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We examine the archetype of an interference experiment for Auger electrons: two electron wave
packets are launched by inner-shell ionizing a krypton atom using two attosecond light pulses with
a variable time delay. This setting is an attosecond realization of Ramsey’s method of separated
oscillatory fields. Interference of the two ejected Auger electron wavepackets is predicted indicating
that the coherence between the two pulses is passed to the Auger electrons. For the detection
of the interference pattern an accurate coincidence measurement of photo- and Auger electrons is
necessary. The method allows one to control inner-shell electron dynamics on an attosecond time
scale and represents a sensitive indicator for decoherence.

PACS numbers: 32.80.Hd, 32.80.Fb, 32.80.Aa, 32.70.Jz

Ramsey’s method of separated oscillatory fields [1, 2]
represents a paradigm of precision measurement for vari-
ous physical quantities. In its original conception for the
measurement of nuclear magnetic moments, the scheme
uses two coherent radiation fields, which are separated
by a field-free propagation interval. The signature of
the coherent interaction is the appearance of interference
fringes when the physical quantity under consideration is
measured at the exit of this experimental setup. Since
Ramsey’s seminal studies, his method has been extended
and modified extensively, e.g., by considering multiple
fields with varying phase and amplitude and by applying
it to masers and lasers [1]. The method of separated os-
cillatory fields is an interferometric approach which has
the advantage over pump-probe schemes that it does not
depend on an intense pump pulse [3].
In this paper, we propose a Ramsey scheme for attosec-

ond science assuming two coherent pulses with a FWHM
duration of τX = 500 as each, which are separated by a
variable delay of τ [Fig. 1] [4]. With an essential-states
model [5, 6], we investigate the situation where a twin
pulse ionizes the 3d shell of krypton atoms; the 3d holes
subsequently decay in terms of an M4,5N1N2,3 Auger
process. In fact one of the first applications in attosec-
ond science was the determination of the time constant
of this Auger decay channel—a well-known datum from
frequency-domain spectroscopy, τ3d = 7.5 fs—with a sin-
gle attosecond pulse in the presence of an optical streak-
ing laser [7]. Unlike this first investigation, our proposal
of an attosecond Ramsey method [Fig. 1] represents a
fundamental experiment which is only feasible with at-
tosecond science and has no frequency domain equivalent
in the sense that the attosecond twin pulse is crucial for
its realization. Nonetheless, the spectra in this paper
are shown in frequency domain. Furthermore, Auger de-
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FIG. 1. (Color) The xuv intensity IX(t) (red) and krypton 3d
hole population ̺(t) (black) [Eq. (1)] for two attosecond pulses
(τX = 500 as) separated by a variable delay of τ .

cay [8] is a pure manifestation of electron correlations:
it cannot be understood in terms of an effective one-
electron model.

The twin pulse shown in Fig. 1 induces two outgo-
ing photoelectron and Auger electron waves. Interfer-
ence between two photoelectron wavepackets was exam-
ined in Ref. [9]. In that study, 5p Rydberg electrons of
potassium atoms were subjected to two identical time-
delayed laser pulses with a FWHM duration of 30 fs each
at 790 nm wavelength and the resulting interference pat-
tern in the photoelectron spectrum was analyzed. In con-
trast to the experiment in Ref. [9], we ask whether the
coherence of the light is also transferred to the Auger
electrons and what kind of Auger electron spectrum can
we expect if it is? Clearly, for a time delay between the
two pulses of τ = 0 and of τ → ∞, we observe no interfer-
ence fringes. What happens in between the two limiting
cases? Clearly, our proposal of an attosecond Ramsey
scheme represents an important experimental test of our
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understanding of Auger decay. Further, the scheme also
represents a versatile tool for measurements. It enables
one to precisely determine the position of Auger lines
and it is a measure of coherence. Such an experiment
would also address the following questions: how much
decoherence is caused by the Auger process and what is
the coherence time? Is our understanding of Auger decay
complete?
The simplest way to describe Auger decay is shown

in Fig. 1. Here, a rate-equation model which is used
to determine the probability to find a 3d hole at time t
in krypton ̺(t) [7]. It is given by the convolution of
exponential Auger decay with a width of Γ = 88meV [7,
10] with the xuv intensity

̺(t) =
σ

ωX

t
∫

−∞

IX(t
′) e−Γ(t−t′) dt′ . (1)

The absorption cross section σ is taken to be constant
over the bandwidth of the xuv pulse with a central an-
gular frequency of ωX and an intensity of IX(t

′) at time t′.
The model does not honor the phase relationship between
the two ejected Auger electron wave packets and thus
does not describe interference effects [5].
To treat the quantum mechanical phases correctly, we

use an ab initio formalism for the quantum dynamics
of Auger decay of atoms which are inner-shell ionized
by extreme ultraviolet (xuv) light [6]. The attosecond
pulses of present-day light sources have a low peak inten-
sity and its interaction may be described perturbatively
as a one-photon process [3]. The quantum dynamics of
the inner-shell hole creation with subsequent Auger de-
cay is given by equations of motion which we simplify
here in terms of an essential-states model [5, 6]. Our the-

ory yields the probability density amplitude c̄
~kP

~kA

A (τ) to

find a photoelectron with momentum ~kP in coincidence

with an Auger electron with momentum ~kA for a delay
of τ between the two pulses in Fig. 1. The probability
density amplitude is adapted for no laser dressing from
Eqs. (61) and (62) of Ref. [6]; it reads

c̄
~kP

~kA

A (τ) =
i

2
d̄(~kP) v̄(~kA) S

(

τ,
~k2P
2
,
~k2A
2

)

, (2)

with the rms dipole and rms Auger decay matrix ele-

ments d̄(~kP) and v̄(~kA), respectively. The line shape
function in Eq. (2) is

S(τ, ωP, ωA) =
ε̃X(τ, ωP + ωA − ΩP − ΩA)

ωA − ΩA −∆R + iΓ2
; (3)

it depends only on the absolute values of the mo-

menta kP = |~kP| and kA = |~kA|. Further, it contains
the nominal photoelectron and Auger electron energies,
which are in our case ΩP = 20 eV and ΩA = 40 eV, re-
spectively [6]. In Eq. (3), ∆R is the second-order energy
shift and Γ is the Auger decay width [6]. The spectral

FIG. 2. (Color) Probability density |c̄
~kP

~kA
A

(τ )|2 [Eq. (2)] to
find a photoelectron with kP and an Auger electron with kA.
We average the photoelectron over the full solid angle and
view the Auger electrons along the z axis (linear xuv polar-
ization axis). The left panel is for a delay of τ = 0 and the
right panel is for τ = 5 τ3d. The color scale is linear.

envelope of the xuv light for a twin pulse is given by

ε̃X(τ, ω) =

√

π

2 log 2
εX0 τX e−

ω
2
τ
2
X

8 log 2 (1 + eiωτ ) , (4)

with the peak electric field strength εX0.
The main result of this study, the probability den-

sity |c̄
~kP

~kA

A (τ)|2 [Eq. (2)], is displayed in Fig. 2 for both
no time delay between the two pulses of Fig. 1, i.e., a
single pulse, and a time delay of τ = 5 τ3d. The second
choice for τ is somewhat arbitrary; the value of 5 τ3d is
high enough to cause significant structure in the right
panel of Fig. 2. This indicates interference effects that
we would like to analyze in the following. The shape of
the plots in Fig. 2 is determined by the absolute square
of the line shape function (3) in a non-trivial way. Hori-
zontally, along the k2P/2 coordinate, the width of the line
profile is determined by the FWHM of |ε̃X(τ, ω)|

2, which
in our case is 3.7 eV. Vertically, along the k2A/2 coordi-
nate, the extension is defined by the Auger decay width
of 88meV [7, 10] In the case of τ = 5 τ3d, we have a
more involved dependence; overall, the contour has the
shape of a skewed hyperbola with respect to kA caused
by the denominator squared in Eq. (3). For a deeper un-
derstanding of Fig. 2, we realize that the emission of an
Auger electron is in fact a correlated two-electron pro-
cess of photoionization and electronic decay. For such a
process, we can exploit the energy balance [3, 11]:

~k2P
2

+
~k2A
2

= ωX − I++ . (5)

Here, I++ represents the double ionization potential of
the dicationic final state of the atom. The balance (5)
manifests in the argument of ε̃X in Eq. (3) and, conse-
quently, it is reflected by the diagonal lines in the right
panel of Fig. 2. Relation (5) is only exact for monochro-
matic xuv light with photon energy ωX, i.e., a continuous
wave source.
In a typical Auger electron spectroscopy experiment,

the photoelectron is not observed. Hence we need to
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FIG. 3. (Color) Auger electron spectrum viewed along
the z axis for an attosecond twin pulse with a separation
of τ = 5 τ3d. The interference fringes are diminished for a de-
creasing accuracy of the photoelectron measurement; the en-
ergy uncertainties are: ±0.04 eV (black), ±0.1 eV (red), and
±0.4 eV (green).

integrate the probability density (2) over the unobserved
degrees of freedom, which is in this case the photoelectron

momentum
∫

|c̄
~kP

~kA

A (τ)|2 d3kP. For each Auger electron
momentum, this implies an integration along a horizontal
line in Fig. 2. Following such a path in the right panel
visually, we see that we average over many fringes with
different energies which leads to a washing out of the
interference pattern. Indeed, the resulting Auger electron
spectrum exhibits no noticeable fringes for an unknown
photoelectron momentum; it resembles closely the green
curve in Fig. 3.
Inspecting the line shape function (3), we find that the

xuv envelope is imprinted on the Auger electrons due to
correlations between photoelectrons and Auger electrons.
The finding that integrating over the photoelectron di-
minishes interference effects conforms to the general fact
that summing over unobserved degrees of freedom gen-
erally comes with a loss of coherence. Consequently, to
preserve the coherence of the Auger decay process, we
need to take the photoelectron into account.
The other way round, however, does not hold true:

it is not required to observe the Auger electron to see
interference fringes in the photoelectron spectrum [9]. To
see why this is so, we derive the probability density to
observe a photoelectron. Within our formalism [6] it is
given by

P̃P(~kP) =
|d̄(~kP)|

2

2π

∞
∫

−∞

Im

[

|ε̃X(τ, ω)|
2

~k2
P

2 − ΩP +∆R − ω − iΓ2

]

dω .

(6)
Our analysis has revealed the interconnection of the pho-
toionization and the subsequent Auger decay; the depen-
dence of Eq. (6) on the Auger decay width represents
the reciprocal connection. This can be understood as

FIG. 4. (Color) Interference of the Auger electron
waves (green) from an attosecond twin pulse for a precisely
known photoelectron momentum k2

P/2 = ΩP. The interfer-
ence pattern is decomposed into the scaled line shape func-
tion (black) and the scaled xuv spectral envelope square (red,
dashed).

follows: the interference of the photoelectrons is caused
by the envelop ε̃X of the xuv light. The only impact of
Auger decay on the photoelectron is due to the filling of
the created hole which leads to a line broadening that
leads for large Auger widths to a washing out of interfer-
ence fringes.
To have a chance of observing interference between

Auger electrons, we need to preserve the coherence of
the Auger electron waves from the two xuv pulses. To
accomplish this goal, we recall the energy balance in
Eq. (5). It implies that if we measure the photoelec-
tron momentum kP with a certain precision, this defines
the uncertainty in the Auger electron momentum kA. In
other words, if we restrict the allowed photoelectron mo-
menta to a narrow range, the destructive interference of
Auger waves should be reduced significantly. We inte-

grate |c̄
~kP

~kA

A (τ)|2 over the full solid angle and a speci-
fied photoelectron momentum range ∆k. This yields the
probability PPA,∆k(τ, kP, kA) to observe an Auger elec-
tron with kA—we look along the z axis—for a photoelec-
tron in the full solid angle with a momentum magnitude
in the range of [max{0, kP−∆k}; kP+∆k]. By integrating
Eq. (6) over the same angular and momentum range, we
find the normalized probability distribution of the photo-
electrons PP,∆k(τ, kP) [6]; if we observe the photoelectron
to lie in a chosen range, then the conditional probability
to find an Auger electron with a specific momentum along
the z axis PA,kP,∆k(τ, kA) follows from Bayes law [12]:

PA,kP,∆k(τ, kA) =
PPA,∆k(τ, kP, kA)

PP,∆k(τ, kP)
. (7)

In Fig. 3, we investigate the Auger electron spectrum
from Eq. (7). For a very accurate measurement of the
photoelectron momentum (small uncertainty in ∆k), we
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FIG. 5. (Color) Interference of the Auger electron wavelets
for different time delays τ between the two attosecond pulses
in Fig. 1: τ = 0 (black), τ = 3 τ3d (red), and τ = 5 τ3d
(green) for a photoelectron momentum which is known with
an uncertainty of (∆k)2/2 = 10−5 eV.

find significant interference fringes. The interference ef-
fects are diminished with growing ∆k, i.e., we average
over Auger waves. The first maximum off the main peak
in the curves of Fig. 3 moves to higher energies with in-
creasing ∆k.

In order to analyze the origin of the interference effects,
we assume an exactly known photoelectron momentum
magnitude and an exact detection of the Auger electrons
along the z axis. In other words, we view the plots of
Fig. 2 along a vertical line and normalize it to the peak
of the photoelectron spectrum. In Fig. 4, we show a line-
out of the right panel of Fig. 2 for k2P/2 = ΩP. The Auger
electron spectrum is decomposed into a line-shape func-
tion and the spectral xuv pulse envelope (4) square. The
line width only depends on the time delay τ as it should
in Ramsey’s method [1, 2] and the interference fringes in
the xuv field envelope get thinner for increasing delay
between the two pulses. The spectral width between the
first minimum on the left and the first minimum on the
right of the central peak of the fringes is 2π/τ = 0.1 eV

for τ = 5 τ3d.
For a system with decoherence, we assume that one

will find a similar behavior of the interference pattern as
for an inaccurately measured photoelectron momentum.
In that case, in addition to averaging over wavelets with
different wavelengths, also a jitter in the phase relation
due to a coupling to other degrees of freedom in the sys-
tem suppresses the interference fringes. Depending on
the nature of the decoherence, a model of its impact on
the signal can be made. Give a prediction of the signal
the observed Auger electron interference pattern and its
change, when the time delay τ in Fig. 1 is varied, can be
used to identify and measure the amount of decoherence
in a system. The impact of a variation of τ for our per-
fectly coherent case is revealed in Fig. 5. They resemble
Fig. 3 in Ref. [9]. Thus an immediate application of the
scheme discussed here is that it is a coherence meter.
The experimental investigation that we propose is chal-

lenging because a coincident detection of two electrons
is necessary. In a recent experimental study [13], elec-
trons from the KV V Auger decay of a C 1s vacancy in a
CO molecule were measured in coincidence with the an-
gular distribution of O+ fragments. This technique can
be used also in our case: the detection of the energy of
the Auger electrons ejected along a specific direction in
coincidence with the measurement of the momentum of
the krypton ionic remnant offers an indirect pathway for
a coincidence experiment for photo- and Auger electrons.
In this letter, we have proposed a fundamental exper-

iment for studying the attosecond science equivalent of
Ramsey’s method of separated oscillatory fields: to what
degree can we control an ultrafast electronic process in
the time domain [3]? The setting can be used as a meter
for decoherence in a system and offers interesting per-
spectives when used with intense xuv light tuned to an
atomic resonance [14–16] where emission of a photoelec-
tron can be avoided.
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