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A single extreme-ultraviolet (XUV) attosecond pulse or pulse train in the time domain is fully
characterized if its spectral amplitude and phase are both determined. The spectral amplitude can be
easily obtained from photoionization of simple atoms where accurate photoionization cross sections
have been measured from, e.g., synchrotron radiations. To determine the spectral phase, at present
the standard method is to carry out XUV photoionization in the presence of a dressing infrared
(IR) laser. In this work we examine the accuracy of current phase retrieval methods (PROOF
and iPROOF) where the dressing IR is relatively weak such that photoelectron spectra can be
accurately calculated by second-order perturbation theory. We suggest a modified method named
swPROOF (scattering wave Phase Retrieval by Omega Oscillation Filtering) which utilizes accurate
one-photon and two-photon dipole transition matrix elements and removes the approximations made
in PROOF and iPROOF. We show that the swPROOF method can in general retrieve accurate
spectral phase compared to other simpler models that have been suggested. We benchmark the
accuracy of these phase retrieval methods through simulating the spectrogram by solving the time-
dependent Schrödinger equation (TDSE) numerically using several known single attosecond pulses
with a fixed spectral amplitude but different spectral phases.

PACS numbers: 32.80.Fb, 42.65.Re

I. INTRODUCTION

Since the first report of the generation of attosec-
ond pulse trains (APT)[1] and single attosecond pulses
(SAP)[2] in the extreme-ultraviolet (XUV) in 2001, at-
tosecond pulses are becoming essential laboratory tools
for probing the dynamics of atoms, molecules and solids.
Today attosecond pulses are mainly produced by high-
order harmonic generation (HHG) process with intense
femtosecond near-infrared (NIR) to mid-infrared (MIR)
laser pulses in a gas medium. For applications in science
and technology and for the purpose of probing dynamics
in the attosecond timescale, it is desirable that single at-
tosecond pulses are routinely generated, with the goal of
shorter pulse duration, higher intensity and higher pho-
ton energy, especially for the water window and the X-
ray region. So far attosecond pulses as short as 80 as
[3] and 67 as[4] have been reported. These pulses have
central energy below 150 eV. To generate SAP, temporal
gating techniques such as polarization gating[5] and dou-
ble optical gating[6] have already been developed. Re-
cently spatiotemporal gating methods including attosec-
ond lighthouse[7, 8] and noncollinear optical gating[9]
have also been introduced[10].

In the past decade, APT and SAP have been used to
study dynamics of atoms, molecules and condensed mat-
ter. In the experiment, an APT or SAP is used to excite
the target in the presence of a near-infrared laser (typ-
ically around 800 nm). The dressing laser will modify
the medium as well as the wave packet generated by the
attosecond pulse, as the delay between the two pulses
is varied. Thus wave-packet dynamics such as quantum

interference, shake-up, autoionization, a.c. Stark shift,
or time delay in photoionization, have been explored in
many experiments[11–28], mostly by detecting the elec-
tron momentum spectra. Recently, transient absorption
spectroscopy has also been used[29–34] in view that bet-
ter spectral resolution can be achieved by measuring pho-
tons. A recent review on experimental activities with
attosecond pulses is given by Lepine et al.[35].
In spite of a wealth of literature on attosecond pulses

in the past decade, precise real-time observation of elec-
tron dynamics on attosecond timescale is still very lim-
ited since a precise characterization of such pulses in
the time domain remains a challenging task[36–41]. The
spectral amplitude of attosecond pulses can be easily re-
trieved from the XUV-only photoelectron spectrum pro-
vided that the one-photon ionization cross section of the
target is known. Thus the main difficulty in attosec-
ond pulse characterization is the accurate retrieval of
the spectral phase. With known spectral amplitude and
phase, the attosecond pulse in the time domain is ob-
tained by a simple inverse Fourier transform. Today
methods that have been developed for determining the
phase of attosecond pulses include streaking, RABITT,
PROOF and iPROOF. In attosecond streaking[42] the
XUV pulse is converted into an electron wave-packet
via photoionization. Due to the presence of the phase-
locked dressing IR field, the photoelectron spectrum in
a given direction modulates as a function of the time
delay between the XUV and the IR pulses. To achieve
pronounced modulation, the IR field has to be relatively
intense, but not intense enough to ionize the atom by
itself alone. Assuming that the strong field approxima-
tion (SFA) is accurate enough to describe the electron
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spectrum at each time delay[43], the phase of the XUV
pulse can be retrieved using the so-called FROG-CRAB
method(frequency-resolved optical gating for complete
reconstruction of attosecond bursts)[44, 45]. In order to
use the standard FROG algorithm, the FROG-CRAB
introduces an additional ”central momentum approxi-
mation”, which assumes the bandwidth of the XUV is
small compared to its central energy. Many of the time-
domain XUV attosecond and IR femtosecond pulses are
thus retrieved simultaneously. However, the accuracy of
the FROG-CRAB method has never been carefully cali-
brated. It is well-known that the standard SFA is not an
accurate theory for predicting the photoelectron spec-
tra in an intense laser field. Although further deriva-
tion beyond standard SFA such as the Coulomb-Volkov
approximation[46] can improve the accuracy, the validity
of such central momentum approximation is not guar-
anteed when characterizing a broadband XUV pulse.
Yakovlev et al.[47] investigated the central momentum
approximation by assuming an artificial bound-free tran-
sition matrix element that has a sharp minimum, and
they found that the FROG-CRAB tends to retrieve a
”time-domain wave packet” rather than the XUV pulse.
More calibrations using accurate matrix element and
broader band XUV pulses are strongly desirable. Such
uncertainty in the FROG-CRAB method renders the
claims for precise duration of attosecond pulses and the
interpretation of time-domain experimental results less
trustworthy.

Since accurate theory for retrieving attosecond pulses
via strong field ionization is very complicated, it is desir-
able to retrieve the spectral phase by applying a weak IR
field. In the limit that second-order perturbation theory
is adequate for describing the photoelectron spectra, the
theory is on good footing. Indeed this is how the attosec-
ond pulse trains are characterized[1]. Using the so-called
RABITT method (reconstruction of attosecond beating
by interference of two-photon transition), the relative
phase between two successive odd harmonics (separated
by 2ω) can be accurately obtained from the modulation
(with frequency 2ω) of the even-harmonic sidebands vs.
the time delay. The 2N-th sideband harmonic is gen-
erated by absorbing a (2N-1)-th XUV harmonic and an
IR photon, or by absorbing a (2N+1)-th XUV harmonic
and emitting an IR photon. The amplitudes from the two
pathways interfere, thus the phase difference between the
two neighboring harmonics is encoded in the spectra and
can be retrieved accurately. The RABITT method does
not work if the harmonics are separated by ω (generated
by an ω +2ω two-color field) nor for a single attosecond
pulse where the spectral phase information is encoded
in the interference between the first-order term from the
XUV alone and two second-order terms involving XUV
plus IR processes. A phase retrieval method based on
analyzing this first-second-order interference (FSI) term
was proposed by Laurent et al.[48]. They called their
method as iPROOF, which was an improved version of
the PROOF method (Phase Retrieval by Omega Oscilla-

tion Filtering) proposed by Chini et al.[49]. The PROOF
method starts with the strong field approximation for de-
scribing XUV ionization in a weak dressing IR field. By
expanding the SFA equation in the weak field limit, they
analyzed the ω-oscillation (instead of the 2ω oscillation
in RABITT) due to the first-second-order interference.
Since PROOF does not include the atomic structure, this
model is not expected to explain the experimental elec-
tron spectra. The iPROOF is based on the correct second
order perturbation theory and it should be possible to use
it to characterize attosecond pulse trains as well as single
attosecond pulses. Unfortunately the two-photon tran-
sition matrix elements used in iPROOF were calculated
with an additional approximation[50, 51] which renders
the phase retrieved via iPROOF inaccurate.

In this article, our goal is to benchmark the accuracy of
the spectral phase retrieved for single attosecond pulses
using PROOF, iPROOF and our swPROOF (scattering
wave PROOF) method. The swPROOF takes advantage
of accurate atomic transition matrix elements which are
calculated by using real scattering wave functions. This
method is based on fundamentally correct theory so long
that the IR intensity is in the region where second-order
perturbation theory is valid. It is the correct counterpart
of the RABBIT method which was applied to retrieve at-
tosecond pulse trains. To benchmark the accuracy of the
phase retrieval, in the present work we solve the time
dependent Schrödinger equation (TDSE) numerically in
the presence of a given XUV pulse and a delayed dressing
IR field. The computed spectrogram is to serve as the
”real” experimental data. The PROOF, iPROOF and
swPROOFmethods are then applied on this spectrogram
to retrieve the spectral phase that can be checked against
the actual input XUV spectral phase. The main contri-
bution of this work is that we calculate the two-photon
transition matrix elements used in the swPROOF accu-
rately via the Dalgarno-Lewis method[52] without adopt-
ing the approximations used in iPROOF. We will show
that the swPROOF method indeed improves the attosec-
ond pulse characterization. Note that all the three meth-
ods are based on ”Phase Retrieval by Omega Oscillation
Filtering” (PROOF). The original PROOF[49] could be
more correctly represented by such as ”pwPROOF” since
it uses plane waves to describe continuum electrons, but
in the present paper we follow its original name without
introducing too many terms.

This paper is organized as follows: Sec.II.A gives a gen-
eral framework of the spectral phase retrieval from the
first-second-order interference (FSI) term in the photo-
electron spectra based on the second-order perturbation
theory. In Sec.II.B and C we present the evaluation of the
one- and two-photon transition dipole matrix elements
in details. The approximations used in PROOF and
iPROOF are discussed in Sec.II.D. In Sec.II.E the con-
cept of continuum-continuum phase is elaborated since
it also enters in the formulation of numerous articles on
time delay studies. In Sec.III.A we compare the elec-
tron spectra calculated from TDSE with the spectra
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from PROOF, iPROOF and swPROOF methods, and
we also show the sensitivity of the FSI term to the spec-
tral phase. The results of the pulse characterization are
given in Sec.III.B, assuming that the IR intensity is either
known or unknown in the retrieval process. In Sec.III.C
we study the effect of the dressing IR intensity to iden-
tify where the present swPROOF method begins to fail.
The conclusions are presented in Sec.IV. Atomic units
are used in this paper unless otherwise stated.

II. THEORETICAL METHODS

A. First-Second-order Interference term in

photoelectron spectra

Consider a combined XUV pulse and an IR field inter-
acts with an argon atom. Both fields are linearly polar-
ized along the z-axis. The XUV pulse can be described
by

EXUV (t) =
√

I(t) cos(Ω0t+ φ(t))

=
1

2π

∫ ∞

−∞

ẼXUV (Ω)e
iΩtdΩ

=
1

2π

∫ ∞

−∞

U(Ω)eiΦ(Ω)eiΩtdΩ (1)

where Ω0 is the central frequency, I(t) is the temporal
intensity profile and φ(t) is the temporal phase includ-
ing attosecond chirps. U(Ω) and Φ(Ω) are the spectral
amplitude and phase respectively. The XUV photon en-
ergy Ω is assumed to be much greater than the ionization
threshold Ip = 15.76 eV so that the electron wave-packet
created by XUV lies in the continuum regime. The ki-
netic energy of the photoelectron is E = Ω− Ip. The IR
field is assumed to be monochromatic such as

ẼL =
EIR

2
eiωτ (2)

where ω is the IR photon energy. For a typical 800 nm
laser ω = 1.55 eV. τ represents the time delay between
the XUV and IR fields. We only consider photoelectrons
ionized from the outer shell of the argon atom so that
single active electron approximation (SAE) can be ap-
plied. The effective potential of the ionic core is modeled
by

V (r) = −Z + a1e
−a2r + a3re

−a4r + a5e
−a6r

r
. (3)

where Z=1 is the asymptotic charge seen by the active
electron. The coefficients ai are obtained by fitting the
numerical potential calculated from the self-interaction
free density functional theory, which can be found in
Ref.[53] for argon atom. The ground state of argon has
angular quantum number li = 1 and magnetic quantum
number mi = 0,±1.

We consider ionization from mi = 0 state only for lin-
early polarized light along z-axis. The detected photo-
electron has a momentum k = (

√
2E, θ, ϕ) where θ and

ϕ are angles of detection with respect to the z-axis. Due
to azimuthal symmetry the photoelectron spectrum is in-
dependent of ϕ. When both XUV and IR fields are weak
the spectrogram S(E, θ, τ) can be modeled by perturba-
tion theory

S(E, θ, τ) =
∣

∣

∣
Ẽ∗

XUV (Ω)dd(E, θ)

+Ẽ∗
XUV (Ω− ω)

EIR

2
e−iωτda(E, θ)

+Ẽ∗
XUV (Ω + ω)

EIR

2
eiωτde(E, θ)

+o(E2
IR)

∣

∣

2
(4)

The first term in Eq.(4) describes the process that the
electron initially at ground state absorbs one XUV pho-
ton Ω and transits to continuum state with energy E. dd
denotes the one-photon dipole transition matrix element.
The second term in Eq.(4) corresponds to the path that
the electron first absorbs one XUV photon Ω − ω and
then absorbs one IR photon ω, while the third term cor-
responds to the path that the electron first absorbs one
XUV photon Ω+ω and then emits one IR photon ω. da
and de denote the two-photon transition matrix elements
for the absorption and emission path respectively. The
complex conjugate in Eq.(4) is consistent with our defi-
nition of Fourier transform in Eq.(1). The term o(E2

IR)
includes contributions from higher order paths involving
two or more IR photons. The total spectrogram is the
modulus square of the coherent superposition of all pos-
sible quantum paths that lead to a final state with energy
E. Since ω ≪ Ip for noble gas atoms, contribution from
the path that the electron first absorbs (or emits) one
IR photon and then one XUV photon is negligible[54].
Therefore in the present work we only include paths that
the electron absorbs one XUV photon first.
We can expand S(E, θ, τ) by the order of EIR,

S(E, θ, τ) = SXUV (E, θ) + SFSI(E, θ, τ) + o(E2
IR). (5)

Here SXUV (E, θ) = |U(Ω)|2|dd(E, θ)|2 is the IR free
XUV–only photoelectron spectrum. SFSI(E, θ, τ) comes
from the interference between one photon and two pho-
ton paths, which is proportional to EIR

SFSI = EIRRe{Ẽ∗
XUV (Ω)ẼXUV (Ω− ω)eiωτddd

∗
a

+Ẽ∗
XUV (Ω)ẼXUV (Ω + ω)e−iωτddd

∗
e}

= EIRU(Ω)|dd|{U(Ω− ω)|da| cos(ωτ +∆a)

+U(Ω + ω)|de| cos(ωτ +∆e)} (6)

= A(E, θ) cos(ωτ +Ψ(E, θ)) (7)

Eq.(6) implies that the FSI term is a superposition of
two oscillating terms: one comes from the interference
between the direct and the absorption path (d-a inter-
ference), the other comes from the interference between
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the direct and the emission path (d-e interference). For
a given (E, θ) the FSI term oscillates with τ at the IR
frequency ω, as shown by Eq.(7). A and Ψ are the am-
plitude and phase of such oscillation given by

A = EIRU(Ω)|dd|{|U(Ω− ω)|2|da|2 + |U(Ω + ω)|2|de|2

+2U(Ω− ω)U(Ω + ω)|da||de| cos(∆a −∆e)}
1

2 (8)

Ψ = tan−1

(

U(Ω− ω)|da| sin∆a + U(Ω + ω)|de| sin∆e

U(Ω− ω)|da| cos∆a + U(Ω + ω)|de| cos∆e

)

(9)

The phase ∆a or ∆e depends on the spectral phase Φ(Ω)
and the phase of dipole matrix elements

∆a = Φ(Ω− ω)− Φ(Ω) + arg(dd)− arg(da) (10)

∆e = Φ(Ω)− Φ(Ω + ω) + arg(de)− arg(dd) (11)

Eqs.(8)–(11) are used to retrieve the spectral phase Φ(Ω)
assuming that the spectral amplitude U(Ω) is already
known. Clearly adding a constant to Φ(Ω) does not
change ∆a or ∆e, thus the FSI term carries informa-
tion of the relative phase only. Therefore characteriza-
tion method that is based on the analysis of FSI can
retrieve only the relative spectral phase which deter-
mines the temporal pulse shape and duration. Since the
absolute spectral phase is not determined, the CEP of
the XUV pulse in the time domain is not fixed in this
method. On the other hand, Liu et al.[55] have demon-
strated that the photoelectron spectra generated by a
single attosecond pulse in the presence of an intense IR
field (4.5 × 1013W/cm

2
) are sensitive to the CEP of the

attosecond pulse. This CEP dependence can be under-
stood in terms of the coherent superposition of two elec-
tron wave packets. The electron in the first wave packet
comes from direct photoionization by absorbing one XUV
photon, while the electron in the second wave packet is
released by the intense IR field and then rescatters on the
parent ion. This method requires intense IR pulse where
strong field ionization theory is usually less accurate.
In practice, one cannot decompose the perturbation

series from an experimental spectrogram S(E, θ, τ) di-
rectly. However, one can apply the Fourier decomposi-
tion with respect to τ such that

S(E, θ, τ) = S0(E, θ) + Sω(E, θ, τ) + S2ω(E, θ, τ) + . . . .
(12)

Here S0 = SXUV + o(E2
IR) is a d.c. term that is inde-

pendent of τ , Sω = SFSI + o(E3
IR) oscillates with τ at a

frequency ω, and S2ω = o(E2
IR) oscillates with τ at a fre-

quency 2ω. When the IR intensity is weak, S0 ≈ SXUV ,
Sω ≈ SFSI , and S2ω is negligible. Thus the FSI term
is obtained by applying a filter on the measured spectro-
gram and then selecting its omega component. Note that
in the case of single attosecond pulse, S2ω is due to the
interference not only between the two two-photon paths

as in the RABBIT case, but also between the one-photon
path and the three photon path (absorbing or emitting
two IR photons). In either case there is a contribution
proportional to E2

IR.

B. One- and two-photon dipole transition matrix

elements

In order to characterize the XUV pulse, complex ma-
trix elements dd, da, de in Eq.(4) are required. We con-
sider the field free Hamiltonian

H0 = −1

2
∇2 + V (r) (13)

The eigenstates of H0 consists of both bound and con-
tinuum part. The ground state of argon atom can be
written as

〈r|i〉 = ui(r)

r
Y10(θr, ϕr) (14)

where r = (r, θr, ϕr) is the position vector and Ylm is
a spherical harmonic. The continuum state with energy
E = k2/2 and quantum numbers l, m are given as

〈r|klm〉 = ukl(r)

r
Ylm(θr , ϕr) (15)

The energy normalized radial wave function ukl(r) has
the asymptotic form

lim
r→∞

ukl(r) =

√

2

πk
sin

(

kr +
Z

k
ln(2kr) + ηl(E)

)

(16)

ηl(E) = − lπ
2

+ σl(E) + δl(E) (17)

where σl = arg[Γ(l + 1 − iZ/k)] is the Coulomb phase
shift, δl is the partial wave phase shift due to the short
range deviation from a pure Coulomb potential.
The final photoelectron state with momentum k =

(
√
2E, θ, ϕ) can be expanded by partial waves

〈r|k(−)〉 =
∑

L,M

e−iηL(E)Y ∗
LM (θ, ϕ)YLM (θr, ϕr)

ukL(r)

r

(18)
This wavefunction behaves asymptotically as the super-
position of a plane wave plus an incoming spherical wave.
Since z = r cos θr, the one-photon dipole transition

matrix element can be calculated as the following

dd(E, θ) = 〈k(−)|z|i〉
=

∑

L,M

eiηL(E)YLM (θ, ϕ)〈YLM | cos θr|Y10〉〈ukL|r|ui〉

=

√

1

12π
{P0(cos θ)e

iη0(E)〈uk0|r|ui〉

+2P2(cos θ)e
iη2(E)〈uk2|r|ui〉} (19)
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From Eq.(19) dd consists of s wave and d wave so that
dd is symmetric with respect to the polarization axis.
The two-photon transition matrix element is given as

dκ(E, θ) = lim
ǫ→0

∑

α,λ,m

〈k(−)|z|αλm〉〈αλm|z|i〉
Eκ − Eα + iǫ

=
∑

L,M,λ,m

eiηL(E)YLM (θ, ϕ)〈YLM | cos θr|Yλm〉

×〈Yλm| cos θr|Y10〉WL,λ(E,Eκ)

=

√

1

12π
{P1(cos θ)e

iη1(E)W1,0(E,Eκ)

+
4

5
P1(cos θ)e

iη1(E)W1,2(E,Eκ)

+
6

5
P3(cos θ)e

iη3(E)W3,2(E,Eκ)} (20)

The label κ can be replaced by either a (absorbing one
IR photon, Ea = E − ω) or e (emitting one IR photon,
Ee = E + ω). In Eq.(20) we introduce a two-photon
radial matrix element reads

WL,λ(E,Eκ) = lim
ǫ→0

∑

α

〈ukL|r|uαλ〉〈uαλ|r|ui〉
Eκ − Eα + iǫ

(21)

WL,λ(E,Eκ) is a summation over all intermediate states
with energy Eα, including both bound and continuum,
while the angular quantum numbers are fixed. From
Eq.(20) da and de consist of p wave and f wave so that
they are antisymmetric with respect to the polarization
axis. Furthermore, we can see that SXUV (E, θ) is sym-
metric and SFSI(E, θ, τ) is antisymmetric with respect
to the polarization axis.

C. Dalgarno-Lewis method for calculating

two-photon matrix elements

The radial wave function uαλ(r) is the eigenfunction
of the radial Hamiltonian

Hλ = −1

2

∂2

∂r2
+ V (r) +

λ(λ + 1)

2r2
(22)

with the eigenvalue Eα. The radial matrix element
WL,λ(E,Eκ) can be rewritten by introducing the resol-
vent operator

WL,λ(E,Eκ) = 〈ukL|r(lim
ǫ→0

1

Eκ −Hλ + iǫ
)r|ui〉

= 〈ukL|r|ρκλ〉 (23)

The intermediate radial wave function

ρκλ(r) = (lim
ǫ→0

1

Eκ −Hλ + iǫ
)r|ui〉

= (℘
1

Eκ −Hλ
− iπδ(Eκ −Hλ))r|ui〉

= ρ
(R)
κλ − iπuκλ〈uκλ|r|ui〉 (24)

Here ℘ prescribes the principal value integration that
contributes to the real part of ρκλ (off-shell part). δ
represents the Dirac delta function that contributes to
the imaginary part of ρκλ (on-shell part). The real wave

function ρ
(R)
κλ (r) is the solution of the following inhomo-

geneous ordinary differential equation

(Eκ −Hλ)ρ
(R)
κλ (r) = rui(r) (25)

with the boundary condition ρ
(R)
κλ (r) = 0 at r = 0. This

approach of calculating WL,λ is known as the Dalgarno-
Lewis method [52].
In our problem Eκ = κ2/2 is a positive energy, so that

ρκλ(r) is required to be a continuum wave function which
behaves as a complex outgoing wave asymptotically[56].

lim
r→∞

ρκλ(r) = −π
√

2

πκ
ei(κr+

Z

κ
ln(2κr)+ηλ(Eκ))〈uκλ|r|ui〉

(26)
In order to fulfill the asymptotic form Eq.(26), the phys-
ical solution of Eq.(25) should have the smallest asymp-
totic amplitude as discussed in Ref. [57].
Instead of solving the Dalgarno-Lewis equation

[Eq.(25)], for simplicity if one substitutes the asymptotic
form of ukL(r) and ρκλ(r) into Eq.(23), one would obtain
an approximate result[50, 51]

WL,λ(E,Eκ) ≈ iei{ηλ(Eκ)−ηL(E)}〈uκλ|r|ui〉T cc(E,Eκ)
(27)

Here 〈uκλ|r|ui〉 is the radial part of the one-photon tran-
sition matrix element from the ground state to an inter-
mediate continuum state. The term T cc accounts for the
continuum-continuum transition and has an analytical
form:

T cc(E,Eκ) = − 1√
kκ

(2κ)iZ/κ

(2k)iZ/k

(

i

κ− k

)2+i(Z/κ−Z/k)

×Γ[2 + i(Z/κ− Z/k)] (28)

D. Approximations in atomic parameters by the

PROOF and iPROOF methods

According to the discussion in Sec.II.A, the spectro-
gram measured along a particular direction is sufficient
to retrieve the spectral phase. To simplify our analy-
sis, in the following discussion we focus on photoelec-
trons detected along the +z direction. Thus θ = 0 and
PL(cos θ) = 1. Therefore

dd(E) =

√

1

12π
{eiη0(E)〈uk0|r|ui〉+ 2eiη2(E)〈uk2|r|ui〉}

(29)

dκ(E) =

√

1

12π
{eiη1(E)W1,0(E,Eκ) +

4

5
eiη1(E)

×W1,2(E,Eκ) +
6

5
eiη3(E)W3,2(E,Eκ)} (30)
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FIG. 1: (Color online) (a) Amplitude and (b) phase of the
one-photon dipole transition matrix element dd(E) of argon.
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FIG. 2: (Color online) (a) Amplitude and (b) phase of the
two-photon transition matrix element da(E) (green or light
gray) and de(E) (blue or dark gray) of argon. For the sw-
PROOF method (solid), the iPROOF method (dashed) and
the PROOF method (dot-dashed line). (ω = 1.55 eV)

In the swPROOF method we use the Dalgarno-Lewis
approach to calculate accurate dκ(E). If WL,λ(E,Eκ) is
replaced by its asymptotic approximation Eq.(27), dκ(E)
is reduced to a simple form

dκ(E) = iT cc(E,Eκ)dd(Eκ). (31)

Eq.(31) is the basis of the iPROOF method[48]. In this

approximation the two-photon matrix element can be ex-
plicitly separated into two terms — a single XUV pho-
ton dipole transition matrix element, times a continuum-
continuum transition amplitude T cc in the presence of an
IR field. The amplitude and phase part can be written
separately

|dκ(E)| = T cc
κ (E)|dd(Eκ)| (32)

arg[dκ(E)] = arg[dd(Eκ)] + ϕcc
κ (E) +

π

2
(33)

where

T cc
κ (E) = |T cc(E,Eκ)| (34)

ϕcc
κ (E) = arg[T cc(E,Eκ)] (35)

are the amplitude and phase of the continuum-continuum
term.
The one-photon transition matrix element dd calcu-

lated by using the model potential Eq.(3) for argon are
shown in FIG.1. |dd(E)| shows a minimum (Cooper min-
imum [58]) at E = 26 eV (corresponding Ω = 42 eV), and
the phase arg[dd(E)] shows a significant jump around this
minimum.
In FIG.2 two-photon transition matrix elements da and

de are shown. |da| and |de| are two orders of magnitude
larger than |dd|, and the minima of |da| and |de| are rela-
tively deeper. Note that the minima of |da| and |de| shift
toward opposite directions. The phases of da and de also
show rapid change near the minima. The discrepancy be-
tween the two-photon matrix elements in the swPROOF
method and the iPROOF method mainly lies in the low
energy region.
Further approximations can be introduced to derive

the PROOF method[49]. First, we neglect the long-range
Coulomb potential by setting Z = 0 in Eq.(28), which is
consistent with the strong field approximation (SFA):

T cc(E,Eκ) =
1√
kκ

1

(κ− k)2
(36)

Furthermore, we assume ω ≪ E which is often referred
to as the soft-photon approximation[59, 60]:

Eκ = E ∓ ω ⇒ κ = k

√

1∓ 2ω

k2
≈ k ∓ ω

k
(37)

T cc(E,Eκ) ≈
1

√
k2 ∓ ω

(

∓ω
k

)2 ≈ k

ω2
(38)

Thirdly, the atomic physics in photoionization process is
also neglected. The bound-free transition matrix element
reduces to a constant dd(E) ≈ D. Therefore

dκ(E) = i
k

ω2
D (39)
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In this work we assign |D| = 0.06, the corresponding
|dd(E)| and |dκ(E)| used in the PROOF method are
plotted in black dot-dashed line in FIG.1 and FIG.2 re-
spectively. FIG.3 shows the ratio |da(E)|/|dd(E − ω)|
and |de(E)|/|dd(E+ω)| for the swPROOF, iPROOF and
PROOF method. One can see that the PROOF method
leads to large error in the low energy region, whereas for
k > 1.7 a.u. or E > 40 eV these three methods match
each other quite well.
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FIG. 3: (Color online) The ratio |da(E)|/|dd(E − ω)| (green
or light gray) and |de(E)|/|dd(E+ω)| (blue or dark gray) for
the swPROOF method (solid), the iPROOF method (dashed)
and the PROOF method (dot-dashed line). (ω = 1.55 eV)

One can also rewrite the phase ∆a or ∆e in Eqs.(10)
and (11) by introducing an atomic phase ψa or ψe such
that

∆a(E) = Φ(Ω− ω)− Φ(Ω) + ψa(E)− π

2
(40)

∆e(E) = Φ(Ω)− Φ(Ω + ω) + ψe(E) +
π

2
(41)

The atomic phase ψa and ψe are in general given by

ψa(E) = arg[dd(E)]− arg[da(E)] +
π

2
(42)

ψe(E) = arg[de(E)]− arg[dd(E)]− π

2
(43)

In the iPROOF method, according to Eq.(33)

ψa(E) = arg[dd(E)]− arg[dd(E − ω)]− ϕcc
a (E) (44)

ψe(E) = arg[dd(E + ω)]− arg[dd(E)] + ϕcc
e (E) (45)

In the PROOF method

ψa(E) = ψe(E) = 0 (46)

FIG.4 shows the atomic phase ψa(E) and ψe(E) in
the swPROOF and the iPROOF method. They are all
negative and quite close to each other. Each atomic phase
has a sharp valley around the Cooper minimum. For the
energy region E > 40 eV, |ψa(E)| ≈ |ψe(E)| < 0.02π
so it would be reasonable to remove the atomic phase as
PROOF does. From Eqs.(40)(41) one can deduce that as
long as ω is small and the spectral phase Φ(Ω) changes
smoothly over a broad frequency range, ∆a and ∆e are
roughly differ by π. Thus the d-a interference and the d-e
interference in Eq.(6) tend to be out of phase and the FSI
term is actually a result of strong cancelation between
these two oscillating terms. This makes it essential to
calculate the atomic phases accurately.
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FIG. 4: (Color online) The atomic phase ψa(E) (green
or light gray) and ψe(E) (blue or dark gray) in the sw-
PROOF method (solid), the iPROOF method (dashed) and
the PROOF method (dot-dashed line). (ω = 1.55 eV)

E. Continuum-continuum time delay

The atomic phases given in Eq.(42) to Eq.(45) are im-
portant for many recent studies on attosecond time de-
lays in photoionization experiments [18, 19, 22]. It is
”believed” that these time delays can reveal some as-
pects of the electron dynamics. Since the time delay is
measured in the presence of a dressing IR field, the effect
of the IR field has to be accurately accounted for in order
to extract effective information of the atomic target un-
der the XUV alone. In an intense IR field, the standard
strong field approximation (SFA) assumes that the pho-
toelectron is driven by the IR field freely, which is not
accurate enough to interpret the time delay in attosec-
ond time scale. Under various approximations beyond
SFA, it has been claimed that the interplay of the probe
IR field and the long-range Coulomb potential (so-called
Coulomb-laser coupling) leads to an additive time delay,
so that the measured time delay can be separated into
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an intrinsic Wigner-like delay[61, 62] and an IR-induced
delay due to Coulomb-laser coupling[63, 64].
This separation can also be seen within the pertur-

bation theory supposing the field is weak[19, 22]. From
Eqs.(6),(40), and (41) one can define a time delay via
either d-a interference or d-e interference:

τa =
∆a

ω
=

Φ(Ω− ω)− Φ(Ω)

ω
+
ψa

ω
− π

2ω
(47)

τe =
∆e

ω
=

Φ(Ω)− Φ(Ω + ω)

ω
+
ψe

ω
+

π

2ω
(48)

On the righthand side of Eq.(47) or (48), the first term is
the finite-difference approximation of −∂Φ/∂Ω which is
the group delay of the XUV field. The second term yields
an atomic time delay τata (E) = ψa(E)/ω or τate (E) =
ψe(E)/ω. The atomic delay can be calculated from
the one and two-photon transition matrix element via
Eqs.(42),(43) in general. When the asymptotic approxi-
mation is applied as in the iPROOFmethod, see Eqs.(44)
and (45), the atomic delay can be separated into two
parts explicitly:

τata (E) = τWa (E) + τcca (E) (49)

τate (E) = τWe (E) + τcce (E) (50)

The first part

τWa (E) =
arg[dd(E)]− arg[dd(E − ω)]

ω
(51)

τWe (E) =
arg[dd(E + ω)]− arg[dd(E)]

ω
(52)

is the finite-difference approximation of ∂{argdd}/∂E,
which is a Wigner-like delay in single-photon ionization.
This delay is related to the electron dynamics following
the absorption of an XUV photon. The second part is
a continuum-continuum delay induced by the IR transi-
tion taking into account the long-range potential with a
Coulomb tail, given by τcca (E) = −ϕcc

a (E)/ω or τcce (E) =
ϕcc
e (E)/ω. The continuum-continuum phase ϕcc

κ is ob-
tained via Eqs.(28) and (35). Beyond the asymptotic
approximation used in iPROOF, one can also correct
the long-range amplitude of the asymptotic wavefunc-
tion ukL(r) and ρκλ(r) so that the continuum-continuum
phase can be corrected by an additional term[51]:

ϕ̃cc
κ = ϕcc

κ + arg

[

1 +
iZ

2

(

1

κ2
+

1

k2

)

κ− k

1 + iZ(1/κ− 1/k)

]

(53)

FIG.5 (a) shows the Wigner-like delay τW , see Eqs.
(51) and (52). τWa and τWe are not identical since they
are finite difference to the left side and to the right side
respectively. In the low energy region where the variation
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FIG. 5: (Color online) (a) the Wigner-like delay calculated
from the one-photon dipole transition matrix element. (b) τ cca
obtained from the asymptotic approximation used in iPROOF
(dashed) and from the long-range amplitude-corrected asymp-
totic approximation (dot-dashed), compared with the corre-
sponding value that was obtained via subtracting the Wigner-
like delay from the atomic delay given in swPROOF method
(solid). (c) same as (b) but for τ cce . (ω = 1.55 eV)

of the dipole phase in an energy scale comparable or less
than the difference step ω = 1.55 eV, the finite difference
to the left and to the right side have considerable discrep-
ancy. From this figure the Wigner-like delay in general
is negative and has a minimum of −110 as roughly near
the Cooper minimum.

In FIG.5 (b) and (c) we plot the continuum-continuum
delay τcc calculated analytically from the asymptotic ap-
proximation (iPROOF) and the long-range amplitude-
corrected asymptotic approximation Eq.(53). In order to
check the validity of the separation of the atomic delay
into two additive parts mentioned above, we also plot the
”effective” continuum-continuum delay extracted from
the accurate matrix element (as used in swPROOF
method). This value is obtained by subtracting the
Wigner-like delay from the atomic delay calculated via
Eqs.(42),(43) directly. One can see that in the high en-
ergy limit the amplitude-corrected asymptotic approxi-
mation tends to reproduce the swPROOF result, whereas
the asymptotic approximation (iPROOF) yields a rel-
atively larger delay in magnitude. In the low energy
region, the separation of atomic time delay is not very
accurate. Thus when utilizing the analytical continuum-
continuum delay to extract a Wigner-like time delay from
the atomic time delay, the error may become tens of at-
tosecond in magnitude. At a first glance our result looks
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quite opposite to the result in Ref.[65, 66] where the sep-
aration of atomic time delay is verified, however they
are actually consistent. Note that Ref.[65, 66] utilizes a
RABITT-type experiment so that the atomic time de-
lay is defined through a-e interference. The Wigner-like
delay, continuum-continuum delay and atomic delay in
Ref.[65, 66] correspond to the average of d-a and d-e val-
ues in our calculation. When averaging Fig.5 (b) and (c),
one can expect that the difference between swPROOF
and amplitude-corrected data will be greatly reduced,
which is in agreement with Ref.[65, 66]. We comment
that the verification in Ref.[65, 66] is actually an average
effect which may not be successful for all targets and for
all energy regions.

III. RESULTS AND DISCUSSION

A. Comparison of FSI terms between TDSE and

theoretical models

We simulate the XUV+IR spectra for argon by solving
the single active electron TDSE numerically. The model
potential for argon is given in Eq.(3). The discrete vari-
able representation (DVR) basis set is used in the com-
putation. Details of the numerical method has been rep-
resented in Ref.[67, 68]. An 800 nm IR pulse with peak

intensity 1011 W/cm
2
is used in this simulation which

mimics the typical experimental condition. To reduce
the computational load we limit ourselves to a relative
short IR pulse (8.8 fs in FWHM) with a cosine-squared
envelope. The box size and number of grid points were
chosen to ensure convergence. The XUV pulses have the
same pre-determined spectral amplitude U(Ω) but sev-
eral different spectral phases Φ(Ω) are chosen.
FIG.6(a) shows a Gaussian amplitude with central fre-

quency at 60 eV and bandwidth of 22 eV, which would
correspond to a FWHM duration of 83 as for a transform-
limited pulse. The four input spectral phases and the
zoomed-in phases near the central frequency are plotted
in FIG.6(b) and (c) respectively. We always set Φ(Ω) = 0
at the central frequency – recall that the absolute phase
cannot be retrieved. FIG.6(d) shows the intensity profile
in the time domain for each pulse, indicating that the
duration ranges from 87 to 235 as, while peak intensity
from 9.0 – 3.0 ×1011W/cm

2
, also the peak position can

shift by 100 as for different pulses.
FIG.7 (a) shows the spectrogram obtained from TDSE

simulation for electrons detected along the +z direction
and for the XUV pulse case 2 in FIG.6. FIG.7(b) shows
the magnitude of the Fourier components filtered from
the spectrogram. Clearly the d.c. component S0 is al-
most identical to the IR free spectra SXUV , i.e., for XUV
alone. This part is independent of the XUV phase. Our
interest lies in the ω-component Sω which can be treated
as the FSI term. This part varies as the XUV phase
changes, however it is about one order of magnitude
smaller than the d.c. part. The 2ω-component S2ω is
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FIG. 6: (Color online) (a) The spectral amplitude (b) the
whole spectral phase (c) the spectral phase zoomed in near the
central frequency (d) the intensity profile in the time domain
of four XUV pulses used in the simulation.

one more order smaller than the FSI term.

The FSI amplitude A(E) and phase Ψ(E) (see Eq.(7))
can be either extracted from the TDSE spectrogram or
calculated from the known U(Ω), Φ(Ω) and relevant ma-
trix elements in the PROOF, iPROOF and swPROOF
methods via Eqs.(8)–(11). FIG.8 shows the comparison
of such results. A(E) shows a valley and Ψ(E) shows
a large phase jump around the central energy E0 =
Ω0−Ip ≈ 44 eV. The overall agreement in Ψ(E) is better
than in A(E), and the TDSE result is well reproduced by
the swPROOFmethod where the atomic matrix elements
are calculated using the Dalgarno-Lewis method. The
remaining discrepancies between swPROOF and TDSE
might result from the finite duration of the IR pulse used
in the TDSE simulation, as opposed to a monochromatic
wave assumed in the theoretical model. Although the dif-
ference in the individual matrix elements obtained in the
swPROOF method and the iPROOF method is not sig-
nificant (see FIG.2), A(E) given by the iPROOF method
shows considerable error. Remember the FSI term is the
superposition of the d-a interference term and the d-e
interference term as shown in Eq.(6). Since there is a
strong cancelation between these two terms as we dis-
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cussed at the end of Sec.II.D, the error in the final FSI
term can become considerable even if the error in each in-
dividual interference term is small. The PROOF method
yields even larger error in the low energy region. One
can also see that A(E) cos Ψ(E) is roughly one fifth of
A(E) sin Ψ(E) in magnitude.

FIG. 7: (Color online) (a) TDSE simulated spectrogram for
the electron detected along the +z direction. The XUV pulse
is chosen as case2 in FIG.6. The IR pulse has the following pa-
rameters: wavelength=800 nm, peak intensity=1011 W/cm2,
FWHM duration=8.8 fs, CEP=0, cosine-squared envelope. A
positive τ means the IR pulse comes first. (b) Magnitude of
the Fourier component S0 (top solid), Sω (middle dot-dashed)
and S2ω (bottom dot-dashed) filtered from (a), the TDSE re-
sult of the IR-free spectra SXUV (top dashed line) is also
plotted.

FIG.9 presents the sensitivity of the FSI modulation
as the spectral phase is varied. A(E) is very insensitive
to the spectral phase Φ(Ω). Although Ψ(E) is sensitive,
its origin as the tan−1 function usually results in some
discontinuity so it is more difficult to fit. As can be seen
from FIG.9(c), A(E) cos Ψ(E) is not only sensitive to
the spectral phase but also a smooth function of electron
energy. Thus A(E) cos Ψ(E) is more suitable for fitting,
as we shall show in the next subsection.

B. Accuracy of spectral phase retrieval

Starting from the simulated FSI modulation
ATDSE(E), ΨTDSE(E), the known spectral ampli-
tude U(Ω), and the matrix element dd, da, de in either
swPROOF, iPROOF or PROOF method, one can
retrieve the spectral phase Φ(Ω) through the fitting
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FIG. 8: (Color online) (a) A(E) (b) Ψ(E) (c) A(E) cos Ψ(E)
(d) A(E) sin Ψ(E) extracted from the TDSE simulation
FIG.7 (red solid) and calculated from the actual XUV pulse
(case 2 in FIG.6) and the atomic matrix element in swPROOF
(black or dark gray dashed), iPROOF (blue or dark gray dot-
dashed) and PROOF(green or light gray dashed). Note that
A(E) and Ψ(E) are not affected by the CEP of the XUV
pulse.

procedure. We parameterize Φ(Ω) as

Φguess(Ω) =

4
∑

n=1

an(Ω− Ω0)
n (54)

This implies the spectra phase is always set to zero
at Ω0 = 60 eV which removes the arbitrariness of the
constant phase. From Φguess one can calculate Aguess,
Ψguess via Eqs.(8)–(11), and the optimal spectral phase
Φfit is the one which minimizes an error function Q.
Two methods of spectral phase retrieval will be ad-

dressed here. First, we assume that the IR intensity
(and thus EIR) is known. This is to check the intrin-
sic accuracy of the three theoretical methods based on
the modulation of the FSI term in the spectrogram. In
this case, the error function is defined as

Q =

∫ 80eV

10eV

[ATDSE(E) cos ΨTDSE(E)

−Aguess(E) cos Ψguess(E)]2dE (55)
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FIG. 9: (Color online) (a) A(E) (b) Ψ(E) (c) A(E) cos Ψ(E)
(d) A(E) sin Ψ(E) extracted from TDSE simulation for four
XUV pulses shown in FIG.6. The IR parameters are the same
as in FIG.7.

Second, in experiments the IR intensity is generally
not precisely determined, thus EIR may be treated
as another fitting parameter. Due to this additional
uncertainty the error function has to include both
A(E) cos Ψ(E) and A(E) sin Ψ(E) such as

Q =

∫ 80eV

10eV

{[ATDSE(E) cos ΨTDSE(E)

−Aguess(E) cos Ψguess(E)]2

+[ATDSE(E) sin ΨTDSE(E)

−Aguess(E) sin Ψguess(E)]2}dE (56)

The optimization is done via a genetic algorithm (GA).
We actually use the micro-GA which evolves small pop-
ulation including ten individuals[69, 70].
The comparison between the actual pulse and the re-

trieved pulse for case1 to case4 are shown in FIGs.10,11
and 12. The IR intensity used in TDSE simulation is
1011W/cm

2
and this intensity is assumed to be known

in the pulse retrieval. Note that pulses retrieved from
different methods originally have different peak intensi-
ties as well as different peak positions in the time do-
main. However a streaking-type pulse characterization
experiment is usually not expected to retrieve such pa-
rameters. To compare pulse shapes easily we have nor-
malized (rescaled and shifted) each pulse such that its
peak value is one and this peak appears at time zero. In
FIGs.10 and 11 we also plot the comparison of the actual
and retrieved spectral phase for case1 and case2. Clearly
the spectral phase is well retrieved by the swPROOF
method, the iPROOF has more error and the PROOF
is even worse. The whole spectral phase retrieved by
PROOF looks flatter than others, but it does not guar-
antee a transform limited pulse due to its non-zero cur-

vature, see the zoom-in plot of the spectral phase. In
TABLE I we list the pulse duration and peak position of
the actual and retrieved XUV pulse from case1 to case4,
respectively.

For case1, the pulse duration of the input pulse is 235
as which is to be compared to 83 as in the transform
limited one. The pulse shape retrieved from swPROOF
is the closest to the actual one, and the pulse duration
extracted from swPROOF lies within better than 10%
of the actual value. For iPROOF and PROOF, the er-
rors become larger in general, especially that PROOF
yields a quite different pulse shape. Additionally we
notice that peak positions obtained from iPROOF and
PROOF can easily differ by more than 20 as. For case2,
the input pulse has duration of 130 as which is closer
to 83 as. The pulse retrieved by swPROOF are in very
good agreement with the input pulse. While in this case
pulse durations retrieved from iPROOF and PROOF are
acceptable, these two methods give different tail shapes
from the input, and peak positions still shift by 12 as or
more. For case3, the input pulse has duration of 103 as
which can only be accurately reproduced by swPROOF.
The iPROOF overestimates the pulse duration by more
than 20% and the PROOF yields a transform-limited
pulse. For case4, the input pulse has duration of 87 as
which is very near the transform limited duration. All
of these three methods can retrieve the pulse duration
accurately, however the peak position given by iPROOF
and PROOF still have errors more than 10 as.

These results provide the benchmark on how accu-
rately the spectral phase or EXUV (t) of an isolated at-
tosecond pulse can be determined in a given experiment
even for such a highly idealized ”experimental” situa-
tion. In our simulation even the swPROOF method may
not exactly reproduce the actual XUV pulse. This error
mainly results from the short IR pulse used in the simu-
lation, and we believe that this error can be reduced if a
longer IR pulse (for example over 20 fs) is used.

case1 Actual swPROOF iPROOF PROOF

XUV pulse duration (as) 235 255 213 294

XUV peak position (as) 59 62 79 27

case2 Actual swPROOF iPROOF PROOF

XUV pulse duration (as) 130 130 124 122

XUV peak position (as) 89 92 77 75

case3 Actual swPROOF iPROOF PROOF

XUV pulse duration (as) 103 100 125 83

XUV peak position (as) 91 103 73 57

case4 Actual swPROOF iPROOF PROOF

XUV pulse duration (as) 87 87 89 87

XUV peak position (as) -4 -8 -14 -37

TABLE I: The actual and retrieved XUV pulse parameters
for case 1–4 (read from FIG.10–12). The IR pulse used in the
TDSE simulation has a peak intensity of 1011 W/cm2. In the
fitting procedure EIR is known.
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FIG. 10: (Color online) (a) the whole spectral phase (b)
the spectral phase zoomed in near the central frequency
(c) the normalized intensity profile in the time domain (d)
the normalized electric field of the actual and retrieved
XUV pulse for case1. The IR pulse used in the simula-
tion has the following parameters: wavelength=800 nm, peak
intensity=1011 W/cm2, FWHM duration=8.8 fs, CEP=0,
cosine-squared envelope. In the fitting procedure EIR is
known.

If the IR intensity is taken as unknown when retriev-
ing the XUV pulse, an additional freedom is added on the
fitting procedure. The corresponding results are given in
FIG.13 and TABLE II. From these results, overall it
shows that swPROOF is more accurate and robust than
iPROOF and PROOF. The iPROOF method behaves
well in case1 and case2 but fails in case3 and case4, while
PROOF is acceptable in case 2 and case 4 but fails in
case1 and case3. Admittedly if one is looking at a single
pulse parameter in a particular case alone (for example
the pulse duration in case1), then one cannot say defi-
nitely that the swPROOF method is the best. However
when considering all shapes and parameters of these four
cases, definitely the swPROOF method is the most ac-
curate.
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FIG. 11: (Color online) (a) the whole spectral phase (b) the
spectral phase zoomed in near the central frequency (c) the
normalized intensity profile in the time domain (d) the nor-
malized electric field of the actual and retrieved XUV pulse
for case2. The input IR parameters are the same as in FIG.10.
In the fitting procedure EIR is known.

case1 Actual swPROOF iPROOF PROOF

XUV pulse duration (as) 235 254 235 270

XUV peak position (as) 59 62 86 63

case2 Actual swPROOF iPROOF PROOF

XUV pulse duration (as) 130 129 135 122

XUV peak position (as) 89 89 91 86

case3 Actual swPROOF iPROOF PROOF

XUV pulse duration (as) 103 100 118 83

XUV peak position (as) 91 97 70 48

case4 Actual swPROOF iPROOF PROOF

XUV pulse duration (as) 87 84 123 88

XUV peak position (as) -4 -7 -10 -26

TABLE II: The actual and retrieved XUV pulse parameters
for case 1–4 (read from FIG.13). The IR pulse used in the
TDSE simulation has a peak intensity 1011 W/cm2. In the
fitting procedure EIR is unknown.
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FIG. 12: (Color online) The normalized temporal intensity
profile of the actual and retrieved XUV pulse for (a) case3 (b)
case4. The input IR parameters are the same as in FIG.10.
In the fitting procedure EIR is known.

C. Effect of the IR intensity on phase retrieval

As the dressing IR intensity increases, quantum paths
involving two or more IR photons will have more con-
tribution to the total spectrogram. Therefore the omega
oscillating component Sω extracted from the spectrogram
starts to deviate from the first-second-order interference
term SFSI as we discussed in Sec.II.A. Such deviation
will impose larger error on the pulse characterization
process. FIG.14 and TABLE III show the result when
the IR intensity used in the simulation was increased to
1012W/cm2. At this IR intensity the swPROOF method
can still retrieve the XUV pulse successfully with the er-
ror less than 10%. FIG.15 shows the result when the
dressing IR intensity increases further to 1013 W/cm

2
. At

such high intensity none of these three methods can re-
trieve the XUV pulse accurately, which implies the break-
down of the second-order perturbation theory.

IV. CONCLUSIONS

In this work we examined the accuracy of single at-
tosecond pulse characterization methods. When the
dressing IR field is below about 1012 W/cm

2
, the pho-

toelectron spectra in the XUV+IR two-color field is ade-
quately described by the second-order perturbation the-
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FIG. 13: (Color online) The normalized temporal intensity
profile of the actual and retrieved XUV pulse for (a) case1
(b) case2 (c) case3 (d) case4. The IR pulse used in the TDSE
simulation is given in the caption of FIG.10. In the fitting
procedure EIR is unknown.

case1 Actual swPROOF iPROOF PROOF

XUV pulse duration (as) 235 227 216 217

XUV peak position (as) 59 60 84 37

case2 Actual swPROOF iPROOF PROOF

XUV pulse duration (as) 130 122 125 121

XUV peak position (as) 89 85 74 83

TABLE III: The actual and retrieved XUV pulse parameters
for case1 and case2 (read from FIG.14). The IR pulse used
in the TDSE simulation has a peak intensity 1012 W/cm2. In
the fitting procedure EIR is unknown.

ory. To ”calibrate” the intrinsic accuracy of the re-
trieval method, we generated ”experimental” photoelec-
tron spectra with known spectral amplitude and phase
of the single attosecond XUV pulses in the known IR
dressing field. Adopting the PROOF and iPROOFmeth-
ods to retrieve the spectral phases, we established the
lack of accuracy of the spectral phases retrieved, which
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FIG. 14: (Color online) The normalized temporal inten-
sity profile of the actual and retrieved XUV pulse for (a)
case1 and (b) case2. The IR pulse used in the TDSE
simulation has the following parameters: wavelength=800
nm, peak intensity=1012 W/cm2, FWHM duration=8.8 fs,
CEP=0, cosine-squared envelope. In the fitting procedure
EIR is unknown.

are then reflected in the errors of pulse duration, pulse
shape and peak position in the time domain. Our re-
sults show that approximations used in PROOF and
iPROOF have detrimental effects on the retrieved at-
tosecond pulses. In the PROOF method, both first-
order and 2nd-order dipole transition elements are calcu-
lated approximately. In iPROOF the 2nd-order matrix
elements are approximated. These approximations are
undesirable and unnecessary since theoretical tools are
available for their accurate evaluations. We obtained ac-
curate two-photon dipole matrix elements using the so-
called Dalgarno-Lewis method. The modified retrieval
method, which we called swPROOF, is based on an ac-
curate theory so long that the IR intensity is constrained
to below about 1012W/cm2. For attosecond pulse trains
with harmonics separated by 2ω this method reduces
to the familiar RABITT method. For attosecond pulse
trains where harmonics are separated by ω, and for single
attosecond pulses, the swPROOF method can be applied
when accurate one-photon and two-photon dipole matrix
elements for the target gas atoms are calculated, at least
within the single active electron model. Our simulation
has proven that the swPROOF method is more univer-
sal and robust than the current PROOF and iPROOF
method.

The examples shown in this work demonstrate that
spectral phases can be accurately retrieved from nu-
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FIG. 15: (Color online) The normalized temporal intensity
profile of the actual and retrieved XUV pulse for (a) case1 and
(b) case2. The FWHM duration of the XUV pulse is given in
the legend. The IR pulse used in the TDSE simulation has
a peak intensity 1013 W/cm2, other parameters are the same
as in FIG.14. In the fitting procedure EIR is unknown.

merical ”experimental” spectra calculated from solving
TDSE. Using real experimental data, the accuracy will be
compromised. The accuracy reported in our analysis is to
be taken as the best scenario, as additional ”noises” from
real experimental data are added. This work shows that
details of the temporal profile of attosecond pulses are
very difficult to obtain exactly. This would limit the ac-
curacy of the retrieved durations of attosecond pulses and
temporal resolution in any time-domain measurements.
This is not surprising since in the weak field limit, fea-
tures of the photoelectron spectra are dominated by the
spectral intensity. The spectral phase enters in the inter-
ference between the first and second order terms, which
is only a small effect. The spectral phase is expected to
show more pronounced effect at higher IR intensity, but
then strong field ionization theory becomes more com-
plicated. We note that the accuracy of the widely used
FROG-CRAB method for retrieving spectral phases has
not been carefully examined through TDSE simulation
yet.

Looking ahead, attosecond pulses in the water-window
region and beyond will be generated with mid-infrared
lasers in the near future. Will the swPROOFmethod still
be the method for characterizing such attosecond pulses?
At higher photon energies the atomic parameters are nor-
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mally less important, but electrons from multiple inner
shells are generated. Helium is the only target that does
not have this complication, but its photoionization cross
section is notoriously smaller. While high-order harmon-
ics have been reported way beyond 150 eV with mid-
infrared lasers, attosecond pulses at these energies still
have not been reported. Clearly characterization of such
attosecond pulses in the time domain is an important
issue that has to be faced in theory and in experiments.
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