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We present results of ab-initio numerical calculations for low-order harmonic generation as well
as calculations of the higher-order terms in the respective perturbative power series expansions of
the susceptibilities for third- and fifth-order harmonic generation. We find that the transition from
perturbative to non-perturbative interaction in these low-order nonlinear processes occurs at about
1013 W/cm2. Our findings confirm previous results that any deviation from the predictions of
lowest-order perturbation theory indicates that the perturbative series expansion is not applicable
and, if required, needs to be replaced by a nonperturbative treatment of the interaction between the
atom and the field. In particular, the results also show that the observation of low-order harmonic
yields cannot be considered as a test of higher-order Kerr effects.

PACS numbers: 32.80.Wr, 42.65.An, 42.65.Ky

I. INTRODUCTION

High-order harmonic generation in intense short laser
pulses is a highly nonlinear process, which has been ex-
tensively studied as a route to generate coherent bright
x-rays and attosecond pulses (for a review, see e.g., [1]).
On the other hand, low-order harmonic generation (also,
termed below-threshold harmonics) in the strong-field
regime has received less attention. However, recent ex-
periments [2–4] have demonstrated the potential to gen-
erate bright coherent low-order harmonics in the vacuum
ultraviolet with photon energies below the threshold of
the ionization potential of the target atom. These ul-
trafast sources have gained interest as tools for ultrafast
spectroscopy of electron wave packet dynamics in atoms
and molecules [3] as well as for precision measurements
[2, 4].
Beyond this renewed interest in low-order harmonic

generation for spectroscopic purposes, it has been pro-
posed [5] that the ratio of fifth- to third-order harmonic
generation offers a stringent test to the controversially
discussed role of higher-order Kerr effects (HOKE) (for a
review, see e.g., [6]). The HOKE debate was initiated by
the consideration that higher-order terms in the pertur-
bative power series expansion of the electric susceptibility
χω of a gas in an external electric field E [7]:

χω = χ(1)
ω + χ(3)

ω |E|2 + χ(5)
ω |E|4 + χ(7)

ω |E|6 + . . . (1)

are required in order to explain the experimentally ob-
served [8, 9] (and, previously, theoretically predicted
[10, 11]) negative slope in the electric susceptibility as
function of the peak laser intensity in the mid of 1013

W/cm2.
Our recent theoretical studies of the electrical suscep-

tibility of atomic hydrogen have indicated [12] that the
power series expansion, Eq. (1), does not converge at
intensities above about 2 × 1013 W/cm2 since the mag-
nitudes of the higher order terms do exceed a significant
fraction of the lowest order nonlinear term. The calcu-
lations of the higher order coefficients were done using a

numerical basis state method [13], which also enabled us
to determine the nonlinear electrical susceptibility from
the ab-initio solution of the corresponding Schrödinger
equation. Comparison of the results of both kinds of cal-
culations let us conclude that a change in the intensity
dependence of the susceptibility has to be interpreted as
a signature of the nonperturbative interaction between
intense laser light and the gas, while perturbative con-
cepts such HOKE are not applicable.

In view of the renewed interest in strong-field below-
threshold harmonic generation and the proposed stud-
ies regarding third and fifth order harmonic generation
in the HOKE debate, it is interesting to ask whether or
not similar conclusions regarding the transition from per-
turbative to non-perturbative interaction hold for low-
order harmonic generation as well. To this end, we ex-
tend our previous studies on the electrical susceptibility
[12] and use the numerical basis state method to deter-
mine the first few coefficients of the power series expan-
sion of the elements of the susceptibility tensor for third-
and fifth-order harmonic generation. We also calculate
the harmonic spectrum generated by the interaction of a
short laser pulse with atomic hydrogen using the direct
numerical solution of the corresponding time-dependent
Schrödinger equation (TDSE). This allows us to perform
an ab-initio study of the generated power for each har-
monic as a function of the peak laser intensity at the
single-atom level. The rapidly increasing contribution of
the higher order terms as well as the deviation of the
intensity dependence of the harmonic power from the
power law, expected from perturbation theory, enables
us to estimate that the corresponding breakdown of the
perturbative power series expansion occurs in the same
intensity regime as for the electrical susceptibility.

II. THEORETICAL APPROACHES

Despite providing complimentary insights, our pertur-
bative and ab-initio methods are based on the same the-
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oretical framework, namely a set of numerically obtained
field-free energy eigenstates, here for atomic hydrogen
written as (Hartree atomic units, e = ~ = m = 1, are
used throughout)

|ψnlm(r)〉 = |Rnl(r)Ylm(Ω)〉 (2)

using the radial wavefunctions Rnl(r) and spherical
harmonics Ylm(Ω). The radial wavefunctions are ob-
tained as numerical solutions of the corresponding eigen-
value equation for the radial, field-free, time-independent
Schrödinger equation using the Numerov method on a
logarithmic one-dimensional finite-space grid of size R0

with boundary conditions rRnl(r)|r=0 = rRnl(r)|r=R0
=

0 [13]. Due to the finite size of the box the number of
bound states is limited and the continuum is discretized.
Hence, the energy eigenstates in this numerical basis set
can be indexed by a principal quantum number n. In
our calculations we consider the ground state of atomic
hydrogen and therefore can restrict the basis set to states
with m = 0, since ∆m = 0 in interactions with linearly
polarized fields.
In order to perform ab-initio calculations for the polar-

ization response to a linearly polarized external field we
use the field-free representation of the dipole operator,
given by

µ̂ =
∑

n,l,n′,l′

|ψnl0〉 〈ψnl0| ẑ |ψn′l′0〉 〈ψn′l′0| . (3)

and propagate the time-dependent Schödinger equation
using the Crank-Nicholson method [13]:

[

Ĥ0 + E(t)µ̂
]

|Ψ(r, t)〉 = i
∂

∂t
|Ψ(r, t)〉 , (4)

where Ĥ0 is the diagonal field-free Hamiltonian, and E(t)
is of the form:

E(t) =
√
I sin2

(

πt

T0

)

sin(ωt) (5)

with I is the intensity, T0 and ω is the pulse duration
and central frequency of the field, respectively. We then
determine the low order harmonic spectra by calculating
the Fourier transform of the dipole moment:

P (ω) = FT [µ(t)](ω) (6)

where µ(t) is the time dependent expectation value of µ̂
from Eq. (3).
In Fig. 1 we present an example for a low-order har-

monic spectrum generated at a driver wavelength of 1600
nm, a peak intensity of 5×1013 W/cm2 and a pulse dura-
tion of 10 cycles. The results have been determined for a
box size of R0 = 1000 a.u., a time step of ∆t = 0.05 a.u.
and a maximum principle quantum number nmax = 2000
as well as lmax = 70. The convergence of the results with
respect to the size of the radial box is shown by the rel-
ative error between the results for box sizes of R0 = 500
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FIG. 1. Results of ab-initio numerical calculations for a low-
order harmonic spectrum generated by a driver laser pulse at
a central wavelength of 1600 nm, a peak intensity of 5× 1013

W/cm2 and a pulse length of 10 cycles. The inset shows the
relative error between calculations using radial box sizes of
Rmax = 500 and Rmax = 1000.

and R0 = 1000. Please note that the minima in the error
correspond to the peaks in the harmonics.
On the other hand, we use the eigenstates of the field-

free energy basis to calculate the Nth coefficient of the
perturbative power series expansion of the ground state
wavefunction in the external field, as given in Ref. [7]:

∣

∣

∣
ψ(N)(ω1, . . . , ωN)

〉

= (7)

∑

jN 6=j0

· · ·
∑

j1 6=j0











N
∏

i=1

〈ψji | µ̂E(ωi)e
−iωit

∣

∣ψji−1

〉

ωji − ωj0 −
i
∑

k=1

ωk











|ψjN 〉

where ωj0 is the ground state energy, ωk and ωi are the
participating frequencies of the electric field, ji denotes
the state in the numerical basis set, and µ̂ is given by
Eq. (3). The lifetimes of the excited states are neglected
since all calculations performed in this study are far from
resonance. The Nth-order term in the expansion of the
single atom polarization in an overall nω process can then
be written:

〈

P
(N)(nω)

〉

= P
N
∑

j′=0

〈

ψ(j′)
∣

∣

∣
µ̂
∣

∣

∣
ψ(N−j′)

〉

, (8)

where n = 1, 3, 5, . . .,
∑

j ωj = nω and ωj = ±ω. P refers
to the average of all permutations of the frequencies. The
symmetry of the electric field with respect to positive and
negative frequency components allows us to rewrite Eq.
(8) as [7]:

〈

P
(N)(nω)

〉

= ǫ0χ
(N)
nω

N
∏

i=1

E(ωi) (9)
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FIG. 2. (Color online) Results for perturbative power series

coefficients χ
(N)
nω for n = 1 (dashed-dotted lines), n = 3 (solid

lines) and n = 5 (dotted lines) as a function of nmax.

with χ
(N)
nω is the Nth-order term of the susceptibility at

frequency nω due to contributing electric fields at fre-
quencies ωi.
As for the ab-initio calculations, we performed test cal-

culations to ensure that the results of our calculations for
the terms in the perturbation expansion of the suscepti-
bility for low-order harmonic generation are converged
with respect to the size of the box R0 and the size of
the basis set nmax. We note that the maximum angular
momentum is determined by lmax = (N +1)/2, where N
is the order of the coefficient calculated. In general, we
have found that a box size of R0 = 500 is sufficient for

the present purpose. In Fig. 2 we show results for χ
(N)
nω

for n = 1 (dashed-dotted lines), n = 3 (solid lines) and
n = 5 (dotted lines) as a function of nmax for R0 = 500
at a laser wavelength of 1600 nm. In general, we observe
that the contributions from the bound states are pos-
itive, reflected in the increase of the susceptibilities for
low nmax, and those from the continuum states are nega-
tive, corresponding to the decrease of the susceptibilities
for higher nmax.

III. INTENSITY DEPENDENCE OF

LOW-ORDER HARMONIC GENERATION

We have applied both approaches to investigate the in-
tensity dependence of low order harmonics and the tran-
sition from perturbative to non-perturbative interaction.
In Fig. 3 we present the integrated power of the (a) 1st,
(b) 3rd and (c) 5th harmonic as a function of peak laser
intensity at a central wavelength of 1600 nm and a pulse
length of 10 cycles, as obtained from our ab-initio calcula-
tions. For these results we have calculated the harmonic
spectrum and integrated the signal for the power of the
nth harmonic over the energy range [(n− 1)ω, (n+1)ω].
We compare the results of our numerical calculations
with the power law In, which is expected for a perturba-
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FIG. 3. Results of ab-initio calculations for the integrated
harmonic power (solid circles with solid lines) for the (a) 1st,
(b) 3rd and (c) 5th harmonic as a function of the peak laser
intensity of a laser pulse of 10 cycles at a wavelength of 1600
nm. The numerical results are compared to a perturbative In

power law fit, which is matched to the ab-initio results at the
lowest intensity. The insets show the relative error between
ab-initio results and power law predictions with respect to the
ab-initio results.

tive n-photon process. The predictions from the power
law were matched to the numerical results at low inten-
sities. The inset in each of the panels shows the relative
error between the ab-initio results and the power law pre-
dictions with respect to the ab-initio results.

The results show that in the intensity regime between
1012 and a few times 1013 W/cm2 the ab-initio results
start to deviate from the respective power law. This
is an indication of the transition from a perturbative
to a non-perturbative electron-field interaction. These
results are in agreement with the onset of other non-
perturbative phenomena, e.g., above threshold ionization
[14] and high-order harmonic generation [15, 16], in the
same intensity regime.

Based on the ab-initio results, we expect that the per-
turbative power series expansion of the susceptibility cor-
responding to the process of low-order harmonic genera-
tion should break down in this intensity range as well. In
order to test this expectation, we have calculated the first
few terms in the expansion for χω, χ3ω and χ5ω at 1600
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FIG. 4. Results for the ratio of higher-order terms to the
lowest-order nonlinear term in the perturbative series expan-
sion for (a) χω, (b) χ3ω and (c) χ5ω. Also shown is the ratio
of the sum of all higher order terms calculated with respect
to the lowest-order term (solid lines).

nm. We study the relative contribution of higher-order
terms in the expansion by presenting their ratios with re-
spect to the lowest-order nonlinear term in Fig. 4. Also,
shown is the ratio of the sum of all higher-order terms
calculated to the lowest-order term. From the results
we observe the same behavior, as previously reported for
the electrical susceptibility χω at shorter wavelength [12],
namely each higher order term is much smaller than the
lowest order term, indicating the convergence of the cor-

responding power series expansion, at the lowest inten-
sities studied. On the other hand, the breakdown of the
series at the highest intensities is obvious as well, since
the contributions of the higher order terms exceed that
of the lowest order term. We further note that in each
case the sum of the calculated higher-order terms reaches
about 10% of the lowest-order term for intensities in the
range of 1×1013 to 2×1013 W/cm2. Therefore, this limit
can be considered as an indication for the breakdown of
a perturbative series expansion in strong-field processes
[17].
To summarize, our results for low-order harmonic gen-

eration from both ab-initio as well as perturbative calcu-
lations show the same onset of a transition from pertur-
bative to non-perturbative interaction between the atom
and the field as the previously reported results for the
electrical susceptibility χω at shorter wavelength [12].
It is therefore not surprising that previous studies on
low-order harmonic yields [18–22] did not help in resolv-
ing the question about the significance of higher-order
Kerr effects in the filamentation of short higher-power
laser pulses in gaseous media. In contrast, we conclude
that any deviations from the predictions of the lowest-
order perturbation theory for the polarization (and other
observables) should be interpreted as a signature for
the non-perturbative character of the electron-field in-
teraction. In particular, our results also show that a
quantitative analysis of strong-field below-threshold har-
monic generation requires a nonperturbative theoretical
approach, as e.g. introduced in [2].
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