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Abstract

We present a detailed theoretical study on the photoionization from the bound ex-

cited 1P state of He to continua dominated by multiple doubly excited resonance series

embedded in multiple single-ionization channels between the N = 2 and N = 3 thresh-

olds. In addition to identifying the individual resonance series, our investigation has also

demonstrated unambiguously the level crossing between overlapping resonance series and

how the closely spaced pairs of resonances migrate as energy increases.

PACS: 32.80.Fb; 32.80.Zb; 32.70.Jz; 32.80.Xx



I. INTRODUCTION

Rapid advances in the free-electron laser (FEL) [1] and the higher-order harmonic

generation [2] during the past decade have made the coherent UV and XUV radiation

readily available to study atomic processes in greater details that were unattainable

previously. Among them are the characterizations of some of the most fundamental

processes, which are difficult to analyze experimentally without the detailed theoretical

understanding. One such example is the question on the direct versus sequential ion-

ization when the photon energy is sufficient to ionize both electrons from the simplest

two-electron atom [3, 4]. To characterize such process fully, it requires the detailed tran-

sition rates for a number of transitions, including those coupled with intermediate doubly

excited resonant states in the continua, along various paths leading to the final continua

(see, e.g., Fig. 1 of [4]). Below the double ionization threshold of the two-electron

atom, the atomic spectra are dominated by a large number of overlapping doubly ex-

cited resonance series. The need for accurate transition rates for processes beyond the

well understood 1S to 1P transitions from the ground state is clearly required.

The detailed atomic structure studies, both experimentally and theoretically, of the

single photoionization of He were responsible for much of the current understanding of

multi-electron interactions in atomic transitions [5-8]. With the high resolution exper-

imental observations, the atomic transitions from the 1S (J = 0) ground state of He

to the 1P (J = 1) final states (either to the bound excited states, the structure-less

continua, or continua dominated by doubly excited resonances series) have been the

testing ground for the atomic structure theories during the past few decades [9-11]. The

pump-and-probe experiments, which are instrumental in the understanding of atomic

structures for more active heavier atoms [12], are unfortunately limited for He atom due

to the lack of shorter wavelength light source to elevate the atom to the bound excited

states. As a result, the detailed studies of the atomic processes, other than the 1S → 1P

transitions, are not broadly available for simple system such as He atom. Unlike the

heavier atoms with their spectra mostly classified by the usual LS or jj coupling, the

degenerate thresholds and the non-LS coupling characteristic makes the study of the

electron-electron interaction in He particularly interesting. With the availability of the

shorter wavelength light sources in UV and XUV region, it is now possible to carry

out detailed experimental measurement for atomic transitions starting from states other

than those with 1S symmetry to final states with symmetry beyond 1P . In addition,

to characterize correctly the multi-photon processes, it is critical to compile the accu-

rate theoretical estimates of transition rates beyond the basic 1S → 1P transitions as

discussed above.
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By analyzing theoretically the components of the S-matrix, interactions between

doubly excited resonance series were studied earlier [10, 11] in details on the 1P reso-

nances series for transitions from the He ground state with focus on the complicated

spectral region closed to the doubly ionization threshold where a large number of reso-

nances are embedded in a large number of single-ionization channels in a very narrow

spectral region. For example, there are nine doubly excited 1P resonance series embed-

ded in sixteen single-ionization channels between the N = 4 and N = 5 thresholds. To

compare with the observed spectra, the reported theoretical spectra represent mostly

the cross sections (i.e., the sum of convoluted partial cross sections into a number of

single-ionization channels) against each of the ionization threshold. Since the weak dou-

bly excited resonance series are likely to be hidden under the more prominent resonance

series and may not be observed experimentally (see, e.g., two such examples in Figs.

4-5 and Figs. 7-8 in [13]), what we present in this paper is an alternative approach to

identify and analyze in details those weak but strongly overlapping resonances decaying

into multiple sinlge-ionization channels.

The main purpose of this paper is to present a theoretical analysis of a proto-type

photoionization process from the bound excited 1s2p 1P state of He to final continua

between the N = 2 and N = 3 ionization thresholds. Our study is focused on three over-

lapping doubly excited 1S resonance series embedded in three single-ionization channels

and six overlapping doubly excited 1D resonance series in four single-ionization chan-

nels. We have chosen this particular spectral region since the number of overlapping

resonance series and the number of single-ionization channels are still limited for a de-

tailed theoretical analysis. We will also demonstrate in details the level crossing between

overlapping resonance series and how they migrate due to the interaction between series.

Our discussions are based on the theoretical spectra derived from two distinct theoret-

ical approaches, the B-spline-based K-matrix (BSK) method [14] and the eigenchannel

R-matrix (ECR) method [15, 16]. One important advantage we enjoy in our present

study is the ability to compare the theoretical results from these two different calcu-

lations. The overall agreement for an extended energy region between the calculated

spectra from these two calculations suggests strongly their quantitative reliability. In

addition, both calculations have also led to agreement between the length and velocity

results to 1% or better.

We will review briefly the basics of the BSK and ECR approaches in Sec. II. In Sec.

III, we present the detailed results and discussions of our calculated theoretical spectra.

We will also illustrate how we are able to identify each of the doubly excited resonance

through the energy variation of the sum of the eigen-phase shifts over all contributing
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eigenchannels.

II. THEORETICAL APPROACHES

A. B-spline based K-matrix method

For multi-channel photoionization, Fang and Chang [14] have extended an earlier

B-spline based configuration interaction method (BSCI) [7] for single ionization channel

to a B-spline based K-matrix method (BSK) following the usual K-matrix approaches

[6, 17]. An eigenchannel Γ at a total energy E is represented as a linear combination of

individual open channel wavefunctions |ΦγoE〉, i.e., [14]

| ΓE〉 =
∑

γo

|ΦγoE〉 UγoΓ(E) cos ηΓ(E), (1)

where UγoΓ(E) is an orthogonal transformation matrix and the eigenphase shift ηΓ repre-

sents the interactions between |ΦγoE〉. Similar to the normal modes of a complex system,

the eigenchannels are intimately related to the dynamics of the atomic process, although

they do not in general represent directly the individual atomic states.

The eigenstate |ΓE〉 satisfies the orthonormality relation

〈Γ′E ′ |ΓE 〉 = δΓ′ Γ δ (E
′ −E) . (2)

The transformation matrix UγoΓ(E) and the eigenphase shift ηΓ are obtained by diago-

nalizing the on the energy shell K-matrix, i.e.,

∑

γ

〈γoE |K(E) |γE 〉UγΓ = −π−1 tan ηΓ UγoΓ (3)

where the K-matrix, expressed as a set of coupled integral equations, is given explicitly

by Eq. (11) in [14]. Similar to the increase of the scattering phase shift by a value of

π across a resonance embedded in a single continuum, the sum of the eigenphase shift

over all eigenchannels, i.e.,

ηtot =
∑

ηγ (4)

also increases by a total of π as the energy increases across an isolated resonance. The

width of a resonance can be derived from the energy variation of ηtot. We should note

that such procedure is well established in atomic structure calculation (e.g., see the

similar application in [11]).
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As detailed in [14], the total photoionization cross section σtot is given by the sum of

the partial cross sections over all open channels, i.e.,

σtot =
∑

γ

σγ . (5)

The partial cross section in unit of a20 for each open channel γ is given by

σγ = 4π2α fγI (6)

where the effective oscillator strengths fγI from an initial state I, corresponding to length

and velocity approximations are given by Eqs. (22) and (23) in [14], respectively.

B. Eigenchannel R-matrix method

Over the years, the R-matrix approach has been successfully developed as an ab-

initio method for treating a variety of dynamic processes in atomic physics [18-22]. The

basic idea of the R-matrix theory is to partition configuration space into sub-regions,

each with different physical property that dictates the atomic processes. A different

and appropriate representation of the wave function is adopted in each region. These

wave functions are connected by the R-matrix defined on their common boundary, i.e.,

at r = ro. Recently, Gao and Li have extended both the non-relativistic and relativistic

versions of the eigenchannel R-matrix method, referred to as R-eigen and R-R-eigen,

respectively [15, 16], from the earlier Breit-Pauli [19] and Dirac R-matrix codes [20].

With the ECR method, we are able to obtain the scattering matrices corresponding

to the physical parameters associated with the multichannel quantum defect theory

(MQDT) [22-25] for both the discrete and continuous energy regions of interest. Various

physical quantities can then be derived from a straightforward application of the MQDT

procedure.

Specifically, the logarithmic derivative boundary matrix R(E) is obtained by first

solving the (N + 1)-electron problem variationally within the reaction zone, i.e., the R-

matrix box. For the R-eigen code, the one-particle Hamiltonian is non-relativistic with

or without the Breit-Pauli terms, whereas for the R-R-eigen code, the Dirac-Coulomb

Hamiltonian is employed. The reaction matrix K(E) is calculated with the standing-

wave expressions on the boundary of the reaction zone, i.e., at ro = rN+1

Ψi(E) = Φifi(ro, E) +
np∑

j=1

Φjgj(ro, E)Kij +
∑

j=np+1

ΦjΘj(ro, E), i ≤ np (7)
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where i and j are the channel indices. The wave function Φi consists of the N -electron

target-state wave function combined with the angular and spin parts of the wave function

of the (N + 1)th electron in the ith channel. In the energy region of interest, only finite

number of channels contribute directly to the observed spectral structures. They are

known as the physical channels (i ≤ np). For the ith physical (i.e. ionization) channel,

the regular and irregular Coulomb wave functions, fi(r, E) and gi(r, E), modified by

the appropriate long-range polarization interactions, cover the entire set of one-electron

orbitals, with both negative and positive energy [8]. With Eq. (7), in what is known

as the ”semiscattering” physical picture, we are able to extend the scattering matrices

normally defined only in the positive energy regions to the whole energy regions. For the

other contributing channels (j > np) at a total energy E with the core state Φj at higher

energy, the corresponding radial wave functions Θj of the (N + 1)th electron should

have fairly negative orbital energies and exponentially decaying radial wave function

with negligible magnitude at rN+1 = ro. All such channels with j > np are called the

computational channels. They are included in our calculation to assure that the electron

correlations are taken into account adequately.

In the eigenchannel representation, following the details outlined elsewhere [8,21-

24] and similar to the K-matrix in Eq. (3) shown earlier for the BSK approach, the

short-range reaction matrix with total angular momentum J is expressed in terms of the

smoothly varying eigenchannel parameters in energy, i.e., eigen-quantum defect να and

the np × np orthogonal transformation matrix Ujα by

KJ
ij =

∑

α

Uiα tan (πνα)Ujα. (8)

The corresponding eigenchannel wavefunction ψα is normalized per unit energy and

represents the detailed dynamic characters of an excited electron and its interactions

with the ionic core within the reaction zone. The state functions are then expressed as

the linear combination of eigenchannel wavefunctions, i.e.,

ΨJ(E) =
∑

α

Aα ψα(E) (9)

where Aα is the mixing coefficient and determined by the asymptotic boundary condi-

tions [24]. The transition rate, or, the oscillator strength f(E) is given by

f(E) =
2(E − Eo)

N2
|
∑

α

Dα · Aα | 2 (10)

where N is the normalization factor and Dα =< ψα|D|Ψo > is the dipole matrix element

for transition to the specific eigenchannel ψα from the initial state Ψo with energy Eo.
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III. RESULTS AND DISCUSSIONS

For the single photoionization with photon energy between the N = 2 and N =

3 thresholds from the bound excited 1P state of He, there are three doubly excited

resonance series for the 1P → 1S transition leading into three ionization channels (i.e.,

1sǫs, 2sǫs, and 2pǫp) and six doubly excited resonance series for the 1P → 1D transition

leading into four ionization channels (i.e., 1sǫd, 2sǫd, 2pǫp, and 2pǫf). Earlier study

on the 1S and 1D doubly excited resonances of He above the N = 2 threshold depends

primarily on the complex rotation method [26-29], which is capable of estimating the

energy and width of the doubly excited resonance. No attempt, however, was made to

investigate the detailed spectra for the atomic transitions such as the ones presented in

this paper.

Figure 1 presents the theoretical photoionization spectra from the bound excited

1s2p 1P state to the 1D continua. The top plot represents the spectrum calculated

with the BSK approach and the bottom one with the ECR approach. It is clear that the

agreement between the two calculations is excellent. In addition, the length and velocity

results are nearly identical in both calculations. Only four resonance series are labeled in

Fig. 1. To facilitate our discussion below, we have labeled the four overlapping resonance

series as An((2, 0)
+
n ), Bn((0, 2)

+
n ), Cn((0, 0)

+
n ), and Dn((1, 1)

−

n ) under the classification

scheme in terms of a set of correlation quantum numbers K, T, and A in the form of

(K, T )An [30]). A more detailed spectrum on the higher energy side of Fig. 1 up to 3.7785

Ry is presented in Fig. 2, together with the energy variation of the ηtot obtained from

the BSK calculation. Two additional resonance series En((−1, 1)0n) and Fn((−2, 0)0n) are

identified in the top plot of Fig. 2. Each of the doubly excited resonance could easily be

identified by the increase of π in ηtot. Interestingly, Fig. 1 shows that the two resonances

A4 and D4 are fairly closely located whereas there is substantial separation between C3

and A4. However, at higher energy, as shown in Fig. 2, the resonance series Dn clearly

moves away from the series An. On the other hand, the energy separation between the

pairs of adjacent resonances An+1 and Cn are getting progressively smaller as n increases.

It is only from the increases of 2π in ηtot near 3.763 Ry and 3.775 Ry that we are able to

confirm the presence of two pairs of closely spaced overlapping resonances (C5, A6) and

(A7, C6), respectively.

The question one should then ask is if the resonance Cn will move to the higher

energy side of the resonance An+1, i.e., if there is a level crossing between these two

resonance series. If, indeed, the level crossing occurs, how do these two overlapping

resonance series migrate as energy increases? To answer these two questions, we first
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examine the partial cross sections into the four open channels (i.e., 1sǫd, 2sǫd, 2pǫp,

and 2pǫf) for four pairs of resonances (A5, C4), (A6, C5), (C6, A7), and (C7, A8) shown

in Fig. 3. Clearly, the partial cross sections into the 1sǫd (mid-dash curve) channel

is substantially smaller than the ones into the 2sǫd (solid curve), the 2pǫp (short dash

curve), and the 2pǫf (long dash curve) channels. The overall narrower resonance-like

structure of the partial cross sections into the 2pǫf ionization channel (long dash curve)

remains essentially the same, except for the minor broader shoulder for the (A5, C4)

pair near 3.7407 Ry on the higher energy side of the higher peak near 3.7384 Ry. The

broader resonance-like structure of the partial cross sections into the 2pǫp ionization

channel also retains its basic shape, except for the smaller peak near 3.7381 Ry on the

lower energy side of the higher peak near 3.7405 Ry for the (A5, C4) pair. The structures

of the less prominent partial cross sections into the 2sǫd ionization channel (solid curve),

on the other hand, varies substantially from one pair of the resonances to the others.

Our calculation shows a slow migration from a two peaks structure with almost same

peak height for the (A5, C4) pair, to a structure of higher peak on the higher energy side

for the (A6, C5) pair, and eventually to the ones of higher peak on the lower energy side

for the (C6, A7) and (C7, A8) pairs. Together with the other switch-over of partial cross

section peaks between the narrower peak into the 2pǫf ionization channel (long dash

curve) and the broader peak into the 2pǫp ionization channel (short dash curve) as the

pair of adjacent resonances migrates along the resonance series, it is clear that the level

crossing indeed occurs between the two overlapping resonance series An and Cn. We

should point out that the earlier theoretical work for the 1P resonances for He has also

analyzed the migration of the closely overlapping resonances (see, e.g., Figs 3 and 4 in

[11]). However, the specific resonances were only expressed in terms of their sequential

numerical designation, instead of their corresponding K, T , and A quantum numbers

like those shown in Fig. 3.

By taking advantage of the ability of the B-spline based approaches [7, 14] to examine

in details the state function of each resonance, as it migrates along the resonance series,

we are able to check the detailed characteristics of each individual resonance to assure its

proper assignment in terms of the probability densities corresponding to the contributing

electronic configurations. In the present study, we first examine the bound component of

the state functions of the resonances in a BSCI calculation by excluding all open-channel

configurations. The top plot of Fig. 4 represents the variation of the effective quantum

defect δeff = i− n∗ for the Ai and Ci series, where n
∗ is the effective quantum number

against the N = 3 threshold. The bottom plot represents the effective quantum numbers

derived from the full BSK calculation with the energies of each resonance determined

from the variation of ηtot shown in Fig. 2. As discussed above, the assignment of each

individual resonance is confirmed from the detailed characteristics of its corresponding
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state function. It is clear that the level crossing between these two overlapping resonance

series indeed occurs as expected from the earlier discussion. The energies and widths

of a few lowest 1D resonances between N = 2 and N = 3 thresholds were calculated

earlier with the complex rotation method with no specific assignment to their respective

resonance series [26]. Numerically, those data are in good agreement with the results

from the present study.

Figure 5 presents the theoretical photoionization spectra for the 1s2p 1P to 1S con-

tinua. Similar to the photoionization spectra into the 1D continua shown in Fig. 1,

the top plot represents the spectrum calculated with the BSK approach and the bot-

tom one with the ECR approach. The agreement between the two calculations is again

excellent and the length and velocity results are nearly identical in both calculations.

Again, for simplicity, we have labeled the three overlapping resonance series as An, Bn,

and Cn (which represent, respectively, the (2, 0)+n , (0, 0)
+
n , and (−2, 0)+n series). A more

detailed spectrum on the higher energy side of Fig. 5 is presented in Fig. 6, together

with the energy variation of the ηtot obtained from the BSK calculation. Similar to our

early discussion, each of the doubly excited resonance could easily be identified by the

increase of π in ηtot. Our calculated spectrum shows that the energy separation between

the pairs of adjacent resonances An+2 and Cn gets progressively smaller as n increases.

In fact, the increase of 2π in ηtot near 3.773 Ry suggests the presence of two closely

spaced overlapping resonances C5 and A7, which would be very difficult to identify from

experimental spectra even at very high energy resolution. All the resonances in each of

the resonance series discussed below are identified in terms of the energy variation of

ηtot.

We now turn to the question once again on the level crossing, if it indeed occurs,

between the An and Cn resonance series. Similar to Fig. 3, Fig. 7 presents the partial

cross sections into three outgoing ionization channels, i.e., 1sǫs, 2sǫp, and 2pǫp. The four

plots shown in Fig. 7 represent the partial cross sections at energies near the vicinity

of four pairs of resonances, i.e., i) C5((−2, 0)+5 ) and A7((2, 0)
+
7 ), ii) C6((−2, 0)+6 ) and

A8((2, 0)
+
8 ), iii) A9((2, 0)

+
9 ), and C7((−2, 0)+7 ), and iv) A10((2, 0)

+
10), and C8((−2, 0)+8 ),

respectively. We note first that the partial cross sections into the 1sǫs (short dash curve)

channel is substantially smaller than the ones into the 2sǫs (solid curve) and 2pǫp (long

dash curve) channels.

The top left plot of Fig. 7 shows i) one group of distinct peaks in the partial cross

sections into three ionization channels near 3.77312 Ry and ii) a broader but less promi-

nent one near 3.77342 Ry. They correspond to the pair of resonances C5 on the lower

energy side and A7 on the higher energy side shown in the top plot of Fig. 6 slightly
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below 3.774 Ry. The assignment to C5 and A7 of these two resonances is also supported

by their contributing electronic configurations based on a careful examination of the

detailed characteristics of the state functions. The bottom left and top right plot of Fig.

7 represent the partial cross sections leading into three continua correspond to, respec-

tively, the pair of resonances C6 and A8 near 3.78136 Ry and A9 and C7 near 3.78662

Ry. The presence of the two distinct groups of peaks in partial cross sections is no longer

evident and the overlap of the two resonances is nearly complete. A closer look at the

variation of ηtot for both pairs of resonances yields an energy separation of about 10−4 Ry

between the two neighboring resonances. Unlike the pairs of neighboring 1D resonances

An+1 and Cn, which retain their basic characteristics in terms of their contributing elec-

tronic configurations below and above the level crossing discussed earlier, these two pairs

of neighboring resonances show a nearly complete mixing of the basic characteristics of

the two overlapping resonance series An+2 and Cn. The bottom right plot of Fig. 7 rep-

resents the partial cross sections for the pair of resonances A10 and C8 between 3.79006

Ry and 3.79024 Ry. The basic characteristic of the strong resonance-like peaks in partial

cross section near 3.79019 Ry show little difference from the corresponding ones in three

previous plots and may be nominally assigned as the C8, or, (−2, 0)+8 resonance. A closer

inspection of the calculated spectrum reveals the presence of a shoulder in the partial

cross sections on the lower energy side of the strong peak into the 1sǫs continuum and

a broader and much less prominent one into 2pǫp continuum near 3.79013 Ry, which

could be attributed to the A10 resonance. The assignment of C8 and A10 for this pair

of resonances is also confirmed by the detailed characteristics of their respective state

functions. As a result, we are in the position to conclude the level crossing of these two

overlapping 1S resonance series. Our conclusion is consistent with the earlier theoretical

estimate of the resonance energies from the complex rotation calculation, although no

discussion on the level crossing was presented (see, Table 3 of [28]). It is also supported

by the substantial variation of the expectation values of the imaginary part of the in-

terelectronic angle along the resonance series based on a subsequent complex rotation

calculation (see, Fig. 2 of [29]).

Finally, in Table I, we present a more critical comparison of the theoretical data

between our results and the ones from the earlier complex rotation calculations in terms

of the energy separations between the adjacent resonances for each of the 1S resonance

series. The agreement is excellent at 1 meV or better, which is comparable to the

best energy resolution of the current synchrotron radiation light source with photon

energies near 50 eV. We should also note that the resonance widths derived from the

present calculations are also in good agreement with those from the complex rotation

calculations [26-28].
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IV. CONCLUSIONS

We would like to first comment on one of the key advantages of applying jointly in

the present study two different approaches, i.e., the BSK and the ECR approaches. For

the resonances of lower n, both BSK and ECR methods are capable of generating highly

accurate atomic spectra as shown earlier since both approaches take into account fully

the short-range interactions. The long-range polarizations, which may not contribute

much to the atomic processes for the resonances with lower n, could affect significantly

the resonances of higher n and clearly need to be included in any theoretical calculation

that cover an extended spectral region. The BSK method, with its atomic orbitals con-

fined in a sphere with an arbitrarily large radius R, is capable of including the long-range

interactions even for resonances with high n. It, however, requires substantially more

computational efforts involving the diagonalization of non-sparse matrix of the size even

greater than the 15,000 or larger in the present study for each R. The ECR approach,

with its ability to calculate the smoothly varying eigenchannel physical parameters for

subsequent application of MQDT, is capable of extending directly the accurate atomic

data from resonances with lower n to those with higher n, where the accuracy of high

precision theoretical and/or observed atom data are often lacking. Its ability to generate

highly accurate atomic data, of course, depends critically on the proper match of the

(N + 1)-electron wavefunction inside the reaction zone at a relatively small r = ro with

the outside wavefunctions corresponding to the physical channels in the form of Eq. (7),

if the long-range polarization effects could be properly accounted for. The excellent

agreement between the theoretical spectra from BSK and ECR methods suggests that

the atomic data generated from BSK method for resonances of intermediate n with long

range polarizations adequately included could be applied to calibrate the proper match

of the inside and outside wavefunctions at a relatively modest ro for the ECR calcula-

tion. It, in turn, could lead to accurate atomic data for resonances with much higher n

by applying the well established MQDT procedure.

In summary, we have presented in this paper detailed theoretical spectra for the

continua dominated by multiple doubly excited resonance series embedded in multiple

single-ionization channels. We should also point out that with the state functions gen-

erated explicitly in the present study, we are able to examine critically the migration of

individual resonance along the resonance series and identify unambiguously the individ-

ual resonance, even for those closely spaced pairs of resonances near the level crossing

between two overlapping resonance series. At the same time, we have made a critical

step in the development of the necessary theoretical tools for a more detailed study of

the multi-photon processes since the doubly excited 1S and 1D resonances studied in this
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work are the same states that are expected to dominate the spectra of the two photon

processes starting from the 1s2 ground state. The relevant dipole transition matrices

such as the smooth varying Dα and the mixing coefficients Aα, corresponding to each

eigenchannel associated with both the intermediate and final states of the multi-photon

process, could be obtained from calculations such as the ones presented in this paper.
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Table I. The energy separation ∆E (in Ry) between adjacent resonances

for three 1S resonance series.

n Present Ref. [29] Ref. [27]

∆ E (EAn+1
− EAn

)

3 0.1448 0.1449 0.1449

4 0.0503 0.0502 0.0503

5 0.0241 0.0243

6 0.0135 0.0134

7 0.00807 0.00805

8 0.00514 0.00521

9 0.00357 0.00355

∆ E (EBn+1
− EBn

)

3 0.1085 0.1081 0.1081

4 0.0335 0.0335 0.0333

5 0.0162 0.0162

6 0.00925 0.00925

7 0.00578 0.00579

8 0.00388 0.00388

∆ E (ECn+1
− ECn

)

3 0.0257 0.0261

4 0.0139 0.0140

5 0.00821 0.00827

6 0.00532 0.00528

7 0.00356 0.00358

15



Figure Captions

Fig. 1. (Color online) The theoretical photoionization spectra of He atom from

the 1s2p 1P bound excited state to the 1D continua between N = 2

and N = 3 thresholds calculated with BSK method (top plot) and ECR

method (bottom plot).

Fig. 2. (Color online) More refined theoretical photoionization spectra (top plot)

of He atom from the 1s2p 1P bound excited state to the 1D continua and

the corresponding variation of ηtot (bottom plot).

Fig. 3. (Color online) Partial photoionization cross sections for four pairs of

closely spaced 1D resonances.

Fig. 4. (Color online) Variation of the theoretical effective quantum defeats for

two of the He 1D resonances series Ai and Ci between the N = 2 and

N = 3 thresholds.

Fig. 5. (Color online) The theoretical photoionization spectra of He atom from

the 1s2p 1P bound excited state to the 1S continua between N = 2

and N = 3 thresholds calculated with BSK method (top plot) and ECR

method (bottom plot).

Fig. 6. (Color online) More refined theoretical photoionization spectra (top plot)

of He atom from the 1s2p 1P bound excited state to the 1S continua and

the corresponding variation of ηtot (bottom plot).

Fig. 7. (Color online) Partial photoionization cross sections for four pairs of

closely spaced 1S resonances.
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