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Overbarrier model with electron back-capture
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We present an extension of the classical overbarrier model [F. Sattin, Phys. Rev. A 62, 042711
(2000)] to include the effect of electron back-capture. Back-capture is the process by which an
electron that has already been captured by the projectile ion is re-captured by the target atom.
Back-capture reduces the electron capture cross section at low impact velocities when the projectile
ionization energy is less than that of the target. This creates a cross section peak. We alter
the location of this peak to correspond to that predicted by an adiabatic criterion by using a free
parameter of the model. These extensions bring the overbarrier model more in line with experimental
data, especially at low impact velocity.
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I. INTRODUCTION

The classical overbarrier model is a simple analytic model
that describes the charge exchange between a target atom
or ion and a projectile ion [1–6]. In the literature, the
model and all of its variations predict that the electron
capture cross section is a monotonically decreasing func-
tion of velocity [5–10]. In fact, the analytic formula shows
that the model predicts close to a 1/v velocity depen-
dence when ionization is neglected. With ionization, the
falloff with velocity is stronger.
Experiments, however, reveal that the cross section as a
function of velocity contains a peak at non-zero veloc-
ity for most reactions. Massey attributed the low veloc-
ity fall-off to the fact that the collision proceeds slowly
enough (adiabatically) that the system is able to adjust
itself to perturbations without a transition taking place,
thus making the cross section small [11]. The cross sec-
tion should be low when the system obeys the adiabatic
criterion:

a|∆E|
hv

≫ 1 (1)

where a is the adiabatic parameter which should be on
the order of atomic dimensions, ∆E is the difference in
the target and projectile binding energies and is called
the energy defect, and h is Planck’s constant.
The overbarrier model fails to correctly predict the veloc-
ity dependence below this Massey peak because it doesn’t
take into account the projectile’s binding energy, and
therefore the energy defect. The projectile’s binding en-
ergy can be included in a natural way in the overbarrier
model by including electron back-capture, the process in
which a target electron is captured back by the target
atom/ion after originally being captured by the projec-
tile. In the context of the overbarrier model, the back-
capture process is similar to the capture process, but with
the roles of the projectile and target reversed. Thus, the
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probability for back-capture is inversely proportional to
the binding energy of the projectile ion.
At low collision velocity, where there is sufficient time for
many captures and back-captures, the charge exchange
cross section is controlled by the energy defect. Essen-
tially, the electron will preferentially end up bound to
the object (target or projectile) with the greatest bind-
ing energy. So, when the binding energy of the projectile
is lower than that of the target, it is reasonable to expect
a decrease in the electron capture cross section at low
velocity, giving the Massey peak. This is generally true
in experiment [12, 13], and we show it is also true in the
overbarrier model with back-capture included.

II. REVIEW OF THE OVERBARRIER MODEL

The overbarrier model has several versions which vary
in the details. We use the version that can be found
in [5, 6, 14]. These references provide particularly nice
derivations of the model. To review, consider an electron
bound in the potential well of a target where the core
of the target has effective charge Zt. As a projectile ion
with charge Zp approaches to an internuclear distance R,
its potential well overlaps with that of the target creating
a saddle-shaped potential field. In the plane of the three
particles, we use the cylindrical coordinate system of [6]
in which the internuclear axis is labeled with coordinate z
and the electron’s distance from this axis is labeled with
coordinate ρ. Then, the total (kinetic plus potential)
energy of the electron (in atomic units) is

E =
p2

2
− Zt

√

ρ2 + z2
− Zp

√

ρ2 + (R− z)2
. (2)

When the electron is bound to the target, and in the limit
R → ∞, the energy of the electron is approximated as

E(R) = −Et −
Zp

R
(3)

where Et is the binding energy of the target electron in
the absence of the projectile.
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The saddle-shaped potential is a maximum along the in-
ternuclear axis at the distance

z0 =

√
Zt√

Zt +
√

Zp

R (4)

The electron is able to reach the saddle point if its max-
imum excursion is equal to z0. This occurs when the
internuclear spacing R is less than some maximum

Rm =
α
√

ZpZt + Zt

Et
. (5)

This expression is derived from Eq. 2 with z = z0 and
ρ = 0. When E in Eq. 2 is set to E(R) in Eq. 3, α = 2;
however, if E = −Et, α = 1. Sattin showed that α = 1
gave better agreement with certain experiments [6, 8].
However, α = 2 is consistent with the rest of the model,
which always uses the fully perturbed binding energy
(E(R) in Eq. 3), so we use α = 2 in all calculations.
When R < Rm, the electron can cross over the potential
barrier at time t and be captured by the projectile if its
orbit intersects the potential opening and if the electron
is in the part of the orbit that crosses the barrier. The
fraction of electron orbits that intersect the opening at
time t is given by

NΩ =

√

Zp

2
√
Zt(

√
Zt +

√

Zp)2

[

(
√

Zt +
√

Zp)
2 − Zp − EtR

]

.

(6)
The fraction of electrons that cross any surface perpen-
dicular to their motion within the time interval dt is dt/T ,
where T is the period of the electron orbit:

T = 2

∫ rturn

0

dr

p
=

√
2

∫ rturn

0

dr
√

Zt

r +
Zp

|R−r| − Et − Zp

R

≈
√
2

∫ 1/Et

0

dr
√

Zt

r − Et

=
π√
2
ZtE

−3/2
t (7)

where r =
√

ρ2 + z2 is the distance of the electron from
the target and rturn is the maximum radial excursion of
the electron, which occurs when p = 0. Note that p is
obtained from equating Eqs. 2 and 3. The approximation
on the second line of Eq. 7 is then obtained by applying
the large R limit (to zeroth order in r2/R2), which is
consistent with Eq. 3. This is also equivalent to using
the momentum without considering the perturbation as
was done in [6]. We note that in [8], Sattin mistakenly
left out the Zp/|R− r| term in the momentum [15].
Next, let W (t) represent the probability for the electron
to still be bound to the target at time t. Its time rate of
change is then given by

dW (t)

dt
= −NΩ

fT
T

W (t). (8)

Note that like Sattin [6], we multiply the rate equation by
a constant corrective factor fT . Sattin justifies this as a
correction to the period, which should be less than is cal-
culated in Eq. 7 due to finite angular momentum, which
we have neglected. Other justifications for this correc-
tion include our neglect of quantum tunneling and par-
tial electron screening in multi-electron atoms and ions.
We prescribe a method for setting this free parameter
in Section IV, so that the model can better reproduce
known experimental results.
The probability for the electron to leak from the target
and be captured by the projectile is

Pl(b) = 1−W (∞) = 1− exp

(

−fT
T

∫ tm

−tm

NΩ dt

)

. (9)

Assuming a straight line collision trajectory with impact
parameter b and velocity v,

R =
√

b2 + (vt)2, (10)

the limits of the integral (±tm) are derived with R =
Rm, meaning −tm < t < tm is the time range in which
charge exchange can occur. The integral in Eq. 9 can
be performed analytically due to this known dependence
of R on time, meaning the leakage probability can be
calculated analytically. The total cross section

σ = 2π

∫

bPl(b)db (11)

involves an integral which is not normally analytically
tractable, so numerical integration is required.
One final consideration of the model is that of ioniza-
tion. During the collision process, it is possible that the
electron is ionized and not captured by the projectile.
There are different models within the overbarrier model
that have been used to account for ionization [6, 16]. We
follow Sattin’s, which calculates the electron’s binding
energy to the projectile while in the saddle point of the
potential [6]. This binding energy to the projectile is

E′
p = Et +

Zp − Zt

R
− v2

2
+

vetv
2t

R
, (12)

where
v2et
2

=
(
√
Zt +

√

Zp)
2 − Zp

R
− Et. (13)

Note that the binding energy E′
p is not generally equal

to the projectile’s ground state binding energy Ep. The
condition for ionization is that E′

p(t) < 0, which one can
see from Eq. 12 primarily occurs for large v and small or
negative t. If E′

p(t) > 0 for the time interval ti < t < tf
which is within ±tm, the capture probability is

Pc(b) = 1− exp

(

−fT
T

∫ tf

−ti

NΩ dt

)

. (14)
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III. EXTENSION TO INCLUDE

BACK-CAPTURE

Accounting for the return of the electron to the target
once it has been captured by the projectile is relatively
straight-forward in the case when the projectile is the
same element as the target and Zp = Zt [17]. It is trick-
ier when the capture and back-capture are not identical
processes. To do this calculation, we first define three
time-dependent probabilities, wt, wp, and wi, which rep-
resent the probability for the electron to be bound to
the target, bound to the projectile, and ionized, respec-
tively. They are constrained in that wt + wp + wi = 1.
We can then write evolution equations for each of these
probabilities,

dwt

dt
= −jtpwt − jtiwt + jptwp

dwp

dt
= −jptwp − jpiwp + jtpwt (15)

dwi

dt
= jtiwt + jpiwp

where jtp and jpt are the rates of charge exchange from
the target to the projectile and from the projectile to
the target, respectively, while jti and jpi are the rates of
ionization for an electron bound to the target and to the
projectile. Given the initial conditions wt = 1, wp = wi =
0 at t → −∞, the summation constraint (wt+wp+wi =
1) is automatically satisfied. The charge exchange and
ionization rates are

jtp =
fT
Tt

NΩ,t Θ(E′
p) Θ(tm,t − |t|)

jti =
fT
Tt

NΩ,t Θ(−E′
p) Θ(tm,t − |t|)

jpt =
fT
Tp

NΩ,p Θ(E′
t) Θ(tm,p − |t|)

jpi =
fT
Tp

NΩ,p Θ(−E′
t) Θ(tm,p − |t|) (16)

where Θ is the Heaviside step function. Tt, NΩ,t, and
tm,t are equivalent to T,NΩ, and tm from the previous
section. The added subscript t simply denotes that they
apply to the electron while it is bound to the target.
The new variables Tp, NΩ,p, and tm,p, denote quantities
for the electron bound to the projectile, while E′

t is the
counterpart of E′

p – it is the binding energy to the target
while in the saddle point, and is not generally equal to
Et. To get the expressions for these new variables, simply
take all of the expressions in the previous section and
exchange the subscripts, t → p, p → t.
The differential equations (Eqs. 15) must be solved nu-
merically. One point to keep in mind is that the time
limits during which the equations must be solved are
−tm,t < t < max(tm,t, tm,p). The back-capture may pro-
ceed even after the original capture shuts off, or it may
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FIG. 1: Charge exchange cross sections between H and He
calculated with the overbarrier model with back-capture using
various values of the free parameter fT .
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FIG. 2: The velocity vm at which the cross section peaks as
a function of the energy defect ∆E calculated from the over-
barrier model with back-capture. The straight Massey-Hasted
line is the prediction of vm from the adiabatic criterion.

shut off before the original capture does. This depends
on the relative values of Zt, Zp, Et, and Ep.

IV. RESULTS

Before calculating cross sections, we must choose how to
set the model’s free parameter, fT . Recall, fT multiplies
the rates in Eq. 16. To set this, we appeal to past the-
oretical and experimental studies that have attempted
to characterize the shapes of charge exchange cross sec-
tions. In particular, there have been several attempts
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FIG. 3: Charge exchange cross sections. The black diamonds are experimental data from [12, 13]. The solid blue lines are
overbarrier model with back-capture calculations that use the value of fT indicated on the bottom of each figure, which is
calculated from the procedure using the adiabatic criterion. The green dashed lines are overbarrier model with back-capture
calculations using fT = 1, and the short-dashed red lines are overbarrier model without back-capture calculations using fT = 1.

in the literature at predicting the collision velocity vm
at which the charge exchange cross section peaks (the
Massey peak) [18–22]. Hasted applied Massey’s adiabatic
criterion (Eq. 1), asserting that

vm =
a|∆E|

h
(17)

and found that a ≈ 7 × 10−8cm by fitting Eq. 17 to ex-
perimental data [18]. The significance of this expression
is the proportionality between vm and the energy defect
∆E = Et − Ep. Drukarev later showed that vm ∼ |∆E|
only in the limit |∆E| ≪ Et. For |∆E| ≪ Et, vm ∼
|∆E|1/2 [19]. Others used this result to derive their own
relations with vm ∼ |∆E|1/2 [20–22]. We choose to use
the Massey-Hasted result to set the free parameter fT ,
but one can use the other relations in a similar way.
To do this, we note that the overbarrier model with back-
capture produces a charge exchange cross section peak as
long as Ep < Et regardless of the value fT . We show one

example of this with the reaction H++He → H+He+ in
Fig. 1 (Ebind = Et = 24.6 for He and Ebind = Ep = 13.6
for H). It is apparent that fT controls both the magnitude
of the cross section maximum, σm, as well as the velocity
at which it occurs, vm. Since the Massey-Hasted relation
predicts vm for a given reaction, we can set fT so that our
model predicts a cross section peak equal to this Massey-
Hasted prediction.
To illustrate this further, we show the overbarrier model’s
functional dependence of vm on ∆E and fT in Fig. 2
for Et = 20. Alongside the vm(∆E, fT ) curves, we plot
the Massey-Hasted prediction for the peak velocity. The
intersection of the vm,OBM (∆E, fT ) overbarrier model
(OBM) curves with the Massey-Hasted curve at the par-

ticular ∆E of the collision:

vm,M−H(∆E) = vm,OBM (∆E, fT ), (18)
provides a solution for fT . For example, taking a colli-
sion in which Et = 20 and Ep = 15 so that ∆E = 5, the
Massey-Hasted prediction is vm = 8.5× 107, which look-
ing at Fig. 2 is what the overbarrier model predicts for
fT ≈ 4. So we can use the overbarrier model with back-
capture with fT = 4 to calculate the charge exchange
cross section for this reaction.

With this procedure, we calculate the charge exchange
cross sections for a few collision reactions for which ex-
perimental data exists [12, 13]. All of these reactions have
Ep < Et. We show these calculations along with the ex-
perimental data in Fig. 3. In the figure, we also include
calculations using the overbarrier model with fT = 1 with
and without back-capture. fT = 1 corresponds to the
uncorrected case. It is clear that without back-capture,
the overbarrier model does not contain any peak. Fur-
thermore, it is necessary to use the fT corrective factor to
obtain the peak at the correct velocity and to obtain bet-
ter overall agreement with experiment, which is generally
within a factor of two or so.

Overall, while the inclusion of back-capture makes the
overbarrier model more calculation intensive, it allows for
the reproduction of the well-known Massey peak. This,
combined with our use of the Massey-Hasted adiabatic
criterion and a reaction rate multiplier, we have greatly
improved the model’s accuracy, especially at low velocity.

This work was performed under the auspices of the U.S.
Department of Energy by Lawrence Livermore National
Laboratory under Contract DE-AC52-07NA27344.
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