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We theoretically investigate the superfluid density and Berezinskii-Kosterlitz-Thouless (BKT)
transition of a two-dimensional Rashba spin-orbit coupled atomic Fermi gas with both in-plane and
out-of-plane Zeeman fields. It was recently predicted that, by tuning the two Zeeman fields, the
system may exhibit different exotic Fulde-Ferrell (FF) superfluid phases, including the gapped FF,
gapless FF, gapless topological FF and gapped topological FF states. Due to the FF paring, we
show that the superfluid density (tensor) of the system becomes anisotropic. When an in-plane
Zeeman field is applied along the x -direction, the tensor component along the y-direction ns,yy

is generally larger than ns,xx in most parameter space. At zero temperature, there is always a
discontinuity jump in ns,xx as the system evolves from a gapped FF into a gapless FF state. With
increasing temperature, such a jump is gradually washed out. The critical BKT temperature has
been calculated as functions of the spin-orbit coupling strength, interatomic interaction strength,
in-plane and out-of-plane Zeeman fields. We predict that the novel FF superfluid phases have
a significant critical BKT temperature, typically at the order of 0.1TF , where TF is the Fermi
degenerate temperature. Therefore, their observation is within the reach of current experimental
techniques in cold-atom laboratories.

PACS numbers: 05.30.Fk, 03.75.Hh, 03.75.Ss, 67.85.-d

I. INTRODUCTION

Over the past decade, the technique of manipulat-
ing ultracold atomic Fermi gases has been well devel-
oped and it offers a physical reality to pursue an ex-
otic pairing mechanism, which is referred to as Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) states [1, 2] and has
attracted impressive attentions in different physical ar-
eas [3–7]. In spin-imbalanced Fermi gases, the standard
Bardeen-Cooper-Schrieffer (BCS) pairing is not favorable
compared to the FFLO pairing with a finite center-of-
mass momentum. Although there is no unambiguous ex-
perimental conclusion for the FFLO superfluidity, strong
evidence has been seen in a Fermi cloud of 6Li atoms
confined in quasi-one-dimensional harmonic traps near a
crossover from a Bose-Einstein condensate (BEC) to a
BCS superfluid [6, 8–12].

The FFLO pairing is also favored by spin-orbit cou-
pling [13–17]. Motivated by the recent experimental re-
alization of a synthetic spin-orbit coupling with equal
weight combination of Rashba and Dresselhaus compo-
nents [18–21], FF superfluidity - a specific form of the
FFLO superfluidity - has been theoretically investigated
in spin-orbit coupled atomic Fermi gases [13, 22–30]. In
the case of a Rasbha spin-orbit coupling, topological su-
perfluidity is argued to be achievable [32–39], although
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the underlying pairing is of s-wave character. It turns
out that the topological superfluidity and FF superflu-
idity are compatible. As a result, novel topological FF
superfluids have also been proposed [40–46]. In particu-
lar, in a recent Letter, some of us have predicted that a
gapless topological FF superfluid may appear in a two-
dimensional (2D) spin-orbit coupled atomic Fermi gas
with both in-plane and out-of-plane Zeeman fields [44].
The purpose of the present work is to provide more de-
tails about such an interesting superfluid phase and to
discuss its thermodynamic stability by considering the
superfluid density and superfluid transition temperature.

It is well known that at finite temperatures the super-
fluidity of 2D atomic Fermi gases is characterized by the
vortex-antivortex (V-AV) binding. The relevant mecha-
nism is the Berezinskii-Kosterlitz-Thouless (BKT) tran-
sition occurring at a characteristic temperature TBKT

[47, 48]. Below the critical BKT temperature, a V-AV
binding state has a lower free energy and hence super-
fluidity emerges. The BKT transition was theoretically
investigated long time ago in a 2D fermionic system with-
out spin-orbit coupling [49–51]. Following the recent ex-
perimental advances, there have been several theoretical
investigations about the superfluid density and critical
BKT temperature in 2D spin-orbit coupled Fermi gases
with BCS pairing [52–55]. In particular, the BKT physics
with a generic form of the spin-orbit coupling (i.e., as a
function of Rashba and Dresselhaus terms) was most re-
cently investigated by Devreese, Tempere and Sá de Melo
[55]. In the case of a large out-of-plane Zeeman field, the
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temperature region for experimentally observing topolog-
ical BCS superfluids and related Majorana fermions has
been discussed [53, 54]. However, the BKT physics of a
spin-orbit coupled FF superfluid - which can be either
gapped or gapless, topologically trivial or non-trivial -
has only been briefly explored by Xu and Zhang [56] and
by some of the present authors [44].

In this work, we explore this interesting issue in greater
detail and study the superfluid density tensor and BKT
transition of a 2D Rasbha spin-orbit coupled Fermi gas
in the presence of both in-plane and out-of-plane Zee-
man fields. By calculating the superfluid density ten-
sor, we obtain the superfluid phase stiffness as functions
of the temperature, spin-orbit coupling strength, bind-
ing energy (that characterizes the interatomic interaction
strength), in-plane and out-of-plane Zeeman fields. This
allows us to determine the critical BKT temperature of
the system in four different FF superfluid phases [44],
with a given set of parameters. Our results qualitatively
agree with the work by Xu and Zhang where applica-
ble [56], although the way of calculating the superfluid
density is entirely different.

Our main results may be summarized as follows: (i) At
zero temperature with an applied in-plane Zeeman field
in the x -direction, the component ns,xx of the superfluid
density tensor always changes discontinuously when the
system continuously evolves from a gapped FF into a
gapless FF phase. The component ns,yy is larger than
ns,xx except for a narrow parameter space where the FF
momentum is sufficiently large. The two components of
the superfluid density tensor decrease monotonically as
the temperature increases. (ii) All the four FF super-
fluid phases have significant critical BKT temperature,
except for the parameter region with very small spin-
orbit coupling and/or binding energy, or with very large
in-plane and/or out-of-plane Zeeman fields. The criti-
cal BKT temperature can be enhanced by increasing the
binding energy. But it does not increase monotonically
as the spin-orbit coupling strength increases.

The rest of the paper is organized as follows. In the
next section, we briefly describe the mean-field theoreti-
cal framework, and clarify the BKT physics in two dimen-
sions and the related Kosterlitz-Thouless-Nelson (KT-
Nelson) criterion for phase transition. Then, we present
the expressions for the superfluid density tensor and su-
perfluid phase stiffness. The critical BKT temperature
is determined by applying the KT-Nelson criterion. In
Sec. III, we first present the finite-temperature phase di-
agram of the system and then discuss in detail the results
on the superfluid density tensor and critical BKT tem-
perature. Finally, Sec. IV is devoted to the conclusions
and outlooks.

II. MODEL HAMILTONIAN AND MEAN-FIELD

THEORY

We start by considering a 2D spin-orbit coupled two-
component Fermi gas near a broad Feshbach resonance
with the Rashba spin-orbit coupling λσ̂ · k̂, in-plane (hx)
and out-of-plane (hz) Zeeman fields [57]. The system can
be well described by the following single-channel Hamil-
tonian,

H =

ˆ

dr [H0 +Hint] , (1)

where

H0 = ψ†(r)
(

ξ̂k + λσ̂ · k̂− hzσ̂z − hxσ̂x

)

ψ(r) (2)

is the single-particle Hamiltonian and

Hint = U0ψ
†
↑(r)ψ

†
↓(r)ψ↓(r)ψ↑(r) (3)

is the density of interaction Hamiltonian in which the
bare interaction strength U0 is to be regularized with the
standard relation in two dimensions as [49]

1

U0

= − 1

S
∑

k

1

~2k2/m+ Eb
, (4)

with S being the area of the system and Eb the two-
particle binding energy that physically characterizes the
interaction strength. In the single-particle Hamiltonian,
λ is the Rashba spin-orbit coupling strength and we have

used the following notations: (1) ξ̂k ≡ −~
2∇2/(2m)− µ

with the atomic mass m and chemical potential µ; (2)

k̂ = (k̂x, k̂y), where k̂x = −i∂x and k̂y = −i∂y are mo-
mentum operators; and (3) σ̂ = (σ̂x, σ̂y), the Pauli matri-
ces. We have also used ψ(r) = [ψ↑(r), ψ↓(r)]

T (ψ†(r) =

[ψ†
↑(r), ψ

†
↓(r)]) to collectively denote the fermion field op-

erator for creating (annihilating) an atom at r with a
specific spin σ =↑, ↓.

A. Mean-field theory

We solve the model Hamiltonian Eq. (1) by using the
functional path-integral approach [22, 54, 58, 59]. At the
inverse finite temperature β = 1/(kBT ), the partition
function can be written as,

Z =

ˆ

Dψ (r, τ)Dψ̄ (r, τ) exp
{

−A
[

ψ, ψ̄
]}

, (5)

where

A
[

ψ, ψ̄
]

=

ˆ β

0

dτ

ˆ

drψ̄∂τψ +

ˆ β

0

dτH
(

ψ, ψ̄
)

. (6)
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Here, the field operators ψ and ψ† in the model Hamil-
tonian H have been replaced with the corresponding
Grassmann variables ψ(r, τ) and ψ̄(r, τ), respectively.
Following the standard procedure [22], the interaction
term in the Hamiltonian is decoupled using the Hubbard-
Stratonovich transformation. Introducing the auxiliary
complex pairing field φ(r, τ) = −U0ψ↓(r, τ)ψ↑(r, τ), and
integrating out the Grassmann fields, the partition func-
tion becomes

Z =

ˆ

Dφ (r, τ)Dφ̄ (r, τ) exp
{

−Aeff

[

φ, φ̄
]}

, (7)

where in the saddle-point approximation (i.e., mean-field
treatment by replacing φ(r, τ) with a static pairing field
∆(r)), the effective action Aeff takes the form,

Amf = β
∑

k

ξ̂k −
ˆ β

0

dτ

ˆ

dr
|∆| 2
U0

− 1

2
Tr ln

[

−G−1
]

.

(8)
In the above expression, G−1 (r, τ) = −∂τ − HBdG is
the inverse single-particle Green function in the Nambu-
Gorkov representation, with a mean-field Bogoliubov
Hamiltonian,

HBdG =

[

H0(k̂) −i∆(r)σ̂y

i∆(r)σ̂y −H∗
0

(

−k̂
)

]

, (9)

where H0 ≡ ξ̂k+λσ̂ · k̂−hzσ̂z −hxσ̂x. In the presence of
the in-plane Zeeman field hx, it is known that the pair-
ing field takes the FF form ∆(r) = ∆eiQx, with a finite
center-of-mass momentum of the pairs Q = Qex [24–
28]. This helical phase was earlier studied in the context
of noncentrosymmetric superconductors [15, 16]. The
resulting mean-field thermodynamic potential Ωmf =
kBTAmf reads,

Ωmf =
∑

k

ξ̂k−S∆2

U0

−kBT
2

∑

k,iωm

ln det
[

−G−1 (k, iωm)
]

,

(10)
where G−1(k, iωm) is the inverse Green function in mo-
mentum space and ωm = π(2m+ 1)/β with integer m is
the fermionic Matsubara frequency. Making use of the in-
herent particle-hole symmetry of the BdG Hamiltonian,
we find that,

det
[

−G−1 (k, iωm)
]

=
∏

η=1,2

[

(iωm) 2 −
(

Eν=+

kη

)

2
]

,

(11)
where Eν

kη is the quasi-particle energy, obtained by diag-

onalizing HBdG with the FF pairing field ∆(r) = ∆eiQx

[26, 27]. The superscript ν ∈ (+,−) represents the par-
ticle (+) or hole (−) branch and the subscript η ∈(1,2)
denotes the upper (1) or lower (2) branch split by the
spin-orbit coupling [26, 58, 59]. By summing over the

Matsubara frequency, the mean-field thermodynamic po-
tential takes the form,

Ωmf =
1

2

∑

k

(

ξk+Q/2 + ξk−Q/2

)

− 1

2

∑

kη

|E+

kη|

−kBT
∑

kη

ln
(

1 + e−|E+

kη
|/kBT

)

− S∆2

U0

.(12)

Here the term
∑

k ξ̂k is replaced by (1/2)
∑

k(ξk+Q/2 +
ξk−Q/2), in order to cancel the leading divergence of the

term (1/2)
∑

kη |E+

kη|.
For a given set of parameters, for example, the tem-

perature T , binding energy Eb etc., different superfluid
phases can be determined using the self-consistent sta-
tionary conditions:

∂Ωmf

∂∆
= 0, (13)

∂Ωmf

∂Q
= 0, (14)

as well as the conservation of total atom number,

n = − 1

S
∂Ωmf

∂µ
, (15)

where n = N/S is the number density. At a given tem-
perature, the ground state has the lowest free energy
F = Ωmf + µN .

B. Superfluid density tensor

An important quantity to characterize the anisotropic
superfluid properties of a 2D spin-orbit coupled Fermi
gas is the superfluid density tensor. In the case of BCS
pairing, the superfluid density tensor may be analytically
derived within mean-field framework [52, 53, 60], yet the
formalism has not been obtained for a FF superfluid.
According to the definition of the superfluid density, we
calculate it by applying a phase twist to the order param-
eter, ∆twist(vs) = ∆(r)eiq·r , which boosts the system
with a uniform superfluid flow at a velocity vs = ~q/2m
[60–62]. Here ∆(r) is the equilibrium FF order parame-
ter. Physically, only the superfluid component moves un-
der the influence of the superfluid flow. Thus, as the re-
sult of this boost, the thermodynamic potential assumes
the following form in the limit of small velocity,

Ω (vs) ≃ Ω (vs = 0) +
1

2
mS

∑

ij

ns,ijvsivsj , (16)

where ns,ij (i, j = x, y) is the superfluid density tensor.
Therefore, we immediately obtain [60–62],

ns,ij =
1

S
4m

~2

[

∂2Ω (vs)

∂qi∂qj

]

q=0

, (17)
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where Ω (vs) should be calculated with ∆twist(vs) in the
presence of the phase twist. The above relation for the
superfluid density tensor is rigorous. In this work, consis-
tent with the mean-field treatment for thermodynamics,
in Eq. (17) we shall approximate the thermodynamic
potential Ω (vs) by its mean-field value Ωmf (vs).

C. The KT-Nelson criterion for TBKT

The BKT transition in 2D is peculiar, associated with
the spontaneous vortex formation. A unique feature of
such a transition is a universal jump in the superfluid
density (tensor), characterized by the KT-Nelson crite-
rion for the critical BKT temperature [63]. It may be
explained by using the following simple physical picture
for the spontaneous creation of a single vortex at finite
temperature T .

In the absence of spin-orbit coupling and Zeeman
fields, let us consider an isotropic Fermi superfluid in a
circular disk geometry, with a radius of R→ ∞. The ki-
netic energy cost for creating a single vortex at the origin
r = 0 is simply given by,

EV ≃ 1

2
mns

ˆ R

ξ

d2r

(

~

2mr

)2

=
~
2π

4m
ns ln

(

R

ξ

)

, (18)

where ξ is the size of the vortex core. The associated
entropy can be calculated by the number of distinct po-
sitions at which the vortex can be placed,

SV ≃ kB ln

(

πR2

πξ2

)

= 2kB ln

(

R

ξ

)

. (19)

From these two expressions, we see that the free energy
associated with the formation of a single vortex is,

FV = EV − TSV ≃ 2

(

π

2

~
2

4m
ns − kBT

)

ln

(

R

ξ

)

. (20)

It is clear that the free energy changes its sign at a char-
acteristic temperature TBKT determined by

kBTBKT =
π

2
J , (21)

where J = ~
2ns/(4m) is the superfluid phase stiffness.

This is the well-known KT-Nelson criterion [63]. As
ln(R/ξ) diverges in the thermodynamic limit R → ∞,
the temperature TBKT separates two qualitatively differ-
ent regimes. At T > TBKT , the free energy is very large
and negative, suggesting the spontaneous creation of a
free vortex with either positive or negative circulation.
While at T < TBKT , vortices with opposite circulation
will bind together and generate coherence. The sponta-
neous creation of free vortex suggests that the loss of the
phase coherence of the system occurs suddenly. It leads
to a universal jump in the superfluid phase stiffness or
superfluid density, as can be seen clearly from the KT-
Nelson criterion, Eq. (21).

In the case of an anisotropic superfluid, we need to
define a superfluid density tensor

Ns =

[

ns,xx ns,xy

ns,yx ns,yy

]

. (22)

The associated superfluid phase stiffness takes the form,

J =
~
2

4m
(detNs)

1/2 =
~
2

4m

√
ns,xxns,yy, (23)

where in the last equation, we use the fact that ns,xy =
ns,yx = 0, which holds for the system considered in
this work. It can be understood straightforward due to
the E(kx, ky) ↔ E(kx,−ky) symmetry of the dispersion
which forbids the superfluid flow in y-direction from be-
ing boosted by a twist in x-direction.

It is worth noting that although Eq. (21) is obtained
by drawing a simple physical picture, it is a rigorous cri-
terion for the BKT transition. Indeed, the KT-Nelson
criterion was first obtained by using a renormalization
group analysis [63]. For a microscopic derivation, we
may consider the contribution of the pair fluctuations
around the saddle-point solution δφ (q, iνn) to the action
δA, which, at the Gaussian (quadratic) level, is given by
[52, 54, 64, 65],

δA =
1

2

∑

Q=q,iνn

[

δφ† (Q) , δφ (−Q)
]

M

[

δφ (Q)
δφ† (−Q)

]

,

(24)
where the 2× 2 matrix

M ≡
[

M11 (Q) , M12 (Q)
M21 (Q) , M22 (Q)

]

(25)

is the inverse two-particle (pair) propagator and its el-
ements can be evaluated with the mean-field fermionic
Green function G(k, iωm). In the case of BCS pairing
without the in-plane Zeeman field, the expression of the
inverse pair propagator M can be analytically obtained
[54, 64]. In particular, in the limit of long wavelength, the
matrix elements of M can be expanded as functions of
small k and ω. By separating the phase fluctuation and
amplitude (density) fluctuation, the low-energy physics
of the system can be found to be governed by the well-
known classical spin XY model [54, 64], which is the pro-
totype of the BKT physics. In this way, one microscopi-
cally derives the superfluid phase stiffness J and the KT-
Nelson relation. The resulting expression for the super-
fluid phase stiffness coincides with the mean-field phase
stiffness obtained, for example, by using the mean-field
thermodynamic potential in Eq. (17). In our FF case,
the expression of the superfluid phase stiffness could be
derived in a similar manner. However, in this case, the
analytical expression of the inverse pair propagator M

is more difficult to obtain, although we can numerically
sum over the bosonic Matsubara frequency iνn. There-
fore, to calculate the superfluid phase stiffness, we prefer
to directly use Eq. (17) with a mean-field thermodynamic
potential.
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D. Pair fluctuations beyond mean-field

To close this section, we briefly discuss how to improve
the mean-field theory. An immediate idea is to work
out the Gaussian correction to the action, δA, and then
use the improved thermodynamic potential around the
saddle point ∆(r) = ∆eiQx [61, 62, 66],

ΩGPF = Ωmf + kBT
∑

Q=q,iνn

lnM (Q) , (26)

to calculate the equation of state through the standard
thermodynamic relations and the superfluid density ten-
sor via Eq. (17). In this way, the thermodynamics and
the superfluid density tensor of the system can be con-
sistently determined at the same level of approximation.
Alternatively, we may also consider using ΩGPF to de-
termine the chemical potential µ and then calculate the
superfluid density tensor using the mean-field expression.
However, as the trade-off of this cheap treatment, we may
have an inconsistency. The resulting critical BKT tem-
perature could be less reliable. For a detailed discussion,
we refer to the recent work by Tempere and Klimin [67].

III. RESULTS AND DISCUSSIONS

Using the above-mentioned mean-field theoretical
framework, we have systematically explored the low-
temperature phase diagram and the thermodynamic sta-
bility of different exotic Fulde-Ferrell superfluid phases.
In our numerical calculations, we take the Fermi wavevec-
tor kF =

√
2πn and the Fermi energy EF = ~

2k2F /(2m)
as the units for wavevector and energy, respectively. For
a typical set of parameters (i.e., default parameters), we
use the interaction parameter Eb = 0.2EF , spin-orbit
coupling strength λ = EF /kF , in-plane Zeeman field
hx = 0.4EF , out-of-plane Zeeman field hz = 0.1EF and
temperature T = 0.05TF .

A. Low-temperature phase diagrams

In the recent Letter [44], we have discussed the phase
diagram and the appearance of an interesting gapless
topological Fulde-Ferrell superfluid at a weak interaction
strength parameterized by Eb = 0.2EF . Experimentally,
it is most likely that the measurement will be carried out
at a stronger interaction strength, where the superfluid
transition temperature is anticipated to be higher. In
order to optimize the experimental condition for observ-
ing the gapless topological superfluid, here we present a
systematic study with varying binding energy, from the
weakly interacting BCS side to the strongly interacting
BEC-BCS crossover regime.

In Fig. 1, we report two phase diagrams at the typi-
cal low temperature T = 0.05TF on the plane of Eb-hx
(a) or Eb-hz (b). The superfluid phase stiffness πJ /2

h
x
/
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tnFF3

tnFF1
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1
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tgFF

Figure 1: (color online) Phase diagrams of a 2D spin-orbit
coupled atomic Fermi gas at a broad Feshbach resonance and
at a typical low temperature 0.05TF with (a) hz = 0.1EF or
(b) hx = 0.4EF . The strength of spin-orbit coupling is λ =
EF/kF . There are four superfluid phases: gFF, nFF, tnFF
and tgFF (whose phase stiffness πJ /2 - in units of EF - is
illustrated in color), as well as a pseudogap phase (grey area).
We treat the system as a normal gas (shown in white) when
the pairing gap ∆ < 10−3. In the gapless topological phase,
the notations tnFF1, tnFF2 and tnFF3 distinguish different
zero-energy contours in energy spectrum. For details, see the
contour plots in Fig. 2.

in different phases is color illustrated and its detailed
behavior will be discussed in the next subsection. The
superfluid phases are determined using the KT-Nelson
criterion πJ (T = 0.05TF )/2 > kBT = 0.05EF . Obvi-
ously, there is a pseudogap regime (shown in grey), in
which the pairing order parameter is finite but the su-
perfluid phase stiffness is not large enough to drive the
BKT transition. A better understanding of the pseudo-
gap phase requires a careful treatment of strong phase
fluctuations. It is out of the scope of the present paper.
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1. gapless topological transition

It is known from previous studies [42–44] that the
combined effect of spin-orbit coupling, in-plane and out-
of-plane Zeeman fields may induce several exotic super-
fluid phases: gapped FF (gFF), gapless FF (nFF), gap-
less topological FF (tnFF) and gapped topological FF
(tgFF), classified by considering whether the system has
a bulk-gapped and/or topologically non-trivial energy
spectrum. In the literature, the topological superfluid-
ity was firstly studied with an out-of-plane Zeeman field
only [22, 32]. In that case, topological phase transition
can be driven by increasing the out-of-plane Zeeman field
hz above a threshold

hz,c =
√

∆2 + µ2, (27)

at which the dispersions of the particle- and hole-
branches touch each other at the single point k = 0,
meanwhile the bulk excitation gap closes. Afterwards,
the topology of the Fermi surface dramatically changes
and the excitation gap re-opens [22, 68, 69]. It is straight-
forward to understand the single-point closure of the exci-
tation gap, since the Fermi surface is always rotationally
symmetric. This also implies that the resulting topolog-
ical superfluid must be gapped in the bulk. However,
such a scenario may be greatly altered by the presence
of a non-zero in-plane Zeeman field, which favors the FF
pairing with a finite center-of-mass momentum and con-
sequently breaks the rotational symmetry of the Fermi
surface.

In the case of a small in-plane Zeeman field, the ro-
tational symmetry breaking of the energy spectrum is
not significant. Although the system becomes a FF su-
perfluid, its bulk excitation gap still closes at the single
point k = 0, accompanied by the change of the topol-
ogy of the Fermi surface. An example is the transition
from gFF to tgFF shown in Fig. 1(b) at large binding
energy Eb > 0.3EF , where the in-plane Zeeman field is
effectively weak. As a result, the picture of the out-of-
plane field induced topological phase transition remains
unchanged [41–43].

When the in-plane Zeeman field keeps increasing over
a threshold hx,c1, however, the closure of the excitation
gap and the change of the topology of the Fermi surface
may not occur at the same time. A gapless superfluid
phase - referred to as nFF - may emerge in the first place
at k 6= 0. The nodal points with Eν

η=2(kx, ky) = 0 form
two disjoint loops (see, for example, the transition from
gFF to nFF in Fig. 1(a)). The topology of the Fermi
surface only changes when the in-plane Zeeman field fur-
ther increases up to another critical value hx,c2, at which
the two nodal loops connect at k = 0. We refer to the
previous work Ref. [44] for a detailed characterization of
the gapless topological transition.

2. Binding energy dependence of the phase diagram

It can now be understood that both the in-plane and
out-of-plane fields can drive the topological phase tran-
sition, but the underlying property of the resulting topo-
logical phase, in terms of the gapless or gapped bulk spec-
trum, depends critically on the relative strength of the
two fields. The gapless topological FF superfluid (tnFF)
intentionally emerges in the parameter regime where hx
is larger enough relative to hz.

This is particularly clear from Fig. 1(a), where we
have fixed the strength of the out-of-plane Zeeman field
to hz = 0.1EF . The tnFF phase accounts for most of the
space for topological phases. It is remarkable that the
window of the tnFF superfluid remains very significant
when the binding energy increases up to 0.5EF , suggest-
ing the use of a large interaction strength near Feshbach
resonances, for the purpose of having a larger BKT tran-
sition temperature to observe the exotic tnFF phase. On
the contrary, Fig. 1(b) - where we have fixed the in-plane
Zeeman field to hx = 0.4EF - clearly reveals that the
gapped topological FF superfluid (tgFF) occupies most
of the space for topological phases, when the out-of-plane
Zeeman field is larger than the in-plane Zeeman field. In
this case, the tnFF phase is restricted to the parameter
space with a small out-of-plane Zeeman field and a weak
interaction strength, as one may anticipate.

3. Different gapless topological superfluid phases

It is interesting that the gapless topological FF super-
fluid may be further classified into different categories
(tnFF1, tnFF2 and tnFF3), according to the number and
position of its disjoint loops of nodal points, as shown in
the right panel of Fig. 2. The tnFF1 superfluid is most
common and has two nodal loops, one for the particle
branch (red loop) and another for the hole branch (blue
loop). The tnFF3 superfluid also has two nodal loops.
However, the loops for the particle and hole branches ex-
change their position. It occurs only at large in-plane
Zeeman field and binding energy. The tnFF2 seems to
connect the tnFF1 and tnFF3 phases. It has four disjoint
nodal loops and exists only in a very narrow parameter
space (see, for example, Fig. 1(a)). We note that the two
gapless topological phases, tnFF1 and tnFF3, may also
be intervened by a gapped topological phase, in which
there is no nodal loop at all.

B. Superfluid density

Having determined the low-temperature phase dia-
gram, we are in position to understand the superfluid
density and the critical BKT temperature of different su-
perfluid phases, which have been only briefly mentioned
in our previous Letter [44]. In the presence of spin-orbit



7

E
ν
=
±

η
=
2
/
E

F
(a)

1.5 1 0.5 0 0.5 1 1.5
0.8

0.4

0

0.4

0.8
E

ν
=
±

η
=
2
/
E

F

(c)

1.5 1 0.5 0 0.5 1 1.5
1.2

0.6

0

0.6

1.2

kx/kF

E
ν
=
±

η
=
2
/
E

F

(e)

1.5 1 0.5 0 0.5 1 1.5
1.2

0.6

0

0.6

1.2

k
y
/
k
F

(b)

1.5 1 0.5 0 0.5 1 1.5
0.5

0

0.5

k
y
/
k
F

(d)

1.5 1 0.5 0 0.5 1 1.5
0.5

0

0.5

kx/kF
k
y
/
k
F

(f )

1.5 1 0.5 0 0.5 1 1.5
0.5

0

0.5

Figure 2: (color online) Dispersion relation of the lower
branch Eν

η=2(kx, ky = 0) (left panel, red curves for particle
excitations ν = + and blue curves for hole excitations ν = −)
and the corresponding contour of zero-energy nodes (right
panel). (a) and (b) correspond to the red point in Fig. 1 for
the tnFF1 phase, (c) and (d) the yellow point for the tnFF2

phase and, (c) and (f) the magenta point for the tnFF3 phase.

coupling, it is known that the superfluid density is a ten-
sor [52, 54]. We then have to consider both diagonal el-
ements of the superfluid density tensor, ns,xx and ns,yy.

In Fig. 3, we present the Zeeman field dependence of
ns,xx and ns,yy at zero temperature (left panel, a and
c) and at a finite temperature T = 0.05TF (right panel,
b and d). In general, as a consequence of the in-plane
Zeeman field applied along the x-axis, ns,xx is smaller
than ns,yy, except at extremely low temperature and suf-
ficiently large Zeeman fields.

At zero temperature, ns,xx initially decreases with in-
creasing Zeeman fields and exhibits a sudden drop when
the system evolves from the gFF phase into the nFF
phase at the threshold hx,c1 (or hz,c1). At hx > hx,c1
(or hz > hz,c1) it then rises up gradually and is always
enhanced by the Zeeman field. Apart from the discontin-
uous jump, similar Zeeman-field dependence of the super-
fluid density has been reported for a gapped BCS topo-
logical superfluid across the topological phase transition
[54]. Compared with the non-monotonic field dependence
of ns,xx, we always find that ns,yy decreases continuously
with increasing the Zeeman field. Instead of the sudden
drop, a kink is observed at the transition from the gFF
phase to the nFF phase.

The behavior of the superfluid density is profoundly
affected by a nonzero temperature. Already at T =
0.05TF , the discontinuous drop in ns,xx is smoothed
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Figure 3: (color online) Diagonal elements of the superfluid
density tensor as a function of hx and hz at zero temperature
(left panel) and at a finite temperature T = 0.05TF (right
panel). The superfluid density is measured in units of the
total density n = k2

F /(2π). In (a) and (b), the out-of-plane
Zeeman field strength hz = 0.1EF . In (c) and (d), the in-
plane Zeeman field strength hx = 0.4EF . Other parameters
are Eb = 0.2EF and λ = EF/kF .

out, leaving a broad minimum with a width ∆hx,z ∼
2kBT = 0.1EF . Moreover, at the large Zeeman field
hx,z ∼ 0.6EF , ns,xx starts to decrease with increasing the
Zeeman field. At even higher temperature (not shown in
the figure), the local minimum in ns,xx may disappear.

In Fig. 4, we report the temperature dependence of the
superfluid density at six typical sets of parameters, which
correspond to different superfluid phases at T = 0.05TF ,
as shown in Fig. 1(a). ns,xx and ns,yy decrease as tem-
perature increases, in agreement with the common idea
that the superfluid component should be gradually de-
stroyed by thermal excitations. It is remarkable that for
the gapless topological tnFF1 phase (see Fig. 4(a)), the
superfluid density does not decrease rapidly with increas-
ing temperature, implying a sizable critical BKT transi-
tion temperature for its experimental observation, as we
shall discuss in greater detail in the next subsection. In
contrast, the superfluid density of other two gapless topo-
logical phases (tnFF2 and tnFF3 in Figs. 4(b) and 4(c),
respectively) is more sensitive to temperature and van-
ishes at T ∼ 0.1TF , probably due to their large Zeeman
fields.

C. Critical BKT temperature and

finite-temperature phase diagrams

We now turn to consider the critical BKT temperature,
which is determined by the KT-Nelson criterion,

kBTBKT =
π~2

8m
[ns,xx (TBKT )ns,yy (TBKT )]

1/2 . (28)
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Figure 4: (color online) Temperature dependence of the diago-
nal elements of the superfluid density tensor, at the six points
shown in Fig. 1(a): (a) Eb = 0.21EF and hx = 0.58EF ,
the tnFF1 phase; (b) Eb = 0.21EF and hx = 0.71EF , the
tnFF2 phase; (c) Eb = 0.33EF and hx = 0.8EF , the tnFF3

phase; (d) Eb = 0.4EF and hx = 0.789EF , the tgFF phase;
(e) Eb = 0.21EF and hx = 0.2EF , the gFF phase; and (f)
Eb = 0.1EF and hx = 0.33EF , the nFF phase. The superfluid
density is measured in units of the total density n = k2

F /(2π).
Other parameters are hz = 0.1EF and λ = EF/kF .

In the above equation, we have explicitly written down
the temperature dependence of the superfluid density, in
order to emphasize the fact that the critical BKT tem-
perature should be solved self-consistently. In Figs. 5, 6
and 7, we show the results as a function of the binding
energy, Zeeman fields and spin-orbit coupling strength,
respectively. These results should be regarded as finite-
temperature phase diagrams, as they show clearly which
kind of superfluid phases is preferable when tempera-
ture decreases. In the curves, we use different colors to
distinguish different emerging superfluid phases: green
for the gFF phase, red for the nFF phase, blue for the
tnFF phase and finally yellow for the tgFF phase. It is
clear that all the four FF superfluid phases have signifi-
cant critical BKT temperature except for the parameter
regime with very small binding energy Eb and/or spin-
orbit coupling strength λ, or with very large in-plane
Zeeman field hx and/or out-of-plane Zeeman field hz.

As illustrated in Fig. 5, the critical BKT temperature
TBKT always increases monotonically with increasing the
binding energy Eb, as the pairing and superfluidity are
enhanced at strong interatomic interactions. The binding
energy is the dominant factor in forming Cooper pairs.
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Figure 5: (color online) The critical BKT transition tem-
perature as a function of the binding energy Eb at different
in-plane Zeeman fields (a) or out-of-plane Zeeman fields (b).
Here and in the next two figures, the color green, red, blue
and yellow in the curves denote the superfluid phase gFF,
nFF, tnFF and tgFF, respectively.
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With a small binding energy, the system is mainly of
fermionic character. On the contrary, with a sufficiently
large binding energy, the system tends to act as a gas of
bosons. Therefore, with increasing the binding energy up
to some points, the system would lose its fermionic char-
acter near the BEC-BCS crossover (i.e., Eb ∼ 0.5EF )
and hence should become topologically trivial. Indeed,
at large binding energy we observe that the system al-
ways approaches the topologically trivial gFF phase. The
topological phase, either gapless (tnFF in blue) or gapped
(tgFF in yellow), is favored at small binding energy,
where the critical BKT temperature is lower. Neverthe-
less, we find that by suitably tuning the parameters, it is
possible to have a gapless topological tnFF phase with a
sizable critical BKT temperature TBKT ∼ 0.09TF for the
binding energy up to Eb ≃ 0.4EF (see, for example, the
dot-dashed line at the bottom of Fig. 5(a)). This tem-
perature is clearly within the reach in current cold-atom
experiments [70].

On the other hand, the critical BKT temperature de-
creases monotonically with increasing the Zeeman field,
either in-plane or out-of-plane, as shown in Fig. 6. It
is readily seen that with decreasing temperature the sys-
tem would first turn into either the tnFF or tgFF phase
at sufficiently large in-plane Zeeman field hx or out-of-
plane field hz, respectively. While at low Zeeman fields,
the topologically trivial gFF phase is preferable. This
agrees the observation we made in discussing the low-
temperature phase diagrams in Fig. 1.

It is worth noting that, one may use the binding en-
ergy dependence or the Zeeman field dependence of the
critical BKT temperature to identify different emerging
superfluid phases. This is particularly clear for the gap-
less tnFF and nFF phases, as the curvature of the TBKT

curve for those phases behaves quite differently. For the
tnFF phase, the curve is concave; while for the nFF
phase, it is convex. This change in curvature (i.e, from
concave to convex) seems to be related to the local min-
imum in the superfluid density component ns,xx that we
have reported earlier in Fig. 3.

We now discuss the critical BKT temperature as a
function of the spin-orbit coupling strength λ, as shown
in Fig. 7. Compared with the binding energy dependence
and Zeeman field dependence, the dependence of TBKT

on the spin-orbit coupling strength is non-monotonic and
the emerging superfluid phases can re-appear with in-
creasing the coupling strength. Therefore, the TBKT

curve is more subtle to understand. Nevertheless, we
may identify that the topologically trivial gFF superfluid
phase tends to be favorable at large spin-orbit coupling.
This is because the pairing gap is usually enhanced by the
spin-orbit coupling, which makes the topological phase
transition much more difficult to occur (cf. Eq. (27)).
At small spin-orbit coupling, on the other hand, the crit-
ical BKT temperature may dramatically decrease to zero,
particularly at a small binding energy and/or a large Zee-
man field. Thus, for the purpose of observing the gapless
topological tnFF phase, experimentally it seems better
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Figure 7: (color online) The critical BKT transition temper-
ature as a function of the spin-orbit coupling strength λ at
different binding energies (a), in-plane Zeeman fields (b) and
out-of-plane Zeeman fields (c).
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to use an intermediate spin-orbit coupling strength, i.e.,
λ ∼ EF /kF .

We note that the BKT critical temperature can remain
significant at very small or even zero spin-orbit coupling
(see Figs. 7(a) and 7(b)). In those cases, the behavior of
the system depends on the interplay of pairing interac-
tion and Zeeman field. When the attractive interaction
is strong and overcomes the pair-breaking effect due to
the Zeeman field, the cloud can be a fully paired state
with equal numbers of spin-up and spin-down atoms. In
Fig. 8, we show the spin-imbalance as a function of the
spin-orbit coupling strength at Eb = 0.3EF and h =
√

h2x + h2z ≃ 0.54EF . In the absence of the spin-orbit
coupling, the spin-imbalance is strictly zero, since the
Zeeman field is smaller than a critical field hc ≃ 0.6EF

[71], beyond which the system will turn into a phase-
sparation phase with atoms coexisiting in either the fully
paired superfluid state or a partially polarized normal
state. As expected, the FF momentum Q also become
zero in the absence of the spin-orbit coupling.

IV. CONCLUSIONS

In summary, we have presented a systematic investi-
gation of the Berezinskii-Kosterlitz-Thouless transition
in a spin-orbit coupled atomic Fulde-Ferrell superfluid
in two dimensions. We have calculated the superfluid
density and superfluid transition temperature of various

Fulde-Ferrell superfluids. We have paid special attention
to an interesting gapless topological Fulde-Ferrell super-
fluid and have clarified that, by suitably tuning the exter-
nal parameters - for example, the interatomic interaction
strength, in-plane and out-of-plane Zeeman fields, and
spin-orbit coupling strength - its observation is within
the reach in current cold-atom experimental setups.

Our investigation is based on the mean-field theoreti-
cal framework, which is supposed to be applicable to a
weakly interacting two-dimensional Fermi gas (i.e., the
binding energy Eb ≤ 0.2EF ). For a more reliable and
quantitative description, in future studies it would be
useful to take into account the strong phase fluctuations
by using many-body T -matrix theories [66, 72, 73].
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