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Dynamics of colliding ultracold plasmas
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Formation of a secondary plasma of NO+ ions and electrons within an ultracold plasma produces
an observable change in the hydrodynamics of the system. Direct photoionization adds energetic
electrons, which increase the rate of expansion. The introduction of a secondary Rydberg gas has
the opposite effect. In both cases, the added ions create an inertial drag that acts initially to retard
the expansion of the electron gas. A cold-ion hydrodynamic shell model, which accounts well for
the effect of energy added by photoionization electrons, predicts the formation of collisionless shock
waves.

PACS numbers: 52.55.Dy, 32.80.Ee, 33.80.Gj, 34.80.Lx

I. INTRODUCTION

The free expansion of a plasma directly reflects its
internal kinetic energy. In the very simple limit of a
spherical Gaussian ion/electron density distribution, a
self-similar solution of the Vlasov equations describes the
hydrodynamics of such expansions analytically [1].

Experiments that explore the interaction of two such
systems offer an elementary test bed on which to explore
the complex microphysics of colliding plasmas [2, 3],
and a scaleable simulator to aid in understanding the
dynamics of high-energy laboratory [4, 5] and natural
systems [6].

For an ultracold plasma, where ions have energies
less than a few degrees Kelvin, the rate of expansion
depends largely on the temperature of the electron gas
[1]. The electron temperature of a plasma is of great
interest, because it determines the magnitude of the
electron correlation parameter, Γe = e2/(4πε0awskBTe),
where the Wigner-Seitz radius, aws, relates to density by,
aws = 3

√
3/4πρ. A Γe > 1 signifies strong coupling.

Hydrodynamic models for the expansion of Gaussian
ultracold plasmas created by threshold ionization at the
∼ 109 cm−3 density of a magneto-optical trap (MOT),
conform with experimental electron temperatures greater
than 30 K [7], and Γe < 1.

The evident heating of electrons in these systems ac-
cords with the expected energy transfer kinetics associ-
ated with coupled rate processes of three-body recombi-
nation and collisional relaxation of neutrals by electron
impact [8].

Plasmas formed in supersonic molecular beams at or-
ders of magnitude higher density exhibit slower expan-
sion suggesting lower electron temperature [9–12]. These
results do not square with classical MD simulations,
which hold that correlation heating alone suffices to limit
Γe to values smaller than 0.5 [13, 14].

This begs two questions: Do the ions formed at the
density of a molecular beam ultracold plasma undergo a
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conventional ambipolar expansion driven by the electron
gas? Does the kinetic energy of this electron gas fit with
the temperature suggested by the observed rate of this
expansion?

In the present work, we attempt to address these
questions by exploring the responsiveness of a molecular
beam ultracold plasma to interventions that perturb the
electron temperature and alter the radial velocity distri-
bution of the expanding ions. In effect, we use secondary
laser excitation to create a plasma expanding within a
plasma.

In our experiment, double-resonant excitation first
excites a small fraction of the NO molecules in a selected
volume of a seeded supersonic molecular beam to produce
a Rydberg gas, |n0 >, which evolves to form an ultracold
plasma. A second pair of lasers intercepts the same vol-
ume 10 µs later. Depending on chosen laser wavelengths,
this secondary excitation either ionizes residual ground-
state NO, injecting a distribution of stationary ions and
hot electrons, or creates a secondary Rydberg gas within
the volume of the original plasma.

Unsurprisingly, these interventions change the ob-
served expansion behaviour of the plasma. We develop
a hydrodynamic, plasma-in-plasma model to explain our
observations. This model both accounts for the effects of
perturbation, and serves to solidify our interpretation of
the unperturbed expansion.

II. EXPERIMENTAL

The experiment seeds nitric oxide at 10 percent in a
pulsed jet of helium. The skimmed expansion from a
stagnation pressure of 5 atm through a 0.5 mm nozzle
forms a supersonic molecular beam in which NO in the
interaction volume, 10 cm downstream, has a density of
1013 cm−3 and a laboratory velocity of 1400 m s−1. In
the moving frame, the entrained NO has a longitudinal
temperature of T‖ ≈ 500 mK, and a transverse tempera-
ture, T⊥, at least 10 times smaller.

Double resonant excitation pulses from a pair of tune-
able dye lasers, ω1 and ω2, promotes about 12 percent
of the ground-state NO in the interaction volume to a
selected high Rydberg state. Tuning ω1 to 44199 cm−1,
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a pulse energy of 80 µJ, saturates the transition from
the negative parity lambda doublet component of the
NO X 2Π N ′′ = 1 (J = 1/2) to the positive parity
A 2Σ+ N ′ = 0 (J = 1/2) state. Then, with ω2 tuned to
30490 cm−1, a pulse energy of 12 mJ saturates a second
optical transition, forming a Rydberg gas with n0 = 50
in the f series converging to N+ = 2, designated 50f(2).

Coupled rate simulations according with time-resolved
pulsed-field ionization experiments suggest that this
dense Rydberg gas evolves to plasma on the timescale
of tens of nanoseconds [15].

Figure 1 diagrams the experimental apparatus. We
monitor the growing width of the plasma as it transits
a detection plane formed by a moveable grid, G2, that
intercepts the interaction volume propagating on the axis
of the molecular beam. The longitudinal position of the
G2 detection assembly determines the propagation time
of the plasma through the field-free region between the
entrance aperture, G1, and the detection plane.
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FIG. 1: Experimental apparatus. A skimmed supersonic
molecular beam enters a nominally field-free region through
an aperture in grid G1. There it intersects counter-
propagating laser beams indicated as ω1 and ω2. Down-
stream, laser pulses, ω′1 and ω′2, timed to intercept the the
initially excited volume, excite residual ground state NO. As
the excitation volume transits the plane defined by grid G2, a
microchannel plate detector (MCP) situated behind grid G3

collects the signal of extracted plasma electrons. The carriage
holding G2, G3 and the MCP detector translates in vacuum
within a 20 cm interval under stepper motor control.

As the plasma travels in z through the G2 detection
plane, dislodged electrons produce a Gaussian signal
waveform. The width of this waveform in time gauges the
radius of the plasma charge distribution in the y, z plane.
This radius grows with time as the plasma expands.

We perturb this plasma by intercepting the interaction
volume with overlapped, co-propagating laser beams, ω′1
and ω′2, 14 mm downstream from the point of initial
excitation. With pulse energy on the order of 100 µJ, ω′1
serves again to saturate the transition from the residual
ground-state NO X 2Π N ′′ = 1 (J = 1/2) to the
A 2Σ+ N ′ = 0 (J = 1/2) state.

Setting ω′2 to reach an energy above the double-
resonant ionization threshold of NO drives this A-state
population into the continuum of NO+ ions and free elec-
trons. Tuning ω′2 to a resonance below threshold prepares
a secondary Rydberg gas. We use the comparative signal
produced by ω′1 + ω′2 to optimize the alignment of the
second pair of lasers on the active plasma.

III. RESULTS

When the two pairs of lasers excite separate volumes of
NO propagating along the axis of the molecular beam, we
observe the electron-signal waveforms of two interaction
volumes transiting G2. As shown in Figure 2, these
waveforms coalesce when pulses, ω′1 and ω′2, incident at
position 2 arrive at the delay time required to intercept
the plasma volume created at position 1 by ω1 + ω2.
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FIG. 2: Black trace: Waveform observed when the illumi-
nation volume formed by laser pulses, ω1 + ω2 at position
reaches the detection grid, G2. Grey trace: Typical waveform
observed when laser pulses ω′1 + ω′2 intercept this volume at
position 2.

We determine how the plasma expands as a function of
time by fitting Gaussian functions to the electron signal
waveform detected at successive positions of G2. Figure
3 plots the RMS radius as a function of flight time for
an unperturbed plasma compared with that observed
for plasmas perturbed either by (1) setting ω′2 to the
above threshold energy of 30,590 cm−1, which adds a hot
electron component with an excess energy of 55 cm−1 or
(2) setting ω′2 to the below-threshold energy of 30,504
cm−1, which creates a 60f(2) Rydberg gas within the
original plasma volume.

IV. DISCUSSION

The central curve in Figure 3 describes the free ex-
pansion of the simple plasma that evolves solely from a
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FIG. 3: (color online) Central trace: Electron RMS half-
width, σ(t), of the electron signal waveform measured for the
plasma that evolves from a Rydberg gas created at position 1.
Upper trace: σ(t) of of the electron signal waveform measured
for the plasma perturbed by injecting hot electrons at position
2 after an elapsed time, t = 10 µs. Square points obtained
for a shell model of the concentric colliding plasmas (see
text). Lower trace: σ(t) of of the electron signal waveform
measured for the plasma perturbed by injecting a secondary
Rydberg gas with n0 = 60 at position 2 after an elapsed
time, t = 10 µs. Solid line represents a Vlasov expansion
commencing at t = 0 µs for an electron temperature of 5 K.

Rydberg gas created at position 1. The plotted width be-
gins to change slowly, then rises with a slope that reflects
a ballistic radial ion velocity of 38 m s−1. Previous work
has shown that such a variation in width as a function of
time for a simple laser-produced molecular beam plasma
conforms reasonably with the Vlasov equations for a self-
similar expansion of a quasi-neutral Gaussian distribu-
tion of ions and electrons [11, 16], much as observed in a
MOT [1]:

σz(t) = σz(0)

(
1 +

t2

τ2z

)1/2

(1)

where σz(0) describes the RMS radius of the plasma
formed by initial evolution from the Rydberg gas, and
τz is the characteristic time for radial expansion of the
ions measured in z. This latter quantity is determined by
thermal motion of the ions at an initial temperature Ti(0)
plus the hydrodynamic acceleration caused by electro-
static coupling to an expanding electron gas with initial
temperature, Te(0):

τ2z =
miσz(0)2

kB [Te(0) + Ti(0)]
(2)

The solid curve through the central data in Figure 3
plots σz(t) predicted by the Vlasov equations for a self-
similar expansion of a quasi-neutral Gaussian distribu-

tion of ions and electrons for σz(0) = 176±2 µm, Te = 5.4
K and Ti = 1 K.

This conventional plasma formed by ω1 + ω2 double-
resonant excitation, and its apparent self-similar expan-
sion, provide a useful frame of reference from which to
interpret the expansion behaviour of plasma volumes
perturbed by ω′1 + ω′2 secondary excitation.

Direct ω′1 + ω′2 photoionization of residual NO in the
excitation volume modifies the plasma state at t = 10 µs
by adding a population of hot electrons. Figure 3 shows
that this injection of energetic electrons at t = 10 µs does
not immediately affect the expansion rate. But, between
15 and 20 µs, the ions accelerate to nearly double their
radial velocity.

Tuning ω′2 to a Rydberg resonance initially freezes
the plasma, decelerating the radial velocity nearly to
zero. The ions then again begin to accelerate, eventually
reaching a ballistic velocity comparable to that of the
unperturbed plasma.

We can qualitatively explain these effects on physical
grounds. Referring first to secondary excitation below
threshold, we note that Pillet and coworkers have simi-
larly added Rydberg atoms to an ultracold plasma in a
caesium MOT, probing the effect on electron density and
temperature [17]. Much like our results, they find that
electron collisions rapidly ionize the added Rydberg gas,
and that accompanying Rydberg redistribution acts to
balance the associated energy cost, causing the tempera-
ture to remain about the same [18]. This then leaves only
the inertial effect of the cold secondary ions, which, after
a time, equilibrate with the expanding gas of electrons
and primary ions.

The injection of hot electrons by direct photoioniza-
tion supplies a source of energy that must increase the
effective pressure of the electron gas on the radially accel-
erated ions. In this case as well, secondary excitation also
adds the inertial mass of a new population of ions that
have the sub-Kelvin temperature of the neutral molecules
in the supersonic beam.

In an effort to account for this perturbation quantita-
tively, we have developed a hydrodynamic shell model for
colliding plasmas, which we apply here to the particular
case of above-threshold electron/ion injection. We as-
sume that the electrons equilibrate instantaneously and
form a neutralizing bath. The expansion of this electron
gas entirely governs the dynamics of the ions, so we can
treat the primary and secondary ion spatial distributions
separately.

We describe these ion distributions as spherical Gaus-
sians approximated by two sets of 200 concentric spher-
ical shells. Each shell encloses a particular number of
ions and neutralizing electrons. As the plasma expands,
the shell boundaries grow to maintain a constant number
of ions. Quasi-neutrality persists, but electrons and
electron energy exchange rapidly between shells.

Figure 4 diagrams this situation. The larger system
of shells defines a distribution of concentric volume el-
ements, each containing a defined number of ions (and



4

Ambipolar Expansion

Ambipolar expansion signifies a well-defined quasi-neutral
plasma. Measured rates of expansion serve as an important
experimental gauge of initial electron temperature. Self-similar
expansions of ultracold Gaussian plasmas in MOTs establish
electron temperatures as low as 30 K, limited by the electron-
heating e↵ects of Rydberg relaxation following three-body
recombination. Molecular ultracold plasmas formed in super-
sonic molecular beams expand more slowly.

Post-Plasma Injection

In an e↵ort to validate molecular beam observations, we have
used a second, delayed pair of laser pulses to form a secondary
plasma within a primary one. The primary plasma forms by
evolution from a Rydberg gas excited by double resonance to
n0 = 50 with a density of 1012 cm�3. This process depletes the
neutral beam of NO by no more than 12%. The expanding
electron gas radially accelerates the primary ions and cools
the primary electrons. After 10 µs, a second two-colour pulse
prepares a comparable population of stationary NO+ ions and
adds a component of free electrons with energy, T 0

e = 42 K.

Expansion Dynamics of Electron-Coupled Frozen
and Radially Accelerated Ion Distributions

Rapid collisions equilibrate the two populations of electrons.
The added energy increases the rate of NO+ expansion, but
only after overcoming the inertia of the stationary ions. Quasi-
neutrality with the electrons couples the two ion distributions.
The radially fast ions apply pressure to the electron distribu-
tion, which is retarded by the stationary charge of the frozen
ions. The abrupt change in the charge density gradient at the
intersection of the ion radial distribution functions produces a
force di↵erential that forms a radial ion density wave.
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FIG. 4: (color online) Schematic diagram representing a shell
model for the hydrodynamics of concentric cold-ion neutral
plasmas undergoing ambipolar expansion. (lower left) Repre-
sentation of shells for a primary plasma expanding with shell
velocity, v(ri) determined by 10 µs of self-similar ambipolar
expansion, and shells formed at t = 10 µs by secondary
excitation. (upper left) Initial spherical Gaussian charge
distributions for the primary plasma (blue) and the secondary
plasma (red). (right) Charge distributions after 20 and 35 µs
of expansion. In all cases, a black curve describes the electron
charge distribution.

neutralizing electrons) at a succession of defined densi-
ties. We neglect the thermal motion of the cations, so
each of these shells expands with an indexed velocity
v(ri) that starts with all values of v(ri) equal to 0 at
t = 0.

The narrower system of shells defines a separate distri-
bution of concentric volume elements containing ions and
electrons created at t = 10 µs by the laser pulse sequence
ω′1 + ω′2. At t = 10 µs, primary shell velocities, v(ri),
have values that cause dσ/dt to equal 38 µm µs, while
all secondary shell velocities, v(r′i), equal 0.

We treat each ion shell independently, calculating the
distinct force acting upon it owing to the immediate
gradient of the electronic density distribution. The
first moment of the Boltzmann equation describes the
potential that determines these expansion forces. With
reference to the generalized velocity coordinate u, an ion
in either the primary or secondary system, experiences
an acceleration determined by:

du

dt
= − e

mi
∇φ (3)

where e∇φ is the gradient of the electron density distri-
bution at the radial position of the ion and mi is the
ion mass. In the limit of quasi-neutrality, an electron
density distribution, defined by superimposed shells of
uniform ion density, yields a gradient in terms of discrete

differences:[19]

e∇φ(ri) = kBTe
1

ne(ri)

ne(ri+1)− ne(ri−1)

ri+1 − ri−1
(4)

where ri refers to a shell radius in either system, and
ne(ri) is the local electron density determined by the
total number of ions as a function of ri.

As this system expands each shell moves with a radial
velocity,

∂ri(t)

∂t
= ui(t) = γi(t)ri(t) (5)

Neglecting loss by dissociation, the density change in
each shell satisfies the continuity equation,

∂ni(t)

∂t
+

ni
Vi(t)

∂Vi(t)

∂t
= 0 (6)

where Vi is the volume of shell i,

Vi =
4

3
π(r3i+1 − r3i ) (7)

and,

∂Vi(t)

∂t
≈ 3γi(t)Vi(t) (8)

The expansion of the electron gas accelerates the
cations. Energy flows from the thermal motion of the
electrons to the radial motion of the ions, and the electron
temperature falls by an amount,

dTe
dt

= − 2mi

3kBNe

∑
i

Niui
dui
dt

=
2

3kBNe

∑
i

Niuie∇φ(ri)

(9)
Equations (3), (4) and (6) describing ion acceleration,

together with (9) for the decrease in electron temper-
ature, form a complete set for numerical integration to
determine ri(t), ni(t) and Te(t). This system of shells and
forces forms a fluid model for the expansion dynamics.

Figure 4 diagrams the initial conditions for a simu-
lation that begins at t = 10 µs. At this point, self-
similar expansion of the σ(0) = 176 µm plasma created
at t = 0 extends to reach the RMS width observed
experimentally, σ(10) = 450 µm. Within this volume,
delayed photoionization produces a secondary plasma
with a σ′(10) = 170 µm, determined by the diameter
of ω′1.

The primary ions have radial velocities described by
the function u = γr for which dσ/dt = 38 µm µs−1, the
value fit experimentally to the unperturbed expansion.
The secondary ions are assumed to be stationary at t =
10 µs. The systems of shells that describe the primary
and secondary ion spatial distributions extend from the
origin to values of r equal to five times the respective
RMS width.

From the plasma electron signals plotted in Figure 2,
we judge that the secondary plasma created by ω′1 + ω′2
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photoionization contains roughly the same number of
electrons as the primary plasma. With ambipolar ex-
pansion of the primary ions having consumed most of
the initial thermal energy of the primary electrons, we
approximate the equilibrated electron temperature at
t = 10 µs to be Te = 19 K.

The expanding electron gas with this thermal energy
now acts on the ions in the primary and secondary shell
systems. We follow the consequences by numerically
integrating Equations (3), (4), (6) and (9) for the initial
conditions described above.

The inertia of the stationary ions in the secondary
shell system slows the expansion of the electron gas.
The established radial momentum of the primary ions
opposes this retardation. This couples the radial motion
of the primary ions to that of the secondary ions. Near
ballistic motion of the outermost primary ions depletes
the trailing charge distribution in the wings of the inner
plasma. The resulting charge gradient reversal forms
collisionless shock waves in the calculated primary and
secondary ion charge distributions, as evident from the
snapshots at t = 20 and 35 µs in Figure 4.

Killian and coworkers have observed similar effects as
ion acoustic waves in plasmas prepared in a perturbed
state by spatially patterned photoionization [20]. Molec-
ular dynamics simulations of Pohl, Pattard and Rost
predict shocks at the edge of a simple one-component
plasma arising from deviations in quasi-neutrality not
considered in our hydrodynamic model [21].

Two additional factors affect the experimental observ-
ability of such shocks in a molecular system. Our model
makes no provision for the dissociative recombination
(DR) of NO+ with electrons [16, 19], or for that matter,

three-body recombination of ions and electrons, which
can be expected to limit the density of shock structures
in atomic as well as molecular plasmas.

Secondly, as the plasma propagates in z at the velocity
of our molecular beam, we detect its electron density
as a z projection of the signal integrated over x and y,
sampled by its transit through the perpendicular grid,
G2 (see Figure 1).

The corresponding experimental waveforms calculated
from the radial distributions predicted by our fluid model
yield a width as a function of time, but average away the
fine structure of the simulated shocks. The square points
in Figure 3 plot the widths predicted in this way for
the parameters considered above. These agree well with
results observed experimentally, including an inertial lag
in ion acceleration.

Thus, using photoionization to inject a secondary
plasma of NO+ ions and energetic electrons increases the
expansion rate of a primary ultracold plasma. Introduc-
ing instead a secondary Rydberg gas slightly diminishes
the terminal velocity of the plasma ions. In both cases,
we see an interval of time during which the inertial drag
of the cold secondary ions retards the thermal expansion
of the electron gas. We can account for these effects
in terms of a cold-ion shell model for the ambipolar
hydrodynamics. This model accounts well for the overall
effect of energy added by photoionization electrons.
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