =
U2

12
F2(∆2)

1 − U22F2(∆2)
. (98)

The quantity C shows explicitly the resonance effect on the

open channel. Note that ∆1 and ∆2 are both complex quan-

tities. Without loss of generality, we set ∆1 to be real and

positive. From the second equation we find that ∆2 is also

real.

In the dilute limit εF ≪ ε0, we expect that |δ|, |µ| ≪ ε0 near

the FR. Meanwhile we also assume that |∆2| ≪ ε0. While this

is not evident at present, we will prove it self-consistently.

Therefore, for ε0 → ∞, the function F2(∆2) asymptotically

behaves as

F2(∆2) =
M

4π

√

M(ε0 + δ − 2µ)
[

1 + O
(

α2
)]

, (99)

where α = |∆2|/ε0. Then we obtain

lim
ε0→∞

C(∆2) = lim
ε0→∞

MU2
12

4π

√

M(ε0 + δ − 2µ)

1 −
√

M(ε0+δ−2µ)
√

Mε0

=
g2

2µ − δ ≡ C∞, (100)

where the atom-molecule coupling g is given by

g = lim
U12→0

lim
ε0→∞

U12

√

(Mε0)3/2

2π
. (101)

Thus the first gap equation becomes essentially the same as

the gap equation of the atom-molecule model.
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FIG. 2: (Color-online) The dependence of the pairing gaps ∆1 (a) and ∆2 (b), the chemical potential µ (c), and the closed channel fraction

n2/n (d) on the coupling g (scaled by gF =
√

2πkF/M) at the resonance (δ = 0). The coupling g is determined by g = U12(Mε0)3/4/
√

2π with

ε0 = 103εF. The background scattering length is set to be kFabg = 0.1.

For the second equation, in the dilute limit we have

∆2

∆1

=
C∞

U11 + C∞
2
√

2π

gM
(Mε0)1/4

[

1 + O
(

α2
)]

, (102)

For ε0 → ∞, we have ∆2 → ∞ but ∆2/ε0 → 0. Using this

result, we can simplify the number equation. In the mean-field

theory, the number equation is given by n = n1 + n2, where n1

and n2 are the contributions from the open channel and closed

channel, respectively. Since ∆2/ε0 → 0 for ε0 → ∞, we

can expand the closed-channel contribution n2 in powers of

|∆2|/|µ2|. Therefore, the number density of the closed channel

asymptotically behaves as

n2 =
π

8

|∆2|2
|µ2|2

(2M|µ2|)3/2

2π2

[

1 + O
(

α2
)]

. (103)

Using the relation (102), we obtain

lim
ε0→∞

n2 =
2|∆1|2

g2

(

C∞
U11 + C∞

)2

. (104)

This is the same as the closed-channel contribution nm in the

atom-molecule model. Therefore, in the dilute limit, the pair-

ing gap ∆2 can be eliminated and the predictions become the

same as the atom-molecule model.

For the grand potential Ω0, by using the asymptotical be-

havior

∑

k

(

ξ2k − E2k +
|∆2|2
2εk

)

=
M|∆2|2

4π

√

M(ε0 + δ − 2µ)
[

1 + O
(

α2
)]

(105)

and the relation (102), we can show that it recovers the result

(30) of the atom-molecule model.

In realistic experimental systems, the ratio ε0/εF is large

but finite. We expect that the predictions from the two-band

theory agree with the atom-molecule model in addition to a

tiny correction which should be of order O(εF/ε0). In Fig. 2

we show the evolution of the pairing gaps, the chemical po-

tential, and the closed-channel fraction with the inter-channel

coupling U12 at the resonance for ε0 = 103εF and kFabg = 0.1.

In the plots, we have also used the atom-molecule coupling

g which is determined by g = U12(Mε0)3/4/
√

2π and scaled

by gF =
√

2πkF/M. The effective range parameter kFreff is

related to the coupling as

kFreff = −4

(

g

gF

)−2

. (106)

For sufficiently large coupling U12 or g where |kFreff | ≪ 1, the

system enters the universal regime. In this regime we have
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FIG. 3: The dependence of the pairing gaps ∆1 (a) and ∆2 (b), the chemical potential µ (b), and the open-channel fraction n1/n on the

parameter y = ε0/(γB0) at the resonance. In the calculations we set the density parameter x = εF/(γB∆) = 1, which corresponds to g/gF = 0.25

or kFreff = −63. The dashed lines are the predictions from atom-molecule theory, which coincides with the dilute limit (ε0/εF → ∞) of the

two-band theory.

n2 → 0 and hence the open channel dominates. The open-

channel pairing gap ∆1 and the chemical potential µ agree

with the universal values ∆1 = 0.6864εF and µ = 0.5906εF

from the single-channel model. From the numerical results

shown in Fig. 2, we find that the crossover from the broad to

narrow resonances occurs at |kFreff | ∼ 1. We have also com-

pared the results with the predictions from the atom-molecule

model with the same coupling g. For ε0 = 103εF, we find

that the two-band predictions already agree well with the pre-

dictions from the atom-molecule model. For broad and mod-

erate resonances, the corrections to the pairing gap ∆1 and

the chemical potential µ are tiny. Our results agree with a

recent multichannel approach to the pairing in atomic Fermi

gases where the open and closed channels have one hyper-

fine state in common [18]. On the other hand, we find from

our numerical analysis that the correction to the (dimension-

less) chemical potential µ/εF is generally of order O(εF/ε0)

for εF/ε0 ∼ 10−3. We notice that µ/εF → 0 in the narrow res-

onance limit. Therefore, for extremely narrow resonance, this

tiny correction may become significant because the chemical

potential itself is also tiny. We will focus on the extremely nar-

row resonance in the next section. On the other hand, at high

density where εF ∼ ε0, medium effects on the closed channel

becomes significant and the atom-molecule model becomes

invalid. Unfortunately, this high density regime is not acces-

sible in current experiments of atomic Fermi gases.

VI. EXTREMELY NARROW RESONANCE

As we have mentioned above, the tiny correction due to

nonvanishing εF/ε0 may become remarkable for extremely

narrow resonance with g/gF ≪ 1 or |kFreff | ≫ 1, because the

chemical potential µ/εF itself becomes comparable with this

tiny correction. An intuitive picture is that, for extremely nar-

row resonance, the closed-channel dominates and the system

can be regarded as a Bose-Einstein condensate of the closed-

channel molecules. In the atom-molecule model, the closed-

channel molecules are treated as noninteracting point bosons.

However, in the present two-band theory, the closed channel

molecules are treated as composite bosons and theirs inter-

actions are automatically taken into account. The leading cor-

rection is the two-body boson-boson interaction with a scatter-

ing length am as we have shown in Eq. (69). The interaction

parameter kFam reads

kFam =
2kF√
Mε0

= 2

√

2εF

ε0

. (107)
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FIG. 4: The dependence of the pairing gaps ∆1 (a) and ∆2 (b), the chemical potential µ (b), and the open-channel fraction n1/n on the parameter

y = ε0/(γB0) at the resonance. In the calculations we set the density parameter x = εF/(γB∆) = 2.5, which corresponds to g/gF = 0.2 or

kFreff = −100. The dashed lines are the predictions from atom-molecule theory, which coincides with the dilute limit (ε0/εF → ∞) of the

two-band theory.

For realistic value εF/ε0 ∼ 10−3, the above interaction param-

eter is generally of order 0.1. Therefore, for extremely narrow

resonance, the boson-boson interaction can lead to remarkable

correction to the chemical potential and the equations of state.

In the final part of this work, we apply the two-band theory

to study the narrow resonance of 6Li atoms at B0 = 543.25G.

The resonance width and the background scattering length

have been measured to be B∆ = 0.1G and abg = 61.6aB [6].

For convenience, we define two parameters

a =
B∆

B0

, b =
γB∆

εbg

, (108)

where εbg = 1/(Ma2
bg

) is the energy associated with the back-

ground scattering length. We also define the following two

variables

x =
εF

γB∆
, y =

ε0

γB0

. (109)

For the typical densities realized in recent experiments [6],

we have εF ∼ γB∆ and hence x ∼ 1. The binding energy

ε0 is a parameter in the two-band model and so far cannot

be extracted precisely. However, it is reasonable to estimate

ε0 ∼ γB0 and hence y ∼ 1. From the above parameters we

obtain

kFabg =

√
2bx,

ε0

εF

=
y

ax
,

U12

UF

=

(

a3bx2

y3

)1/4

,
g

gF

=

(

2b

x

)1/4

, (110)

where UF = 4π/(MkF). From the measurements we have b =

2×10−3, which means that this resonance is extremely narrow.

In the following, we consider two typical densities x = 1 and

x = 2.5, which corresponds to two effective range parameters

kFreff = −63 and kFreff = −100, respectively.

In Figs. 3 and 4, we show the dependence of the pairing

gaps, the chemical potential, and the open-channel fraction on

the parameter y in the range 0.5 < y < 1.5 at the resonance

(δ = 0) for two typical densities x = 1 and x = 2.5. At

both densities, the finite-ε0 corrections to the open-channel

pairing gap ∆1 and the open-channel fraction n1/n are rel-

atively small. However, the correction to the chemical po-

tential µ becomes significant since the chemical potential it-

self is already very small for such an extremely narrow res-

onance. In Fig. 5 we also show the energy of the resonant

superfluid at two typical densities x = 1 and x = 2.5. For

reasonable values of the closed-channel binding energy, i.e.,

0.5 < y < 1.5, we find that the chemical potential and the en-
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FIG. 5: The dependence of the energy of the resonant superfluid on

the parameter y = ε0/(γB0) for x = 1 (a) and x = 2.5 (b). The

energy is scaled by the energy of the noninteracting two-component

Fermi gas, EFG =
3
5
NεF. The dashed lines are predictions from atom-

molecule theory, corresponding to the dilute limit ε0/εF → ∞.

ergy predicted from the two-band theory deviates significantly

from the atom-molecule model predictions. For smaller y, we

find that the deviation is larger. This can be understood by the

fact the the boson-boson interaction parameter kFam becomes

larger for smaller y. The atom-molecule model predictions

correspond to the limit y → ∞ of the two-band theory, which

indicates vanishing boson-boson interaction kFam → 0. How-

ever, for extremely narrow resonance, the convergence to the

atom-molecule theory is very slow. From a numerical analy-

sis, we find that the two-band theory predictions converge to

the results from the atom-molecule theory at y ∼ 104.

VII. SUMMARY AND OUTLOOK

In summary, we have shown that a simple two-band the-

ory can describe the resonant superfluidity in atomic Fermi

gases. The atom-molecule model can be viewed as a low-

energy effective theory of the two-band model in the limit

ε0 → ∞ and U12 → 0 while keeping the phenomenolog-

ical atom-molecule coupling g finite. Explicitly, the atom-

molecule coupling g is related to the microscopic parameters

as g = U12(Mε0)3/4/
√

2π. The two-band description of res-

onant superfluidity is in analogy to the BCS theory of two-

band superconductors. The closed-channel binding energy

ε0 provides a large band offset, which is automatically sent

to infinity in the atom-molecule model. In the dilute limit

εF/ε0 → 0, we find that the two-band theory reproduce pre-

cisely the atom-molecule theory. Since the physical results

do not depend on the details of the microscopic interaction

potential V(|r − r′|), the simple two-band model could be a

feasible model for future Monte Carlo simulation of atomic

Fermi gases across narrow Feshbach resonances.

In realistic experimental systems, the ratio εF/ε0 is small

but finite. The correction due to this small ratio physically cor-

responds to the effect of boson-boson interaction in the closed

channel. For broad and moderate resonances, such correc-

tion is relatively small and thus not important. However, for

extremely narrow resonance such as the resonance of 6Li at

B = 543.25G, the correction becomes significant. The cor-

rection may also be important for the stability of the homoge-

neous polarized superfluid state against phase separation for

population imbalanced systems (n1↑ , n1↓). A recent study

of the polaron problem in highly polarized Fermi gases across

a narrow FR indicates that the highly polarized mixture can

be stable against phase separation if the value kFam is non-

vanishing [13], where am is the molecule-molecule scattering

length in the closed channel. On the other hand, it has been

shown that the polarized superfluid state can be stable against

phase separation in two-band Fermi superfluids [19]. There-

fore, it is interesting to apply the two-band theory to study the

possibility of stable polarized superfluid state across a narrow

FR.
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