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General ultracold scattering formalism with isotropic spin orbit coupling

Su-Ju Wang∗ and Chris H. Greene†

Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA

A general treatment of ultracold two-body scattering in the presence of isotropic spin-orbit cou-
pling (SOC) is presented. Owing to the mixing of different partial wave channels, scattering with
SOC is in general a coupled multichannel problem. A systematic method is introduced to analyt-
ically solve a class of coupled differential equations by recasting the coupled channel problem as a
simple eigenvalue problem. The exact Green’s matrix in the presence of SOC is found, which readily
gives the scattering solutions for any two identical particles in any total angular momentum subspace
having negligible center of mass momentum. Application of this formalism to two spin-1 bosons
shows the ubiquitous low energy threshold behavior for systems with isotropic SOC. A modified
threshold behavior shows up, which does not occur for the spin-orbit coupled spin-1/2 system. We
also confirm the parity-breaking mechanism for the spontaneous emergency of handedness, that has
been proposed by Duan et al. [1]. Additionally, a two-body bound state is found for any arbitrarily
small and negative scattering length. Our study sheds light on the few-body side of SOC physics
and provides one step towards understanding ultracold scattering in a non-Abelian gauge field.

I. INTRODUCTION

Since the first discoveries of Bose-Einstein condensates
and degenerate Fermi gases [2, 3], ultracold atomic sys-
tems have emerged as a new class of highly-controllable
systems that can serve as quantum simulators of tradi-
tional condensed matter systems. Spin-orbit coupling in
particular is an important ingredient in topological insu-
lators as well as many other intriguing phenomena (see
reviews [4, 5]). Therefore, the development of a way to
create synthetic gauge fields in neutral cold atom sys-
tems has been a fundamental advance in recent years
[6, 7]. In 2011, the Spielman group at NIST success-
fully engineered equal Rashba and Dresselhaus spin-orbit
coupling in a Bose-Einstein condensate by dressing two
of the hyperfine spin states of 87Rb with two counter-
propagating laser fields [8]. This achievement has created
a new paradigmatic system and a new tool for manipu-
lating an ultracold quantum gas, and has provided a new
direction for the study of many-body and few-body sys-
tems [9, 10].
Spin-orbit coupling is characterized by its unusual en-

ergy dispersion relations. Early on, the double mini-
mum energy dispersion was proposed to generate macro-
scopic quantum superposition states with repulsive in-
teratomic interactions [11]. The non-quadratic energy
dispersion relation modifies the density of states, and
has been shown to significantly change the bound state
spectrum [12–14]. For example, it has been proved the-
oretically that bound states for two spin-1/2 fermions
exist for an arbitrarily weak attraction in the presence
of 3D isotropic spin orbit coupling [13]. Also the energy
spectrum of a harmonically trapped two-atom system is
studied [15–17]. Not only the two-body bound state spec-
trum, but also the scattering formalism becomes modified
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since SOC exists to infinite distance and this will be the
main topic of our study here.

Inspired by the recent work done by Duan et al. [1], we
generalize their treatment of the scattering of two spin-
1/2 fermions in the presence of isotropic SOC. Our for-
mulation applies to any two identical bosons or fermions
of arbitrary spin, for arbitrary values of the total angular
momentum of the system. An advantage to the choice of
isotropic SOC, which is a 3D analog of Rashba SOC, is
that it has higher symmetry than other types of SOC, and
is more closely related to the cases in condensed matter
physics [18, 19]. The conservation of total angular mo-
mentum allows us to develop a fully analytical treatment
of scattering theory in the presence of SOC. The general-
ization of two-body scattering to higher spin atoms can
extend our understanding to higher spin physics having
no counterparts in condensed matter systems. For in-
stance, a system of spin-3/2 fermions with contact po-
tential interactions has been shown to have exact SO(5)
symmetry, and a novel quartetting order (a four-fermion
version of Cooper pairing) has been proposed [20]. Un-
derstanding the two-body physics also paves the way to
more interesting varieties of universal Efimov physics [21–
23]. Although Rashba-type SOC has not yet been real-
ized experimentally, proposals have been made that are
based on adding more laser fields [24] or else by applying
magnetic pulses [25, 26] to imprint an engineered phase
onto the atoms.

This paper is organized as follows: Sec. II presents
a systematic way to formulate the multichannel 2-body
scattering problem with SOC present, and outlines the
route to extract the scattering information. The first
step is a derivation of an analytical expression for the
free Green’s matrix with SOC. When the atoms inter-
act through a regularized s-wave interaction, which is
an excellent assumption in the ultracold regime, the
Lippmann-Schwinger equation can then be cast into a
simple form having a closed form solution. Utiliza-
tion of the Green’s matrix and the Lippmann-Schwinger
equation enables the analytical scattering wave functions
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to be found, and the scattering properties extracted.
Sec. III applies our methodology to a system of two iden-
tical spin-1 bosonic atoms, and derives the scattering
cross sections. An unusual type of threshold behavior is
seen to emerge in the low energy scattering cross section.
Sec. III confirms the spontaneous emergence of handed-
ness in this type of system having no parity symmetry.
Discussion about two-body bound states is included too.
Finally, Sec. IV discusses our conclusions.

II. MODEL

For identical particles interacting with each other in
the presence of isotropic 3D spin-orbit coupling, the two-
body Hamiltonian is expressed as

H2b =
~
2~k21
2m

+
~
2λ

m
~k1 ·~s1+

~
2~k22
2m

+
~
2λ

m
~k2 ·~s2+V (~r1−~r2),

(1)
where m is the atomic mass, λ is the strength of the
spin-orbit coupling and V (~r1 − ~r2) is the interatomic in-
teraction. The operator ~s1 and ~s2 are the hyperfine spin
operators for atom 1 and atom 2; hereafter these are
referred to simply as spin. Since the total momentum
in the system is conserved, the center of mass motion
and the relative motion can be decoupled. The two-body
Hamiltonian can be rewritten as usual using the center

of mass momentum operator ~P = ~p1 + ~p2, and the rela-
tive momentum operator ~p = (~p1 − ~p2)/2. The two-body
Hamiltonian then becomes

H2b =Hcom +Hrel =
~P 2

4m
+

~λ

2m
~P · (~s1 + ~s2)

+
~p2

m
+

~λ

m
~p · (~s1 − ~s2) + V (~r1 − ~r2). (2)

Although the center of mass momentum and the relative
motion can be separated out, the relative motion is gen-
erally coupled to the center of mass motion via the spin
degrees of freedom. To simplify the present calculation,
the remainder of this paper is formulated within the cen-

ter of mass frame and we focus on the case of ~P = 0.
(Note also that the orbital angular momentum of center
of mass is L~R = 0); thus, H2b = Hrel+V (~r1−~r2). When
the center of mass momentum is nonzero, this breaks the
continuous rotational invariance of relative energy spec-
tra and degeneracies of relative band energies are lifted,
although we do not discuss it here in detail.

A key first step is to solve the relative Schrödinger
equation in the absence of interactions. Since the relative
momentum commutes with the non-interacting Hamilto-
nian, it is advantageous to solve it in momentum space
and then Fourier transform the solution back to position
space. Taking spin-1 bosons as an example, the non-

interacting two-body states are:

〈~r|ζ, ξ;~k〉 =
1√
2

(

|ζ, k̂〉1 |ξ,−k̂〉2 ei
~k·~r + |ξ,−k̂〉1 |ζ, k̂〉2 e−i~k·~r),

(3)

where |ζ, k̂〉 and |ξ, k̂〉 are one of the following single-
particle states:

|−, k̂〉 =







e−iφ~k
(1−cos θ~k)

2

− sin θ~k√
2

eiφ~k
(1+cos θ~k)

2






, E− =

~
2k2

2m
− ~

2λk

m
(4)

|0, k̂〉 =







−e−iφ~k
sin θ~k√

2

cos θ~k
eiφ~k

sin θ~k√
2






, E0 =

~
2k2

2m
(5)

|+, k̂〉 =







e−iφ~k
(1+cos θ~k)

2
sin θ~k√

2

eiφ~k
(1−cos θ~k)

2






, E+ =

~
2k2

2m
+

~
2λk

m
(6)

where θ~k and φ~k describe the direction of the particle’s

motion along k̂. The eigenstates are expressed in the
basis of {|1, 1〉 , |1, 0〉 , |1,−1〉}, which are the eigenstates
of the sz operator for each atom. The three states in
Eq.(4)∼(6) are also eigenstates of the helicity operator,
h = ~p · ~s/p, with eigenvalues -1, 0, and 1. In general, the
eigenvalues range from −s, −s + 1, ... to s for spin ~s.
The helicity states can be pictured in an intuitive way as

follows: when a spin, ~s, moves along direction k̂, there
are (2s+ 1) possible spin configurations. The maximum
(minimum) helicity state represents the state when the
particle’s spin is in parallel (antiparallel) to the direction
of its motion. For the same canonical momentum, when
spin is aligned with its momentum, the state has the
highest eigenvalue. In the article, we will mainly discuss
how the particles with definite helicity are going to be
scattered to different helicity states through helicity non-
conserving interaction.
The methodology to solve the two-body scattering

problem is sketched below: we first calculate the regu-
lar and irregular solutions of the non-interacting system
that satisfy the correct boundary conditions, and then
use those solutions to construct the free-particle Green’s
matrix with isotropic spin-orbit coupling. The Green’s
matrix is then used in the Lippmann-Schwinger equation
to solve for the scattered wave functions.

A. Green’s matrix with spin-orbit coupling

The crucial symmetry in this isotropic spin-orbit sys-
tem is the conservation of total angular momentum. This
allows us to expand the solutions in a complete basis
set having a fixed value of the total angular momentum
quantum number, J . Because both the orbital angular
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FIG. 1. (Color online) The relative energy-momentum dis-
persion relation for the spin-1 bosons is depicted. There are
9 bands in total. However, bands with the same resultant
spin component along the direction of the relative motion are
degenerate. The degeneracies from left to right are 1, 2, 3,
2, and 1. The allowed relative canonical momenta (in blue
bands) at E ≡ ~

2k2
0/m > 0, for |J = 0〉 subspace, are labeled

by k1 = k0, k2 =
√

k2
0 + λ2 + λ and k3 =

√

k2
0 + λ2 − λ.

The unlabeled momenta crossed by black bands are impor-
tant only when we move to a higher J subspace. The lowest
scattering threshold energy occurs at k2 = λ.

momentum and the spin angular momentum would be
conserved in the absence of spin-orbit coupling, tensor
spherical harmonics [27] are adopted as the basis set.

These are simultaneous eigenstates of { ~J2, Jz, ~L
2, ~S2},

where ~L is the (relative) orbital angular momentum and
~S = ~s1+~s2 is the total spin angular momentum. In terms
of this basis set, spin-orbit coupling simply mixes states
with different {L, S}-values, which label these basis func-
tions. Consequently the Hamiltonian matrix elements in
this basis set have nonzero off-diagonal elements. The
tensor spherical harmonics are defined as

Y LS
JM (θ, φ) =

∑

mL,mS

CJM
LmL,SmS

YLmL
(θ, φ)χ(S,mS) (7)

where CJM
LmL,SmS

is the Clebsch-Gordan coefficient,

YLmL
(θ, φ) is the spherical harmonics, and χ(S,mS) is

the spin state for total spin S. Any wave function can be
expanded in this tensor spherical harmonics basis set,

ΨJM
η (r, θ, φ) =

∑

{L,S}

uJM
{L,S},η(r)

r
× Y LS

JM (θ, φ), (8)

where u(r) is the reduced radial wave function and the
index η represents different independent solutions. The
matrix element of the kinetic energy operator is easily
evaluated, and the result is familiar:

〈(L′, S′)J ′M ′|~p
2

m
|(L, S)JM〉 =

(−~
2

m

d2

dr2
+

L(L+ 1)~2

mr2
)δJ,J′δM,M ′δL,L′δS,S′ . (9)

Matrix elements of the spin-orbit coupling term are eval-
uated using the Wigner-Eckart theorem in the convention
of Ref. [27]:

〈(L′, S′)J ′M ′|~p · (~s1 − ~s2)|(L, S)JM〉 = (−1)J+L+S′×

δJJ′δMM ′〈L′‖p(1)‖L〉〈S′‖s(1)1 − s
(1)
2 ‖S〉

{

L′ L 1
S S′ J

}

,

(10)

where the curly bracket denotes the 6j symbol and the
double bars stand for reduced matrix elements, which are
defined by

〈L′‖p(1)‖L〉 = 〈L′m′
L|p

(1)
q |LmL〉

C
L′m′

L

LmL,1q

√
2L′ + 1, (11)

〈S′‖s(1)‖S〉 = 〈S′m′
S |s

(1)
q |SmS〉

C
S′m′

S

SmS ,1q

√
2S′ + 1, (12)

where the superscript inside the parentheses is the rank of
the operator and the subscript means the qth component
of that tensor operator. All the dependence on magnetic
quantum numbers occur now in the Clebsch-Gordan coef-
ficients, in the usual spirit of the Wigner-Eckart theorem.
Application of some straightforward angular momentum
algebra yields the matrix element of ~p · (~s1 − ~s2),

〈(L′, S′)J ′M ′|~p · (~s1 − ~s2)|(L, S)JM〉 = δJJ′δMM ′

√

(2S + 1)(2S′ + 1)

{

L′ L 1
S S′ J

}

(−1)J+L+S′+s1+s2

×
[

− (−1)S
√

s1(s1 + 1)(2s1 + 1)×
{

s1 s2 S
S′ 1 s1

}

+ (−1)S
′
√

s2(s2 + 1)(2s2 + 1)×
{

S S′ 1
s2 s2 s1

}]

×
{

−i~( d
dr − L

r )
√

(L+ 1) if L′ = L+ 1

i~( d
dr + L+1

r )
√
L if L′ = L− 1

(13)

The spin-orbit interaction couples states with orbital an-
gular momentum differing by one, which reflects the fact

that the rank of the momentum operator is one. The
above matrix elements enable the n-coupled radial dif-
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ferential equations to be written for any two spins with
any total angular momentum J in their center of mass
frame. The number n represents the total number of
basis functions in |J〉 subspace. To solve the coupled dif-
ferential equations, we make an ansatz that the regular
solutions take the form,

f
η
(r) =











c1kηrjL1
(kηr)

c2kηrjL2
(kηr)

c3kηrjL3
(kηr)

...











, (14)

where jLi
(kηr) is the spherical Bessel function, L1, L2

and so on are the allowed L values from the basis func-
tions of n = 1, n = 2, ..., and kη is the canonical momen-
tum for the ηth independent solution at a fixed incident
energy, E. The total number of the independent solu-
tions, η, is equal to the total number of the basis func-
tions, n. For non-zero J , degeneracies of bands become
important and the total number of different kη may be
less than the total number of basis functions concerned.
However, this does not affect the form of solution given
in Eq. (14).
Plugging in this ansatz into the coupled differential

equations, the differential equations reduce to an eigen-
value problem, H̃ Ψ̃ = ẼΨ̃, where H̃ is given by

〈L′, S′|H̃ |L, S〉 = (−1)J+L+S′+s1+s2
√

(2S + 1)(2S′ + 1)

×
[

− (−1)S
{

s1 s2 S
S′ 1 s1

}

×
√

s1(s1 + 1)(2s1 + 1)

+ (−1)S
′

{

S S′ 1
s2 s2 s1

}

×
√

s2(s2 + 1)(2s2 + 1)

]

× i~2λk

m

×
{

L′ L 1
S S′ J

}{ √

(L+ 1) if L′ = L+ 1√
L if L′ = L− 1,

(15)

and

Ψ̃ = {c1, c2, c3, ...}T . (16)

The eigenvalues of the matrix H̃ will solve for canoni-
cal momenta for fixed energy E = Ẽ + ~

2k2η/m. With
the standard technique of diagonalization, the solutions
of {c1, c2, . . . } can be found, so are the regular solutions.
The solutions irregular at the origin are obtained by re-
placing the spherical Bessel functions by spherical Neu-
mann functions, yLi

(kηr),

g
η
(r) =











c1kηryL1
(kηr)

c2kηryL2
(kηr)

c3kηryL3
(kηr)

...











. (17)

The above solutions in Eq. (14) and Eq. (17) will be prop-
erly energy normalized for an appropriate choice of the
momentum-dependent constants, as is carried out below.
The reduced radial Green’s matrix is shown in appendix

A to be

G (r, r′) =

{

πf(r)g†(r′) for r < r′,

πg(r)f †(r′) for r > r′.
(18)

The factor π appears because of our choice of normaliza-
tion. More details about energy normalization are also
given in appendix A.

B. Lippmann-Schwinger equation

To solve the scattering wave function for two
atoms with isotropic spin-orbit coupling, we apply the
Lippmann-Schwinger equation, which is the integral form
of the Schrödinger equation.

Ψ(~r) = Ψ0(~r) +

∫

G(~r, ~r′)V (~r′)Ψ(~r′)d~r′, (19)

where Ψ0(~r) is the non-interacting solution, G(~r, ~r′) is the
free Green’s function without 2-body interaction, V (~r′).
To compute the wave function that describes scattering
processes, we must in general solve the 3-dimensional in-
tegral equation in a self-consistent way, which for an ar-
bitrary two-body potential relies on numerics. However,
for low energy scattering, the interatomic interaction is
well described by the regularized s-wave Fermi pseudo po-

tential, V (~r) = 4π~2as

m δ(~r) ∂
∂r (r), where as is the s-wave

scattering length. It can be shown that the 3D integral
equation can be reduced to a 1D radial integral equa-
tion, and the scattered wave functions can be obtained
in a closed form solution,

R(r) = R0(r) +

∫ ∞

0

G(r, r′)V (r′)R(r′)r′2dr′. (20)

Here R0(r) is the free radial two-body wave function. To
better illustrate the idea, consider the case of zero total
angular momentum, since in this subspace, the s-wave
channel is always present.

For any two identical particles with spins having
zero total angular momentum, the channel structure is
{L, S} = {0, 0}, {1, 1}, {2, 2}, . . . , and {2s1, 2s1} since
from spin statistics L+ S has be to even to incorporate
the symmetry of identical bosons or fermions. There are
(2s1 + 1) channels in total. The regularized s-wave con-
tact potential is

V (r) =







g δ(r)
4πr2

∂
∂r r 0 . . .

0 0 . . .
...

...
. . .







(2s1+1)×(2s1+1)

, (21)

where g = 4π~2as/m = 4πg̃. After applying the oper-
ation,

∫∞
0 drg̃δ(r) ∂

∂r (r), to both sides of Eq. (20), the
scattering solutions have the following closed form repre-
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sentation:











R1η(r)
R2η(r)
R3η(r)

...











=













R0,1η(r) +G11(r, 0)
g̃

1−g̃Greg

11 (0,0)
Rreg

0,1η(0)

R0,2η(r) +G21(r, 0)
g̃

1−g̃Greg

11 (0,0)
Rreg

0,1η(0)

R0,3η(r) +G31(r, 0)
g̃

1−g̃Greg

11 (0,0)
Rreg

0,1η(0)

...













,

(22)

where η(= 1, 2, 3, . . . , 2s1+1) labels solutions with differ-
ent canonical momenta, regularized functions f reg(0) ≡
∂
∂r (rf(r))|r→0, and f reg(0, 0) ≡ ∂

∂r (rf(r, 0))|r→0.

For systems with nonzero total angular momentum,
the algebra can become slightly more involved. The com-
plexity mainly comes from the fact that there are more
than one basis function with the same orbital angular mo-
mentum but different total spin angular momentum. De-
generacies appear for the two-particle states within some
non-zero total angular momentum subspace. This is ex-
pected as was already seen in the discussion of sec. II.
Nevertheless, even in this situation, the same method-
ology can be applied to reduce the coupled differential
equations to an eigenvalue problem.

III. AN EXAMPLE: TWO SPIN-1 BOSONS

The formalism presented above has been verified to
reproduce the results presented by Duan et al. for two
identical spin-1/2 fermions. The following applies our
methodology to the system of two identical spin-1 bosons
as a concrete example. One thing worth pointing out
is that the normalization factors of the regular/irregular
solutions were not written out explicitly in the Duan et al.

study, presumably because the factors could be taken to
be identical for all the independent solutions. But in
the present generalized treatment, it is necessary to keep
track of them to ensure flux conservation.

For two spin-1 bosons with J = 0, there are only three
relevant channels with {L, S} = {0, 0}, {1, 1} and {2, 2}.
The coupled reduced radial differential equations are

~
2

m









− d2

dr2
i2
√
2λ√
3

( d
dr + 1

r ) 0
i2
√
2λ√
3

( d
dr − 1

r ) − d2

dr2 + 2
r2

i2λ√
3
( d
dr + 2

r )

0 i2λ√
3
( d
dr − 2

r ) − d2

dr2 + 6
r2













u00
00

u00
11

u00
22





= E





u00
00(r)

u00
11(r)

u00
22(r)



 . (23)

The tridiagonal structure signatures the existence
of the spin-orbit coupling. Assuming the regular
solution has this form, {u00

00(r), u
00
11(r), u

00
22(r)}T =

{c1krj0(kr), c2krj1(kr), c3krj2(kr)}T , the following

eigenvalue problem is obtained.











~
2k2

m − E 2i~2
√

2
3
λk
m 0

−2i~2
√

2
3
λk
m

~
2k2

m − E 2i~2
√

1
3
λk
m

0 −2i~2
√

1
3
λk
m

~
2k2

m − E















c1
c2
c3



 = 0,

(24)

Diagonalization of Eq. (24) yields the eigenvalues and
eigenvectors.





c1
c2
c3



 =









√

1
3

0
√

2
3









for E =
~
2k2

m
, (25)





c1
c2
c3



 =











√

1
3

i
√

1
2

−
√

1
6











for E =
~
2k2

m
− 2~2λk

m
, (26)





c1
c2
c3



 =











√

1
3

−i
√

1
2

−
√

1
6











for E =
~
2k2

m
+

2~2λk

m
. (27)

The eigenstates are orthonormal. Moreover, the same
energy dispersion relations between the relative energy
E and the relative momentum k are obtained by di-
rectly diagonalizing the non-interacting Hamiltonian in
momentum space. The three thick blue curves plotted
in Fig. 1 display the energy dispersions from Eq. 25 to
Eq. 27. After writing the incident energy in the nota-
tion E ≡ ~

2k20/m, the canonical momenta for channel 1

to 3 are found to be k1 = k0, k2 = λ +
√

λ2 + k20 , and

k3 = −λ+
√

λ2 + k20 . The set of regular solutions are

f(r)

r
=





N1√
3
k1j0(k1r)

N2√
3
k2j0(k2r)

N3√
3
k3j0(k3r)

0 iN2√
2
k2j1(k2r) −iN3√

2
k3j1(k3r)

N1

√
2√

3
k1j2(k1r) −N2√

6
k2j2(k2r) −N3√

6
k3j2(k3r)



 .

(28)

The above solution can also be confirmed by projecting
the plane wave solution in Eq. (3) onto the |J = 0〉 sub-
space. That is, the column vector |α〉 of Eq. (28) labeled
by kα has one-to-one correspondence with the |J = 0〉
part of the helicity states in Eq. (3). The normalization

factors {N1, N2, N3} =
√

2µ
π~2 {

√

1
k1
,
√

1
k2−λ ,

√

1
k3+λ} to

each independent solution are added to ensure that their
Wronskians with the irregular solutions (see appendix A)
are identical, which in turn guarantees that the computed
interaction K-matrix will be symmetric. This step is in
fact equivalent to enforcing energy normalization of wave
function in the case without spin-orbit coupling.
The multichannel scattering formalism presented here

is different from previous treatments when there is no
single-particle potential existing even at large distances.
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In previous studies, one often chooses the asymptotically
free states as the base pair of independent solutions to
define phaseshifts or reaction matrices and then study
how short range interaction mixes different channels and
causes particles to be scattered among those channels
prior to being detected at large distances. And the in-
coming basis states expanded in the usual formulations of
scattering theory having no long range channel coupling
are diagonal solution matrices, which is not the case here
as in Eq. (28).
After plugging in the free Green’s matrix G(r, r′) =

G (r, r′)/(rr′) from Eq. (18) and the free radial wave
function R0(r) = f(r)/r from Eq. (28), we obtain the
scattering solutions. The reaction matrix K is deter-
mined through the correct asymptotic solution:

R(r)|r→∞ ∼
f(r)

r
−

g(r)

r
K, (29)

where we find

K =
−2as
3
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.

(30)
From the K matrix, the S matrix is determined by the
usual relation, S = (I + iK)(I − iK)−1. The unitarity
of the S matrix is guaranteed by the real and symmetric
reaction K matrix as it is in Eq. (30).
The scattered solutions defining the S matrix can be

expressed as in Eq. (29),

R|00,~k1〉→|00,r̂〉 −→
r→∞

√
2
S11 − 1

2ik1

eik1r

r
|00, r̂〉 (31)

R|00,~k1〉→|−−,r̂〉 −→
r→∞

√
2

√

k1
k2 − λ

S12

2ik1

eik2r

r
|−−, r̂〉 (32)

R|00,~k1〉→|++,r̂〉 −→
r→∞

√
2

√

k1
k3 + λ

S13

2ik1

eik3r

r
|++, r̂〉 (33)

R|−−,~k2〉→|00,r̂〉 −→
r→∞

√
2

√

(k2 − λ)

k1

S21

2ik2

eik1r

r
|00, r̂〉 (34)

R|−−,~k2〉→|−−,r̂〉 −→
r→∞

√
2
S22 − 1

2ik2

eik2r

r
|−−, r̂〉 (35)

R|−−,~k2〉→|++,r̂〉 −→
r→∞

√
2

√

k2 − λ

k3 + λ

S23

2ik2

eik3r

r
|++, r̂〉 (36)

R|++,~k3〉→|00,r̂〉 −→
r→∞

√
2

√

k3 + λ

k1

S31

2ik3

eik1r

r
|00, r̂〉 (37)

R|++,~k3〉→|−−,r̂〉 −→
r→∞

√
2

√

k3 + λ

k2 − λ

S32

2ik3

eik2r

r
|−−, r̂〉 (38)

R|++,~k3〉→|++,r̂〉 −→
r→∞

√
2
S33 − 1

2ik3

eik3r

r
|++, r̂〉 (39)

where the basis |ζξ, r̂〉 ≡ |ζ, r̂〉 |ξ,−r̂〉. From Eq. (3)
and Eq. (31)∼(39), the incoming and outgoing current
fluxes are determined by the velocity operator, ~v = ~p/µ+
~λ(~s1 − ~s2)/m. The flux densities for the three possible
incoming states at energy E = ~

2k20/µ can be calculated
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FIG. 2. The dimensionless rescaled cross sections to go from

the incoming state |00,~k1〉 to the outgoing state |00, r̂〉 for dif-
ferent values of λas as functions of the dimensionless quantity
k/λ.

to be ~j1 = (~k0/µ)k̂1 and ~j2/3 = (~
√

k20 + λ2/µ)k̂2/3.
The flux difference in different channels is incorporated
in a way to ensure flux conservation as we have seen
in the nontrivial fore factors of scattered wave functions
from Eq. (31) to Eq. (39). The integrated partial cross
sections are found by integrating the flux ratio over all
solid angles. The total cross section for particles inci-
dent in channel α with some helicity to be scattered into
channel β of another helicity is

σαβ =
2π

k2α
|Sαβ − δαβ |2, (40)

where kα is the canonical momentum in the incoming
state and is determined by the energy, say E ≡ ~

2k20/m,
and the SOC strength, λ. From now on, we will simply
denote k0 by k. For example, all the x axes of graphs
plotting cross sections are k0 ≡ k for simplicity. Using
the SOC strength as the unit of the momentum, the cross
section can be rescaled as a function of the dimensionless
quantity, λas, by choosing the unit of cross section as
1/λ2. From the estimation in [25][26], a realistic achiev-
able value of the SOC strength λ ≃ 1− 10/µm, and this
guides our chosen values of λas in the plots shown for the
cross sections.
Turning off the spin-orbit coupling, all of the cross sec-

tions display the well-known Wigner threshold law [28]:
insensitive to energy in the low k limit (or lower E limit)
and proportional to k−2 in the higher k limit. This tran-
sition happens when k ∼ 1

as
. The unusual factor, 8/9, is

due to the choice of the helicity basis.

σij =
8πa2s

9 + 9a2sk
2
≈

{

8πa2
s

9 k ≪ 1
as

8π
9k2 k ≫ 1

as

∀ i, j. (41)

In the limit of high k (but still low energy) scattering,
the scattering cross section becomes insensitive to the
existence of spin-orbit coupling. This is expected since
at small distance, the short-range interaction dominates
and the physics of SOC becomes insignificant. All cross
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FIG. 3. The dimensionless rescaled cross sections to go from

from the incoming state |−−,~k2〉 (|++,~k3〉) to the outgoing
state |00, r̂〉 for different values of λas as functions of the di-
mensionless quantity k/λ.
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FIG. 4. The dimensionless rescaled cross sections to go from

the incoming state |00,~k1〉 to the outgoing state |−−, r̂〉 for
different values of λas as functions of the dimensionless quan-
tity k/λ.

sections are combined into the same curve in this limit,
namely σij ∼ 8π/(9k2) as in the high energy limit of
non-SOC cases.

The effect of spin-orbit coupling becomes important as
energy decreases below the energy scale set by SOC. This
explains why there exists a transitional plateau when
λ < k < 1/as. This is of course possible only when the
interatomic interaction is weaker than SOC. The cross
sections in the low k limit are no longer energy indepen-
dent and show some unusual features. The cross sections
in different channels are characterized by different power
laws at very low temperatures. Scattering is enhanced
or suppressed depending on which outgoing channels are
taken. The scaling laws are summarized as follows in
terms of the appropriate kα for α = 1, 2, 3, which are the
wavenumbers that vanish at the relevant threshold. Since
k1 and k3 both go to zero with different power laws at
the threshold energy E = ~

2k2/m → 0, where k3 ∝ k21 ,
we will express those relevant cross sections in terms of
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FIG. 5. The dimensionless rescaled cross sections to go from

the incoming state |−−,~k2〉 (|++,~k3〉) to the outgoing state
|−−, r̂〉 for different values of λas as functions of the dimen-
sionless quantity k/λ.
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FIG. 6. The dimensionless rescaled cross sections to go from

the incoming state |00,~k1〉 to the outgoing state |++, r̂〉 for
different values of λas as functions of the dimensionless quan-
tity k/λ.

k1 ≡ k for consistency.

σ11 ≈ 8πa2s
9 + 16(λas)2

for k ≪ λ (42)

σ21 ≈ 8πa2s
9 + 16(λas)2

k

λ
for k ≪ λ (43)

σ12 ≈ 32πa2s
9 + 16(λas)2

(

k

λ

)−1

for k ≪ λ (44)

σ22 ≈ 32πa2s
9 + 16(λas)2

for k ≪ λ (45)

σ13 ≈ 2πa2s
9 + 16(λas)2

(

k

λ

)3

for k ≪ λ (46)

σ23 ≈ 2πa2s
9 + 16(λas)2

(

k

λ

)4

for k ≪ λ (47)

Notice that for the channel σ22, the appropriate scaling
momentum is k2 → 0. However, in this case, channel 1
and 3 should be included as closed channels since energy
E < 0, which is beyond the scope of this paper. We
will simply consider the scaling law of σ22 as E → 0 (or
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FIG. 7. The dimensionless rescaled cross sections to go from

the incoming state |−−,~k2〉 (|++,~k3〉) to the outgoing state
|++, r̂〉 for different values of λas as functions of the dimen-
sionless quantity k/λ.

k → 0). The cross sections in Eq. (42)−Eq. (45) are
all consistent with the expected Wigner threshold law
behavior, but σ13 and σ23 deviate, which is one notable
effect of the spin-orbit interaction in this system.

Although we have only included the short-range in-
teraction, the modification of threshold laws is expected
since the SOC exists to an infinitely large distance. The
new scaling laws indeed show up as a result of the un-
usual energy dispersion relation in the presence of SOC.
The energy bands generate different canonical momenta
as well as different velocities (or flux densities) in differ-
ent channels. The difference in flux densities needs to
be considered carefully also in the threshold laws. The
original Wigner’s theory has been modified to incorpo-
rate the effect from SOC. Inspection of Eq. (30) shows
that each element of the reaction matrix Kαβ is propor-

tional to Kαβ ∝ kαkβ/
√

k̃αk̃β where k̃α = k1 for α =1

and (k2 + k3) for α = 2 or 3. Thus, the cross section at

low energy scales like σαβ ∝ k2β/(k̃αk̃β). For example, the

channel σ12 ∼ k22/(k1(k2+k3)) ∼ λ/k. The divergence of
σ12 with only short range interaction might seem unnatu-
ral, but the divergence of superelastic cross sections does
occur in ordinary non-SOC scattering since the atoms
are scattered into a larger final momentum state. This is
true for the familiar Wigner laws already [28].

Even when the cross sections in some channels (σ11,
σ22, and σ32) at low temperatures in the presence of SOC
are insensitive to energy, the effect of SOC can still be
seen by studying the threshold values. When λas . 1
(λas & 1), the cross section σ22 or σ32 is increased (de-
creased) from the non-SOC case. For the particular chan-
nel in σ11, the cross section is smaller than the non-SOC
case until λas reaches 1 from above. Therefore, the effect
of SOC cannot be differentiated even in the very low en-
ergy limit when λas . 1 in the |00, r̂〉 → |00, r̂〉 channel.
From Fig. 2 to Fig. 7, processes where particles trans-

fer to the lowest helicity state labeled by k2 are enhanced
compared to the non-SOC case. Moreover, particles are
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FIG. 8. (Color online) The ratios of cross sections at λas = 1.
Scattering into the lowest helicity state (channel labeled by
k2) dominates at low energy. For cases without spin-orbit
coupling, all three ratios are equal to unity, drawn as a black
dotted line for reference.

preferentially scattered into the k2 channel where the par-
ticle’s momentum is antiparallel to its spin direction, re-
gardless of their incidence channel. Fig. (8) shows that
the k2 channel will dominate among all helicity states,
as can be seen by comparing the ratios of the different
scattering cross sections.

σαβ

σβα
=

(

kβ
kα

)2

. (48)

We think the SOC system, which can also be interpreted
as spins in a momentum-dependent B field, is an ana-
log to an antiferromagnetic system. The magnetic po-
tential energy is minimized when spin is antiparallel to
the direction of field. Similarly, particles would like to
stay in their lowest helicity states when the particle’s
spin has a reverse direction to its momentum. The spon-
taneous handedness appears in parity-breaking systems
when interaction can cause fluctuation among system’s
eigenstates.
The bound state information can also be predicted

by searching for the poles of S matrix. The scattering
threshold energy here is ET = −~

2λ2/2µ, see Fig. 1. For
energy E < ET , all channels are closed. We take the
following analytical continuation:

k1 = iκ (49)

k2 = i
√

κ2 − λ2 + λ (50)

k3 = i
√

κ2 − λ2 − λ, (51)

where κ is chosen to be positive so the exponentially
growing part in the incoming scattering wave functions
is killed. The bound state wave function can be found by
plugging the continuation into the outgoing wave func-
tions. The new feature brought into the bound state wave
function by SOC is that the function is now decaying ex-
ponentially with an spatial oscillation whose frequency is
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set by λ. The binding energy for the bound pair is given
by Eb = ET + ~

2κ2/2µ > 0, where κ is found by solv-
ing Det(I − iK) = 0. The binding energy returns to the
usual case with an overall constant shift, depending on
the strength of SOC, when as is approaching zero from
the positive side.

Eb =















~
2

2µa2
s

+ ~
2λ2

2µ
1

λas
→ +∞

(9−
√
33)~2λ2

12µ + 4
√

2
11 − 1√

33
~
2λ

µas

1
λas

→ 0

2~2λ4a2
s

9µ
1

λas
→ −∞.

(52)

One interesting effect from SOC shows up in the small
and negative as limit. The binding energy scales alge-
braically as λ4a2s, which indicates that the existence of a
two-body bound state no matter how small and attrac-
tive the scattering length is as long as SOC exists [13, 24].
The two-body bound state information paves the way to
more complex trimer systems.
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FIG. 9. (Color online) The two-body binding energy for two
spin-1 bosons in the presence (red solid line) and absence
(green dashed line) of SOC. The bottom and left axes apply
to the red curve, and the top and right axes apply to the green
dashed curve.

IV. CONCLUSIONS

To summarize, the present treatment extends the work
of the previous studies by [1] and develops a more gen-
eral treatment of ultracold scattering in the presence of
isotropic spin-orbit coupling. Our formulation can ap-
ply to any two identical particles with arbitrary spin, in
any total angular momentum subspace. This should en-
able a deeper understanding of low energy scattering (or
two-body bound states) in the presence of an artificial
gauge field, especially those which are non-abelian. The
non-abelian gauge fields become possible when atoms’
internal degrees of freedom are utilized.
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Appendix A: Derivation of Green’s matrix

The reduced radial Green’s matrix satisfies the follow-
ing coupled differential equation:

(

− ~
2

2µ

d2

dr2
δij + iAij

d

dr
+Bij

)

Gjk(r, r
′) = −δikδ(r − r′),

(A1)
where A is a real and symmetric matrix and B is a hermi-
tian matrix without involving any derivative. The index
{i, j, k} run from 1 to n. Summation over j is implied.
Although we study this particular type of coupled equa-
tions in Eq. (A1), the procedures provided below is gen-
eral and be applied to any type of coupled equations. The
Green’s matrix is used to emphasize the nature of cou-
pled differential equations. If there is only one equation,
the Green’s matrix has only one component, so returns
to the commonly termed Green’s function.
The Green’s matrix is constructed with the assistance

of n regular and n irregular solutions of the homogenous
equations,

(

− ~
2

2µ

d2

dr2
δij + iAij

d

dr
+Bij

)

fjα(r) = 0 (A2)

(

− ~
2

2µ

d2

dr2
δij + iAij

d

dr
+Bij

)

gjα(r) = 0. (A3)

Each column of f and g correspond to one independent
regular/irregular solutions. For convenience, the nota-
tion f

α
and g

α
(α = 1, 2, ..., n) for each independent

regular and irregular solution will be used. The regular
solution has to satisfy

f
α
(r = 0) = 0. (A4)

The boundary condition for the irregular function is sat-
isfied by requiring a π/2 phase lag to the regular solution
at very large distance, r → ∞.
Knowing that the regular and irregular solutions of the

homogenous differential equation, we make the ansatz for
the reduced Green’s matrix:

G (r, r′) =

{

f(r)S(r′) for r < r′,

g(r)T (r′) for r > r′.
(A5)

The next step is to match the expressions for the reduced
Green’s matrices at r = r′ and to apply the appropriate
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derivative discontinuity,

f(r′)S(r′) = g(r′)T (r′) (A6)

lim
ǫ→0

d

dr
G (r, r′)|r′+ǫ

r′−ǫ =
2µ

~2
I. (A7)

From Eq. (A6), the matrix S(r′) can be rewritten in
terms of T (r′) as

S(r′) = f−1(r′)g(r′)T (r′). (A8)

Application of Eq. (A8) to Eq. (A5) reduces Eq. (A7)
into an algebraic equation for the matrix T (r′),

(

dg(r′)

dr′
−

df(r′)

dr′
f−1(r′)g(r′)

)

T (r′) =
2µ

~2
I (A9)

Therefore,

T (r′) =
2µ

~2
[g′(r′)− f ′(r′)f−1(r′)g(r′)]−1. (A10)

Combining Eq. (A8) and (A10), the matrices S and T
are found to be

S =
2µ

~2
× f−1(g′g−1 − f ′f−1)−1 (A11)

T =
2µ

~2
× g−1(g′g−1 − f ′f−1)−1. (A12)

It can be shown further that the Green’s matrix in
Eq. (A5) with Eq. (A11) and Eq. (A12) indeed returns
to the familiar form.

G (r, r′) =

{

πf(r)g†(r′) for r < r′,

πg(r)f †(r′) for r > r′.
(A13)

Before we do that, we need first to prove that the ana-
logues of the Wronskian for Eq. (A1) are

~
2

2µ
(g′†f − g†f ′) + ig†Af = C (A14)

~
2

2µ
(f ′†f − f †f ′) + if†Af = 0 (A15)

~
2

2µ
(g′†g − g†g′) + ig†Ag = 0, (A16)

where C is a r-independent constant matrix and will be
determined later by the requirement of energy normaliza-
tion, and 0 is a zero matrix. The above set of Wronskians
is shown below. Application of g†

β
to Eq. (A2) and f†

α
to

Eq. (A3) separately yields

− g†
β

~
2

2µ
f ′′
α
+ ig†

β
Af ′

α
+ g†

β
Bf

α
= 0 (A17)

− f †
α

~
2

2µ
g′′β + if†

α
Ag′

β
+ f †

α
Bg

β
= 0, (A18)

Subtracting the complex conjugate of Eq. (A18) from
Eq. (A17) gives the following equality,

∑

j

−~
2

2µ
(g∗jβf

′′
jα − fjαg

∗′′
jβ ) + i

∑

j,k

(f ′
jαg

∗
kβ + fjαg

∗′
kβ)Ajk = 0.

(A19)

All the matrices are expressed in terms of their matrix
elements. The properties of the matrices A and B are
used to derive the above identity. After integration of
both sides of Eq. (A19) over r from a to b, one has

∑

j

~
2

2µ
(fjαg

∗′
jβ − f ′

jαg
∗
jβ)

∣

∣

b

a
+ i

∑

j,k

fjαAjkg
∗
kβ

∣

∣

b

a
= 0.

(A20)

The above formula is of course true for any range [a, b], so
we know that in matrix notation the following expression
should be a constant, which is position-independent.

~
2

2µ
(g′†

β
f
α
− g†

β
f ′
α
) + ig†

β
Af

α
= cδαβ . (A21)

Combining all the independent regular and irregular solu-
tions, the “modified” Wronskian in Eq. (A14) is derived.
The other two Wronskians in Eq. (A15) and Eq. (A16)
can be proved in a similar way. Noticing that the ma-
trix A is proportional to the spin-orbit coupling strength,
removal of the second term on the left hand side of
Eq. (A14)∼(A16) reduce to the familiar formula. The
constant matrix C is determined by energy normaliza-
tion. Application of energy normalization is important
to guarantee unitarity of the scattering S matrix, which
reflects flux conservation. The proper energy normaliza-
tion gives C = 1

π I.

The missing piece connecting Eq. (A11) and Eq. (A12)
to Eq. (A13) can be put together now. Taking the con-
jugate transpose of Eq. (A14), we find

~
2

2µ
(f †g′ − f ′†g)− if†Ag =

1

π
I (A22)

Applying (f†)−1 to the left-hand side of Eq. (A22) and

g−1 to the right-hand side reduces the above equation
into the following

~
2

2µ
g′g−1 − (

~
2

2µ
f ′f−1 − iA)† =

1

π
(f †)−1g−1. (A23)

Also from Eq. (A15) the relation can be derived,

~
2

2µ
f ′f−1 = (

~
2

2µ
f ′f−1 − iA)†. (A24)

Therefore, Eq. (A23) is further simplified to be

g′g−1 − f ′f−1 =
2µ

~2π
(f †)−1g−1. (A25)

Plugging Eq. (A25) into Eq. (A12), it is straightforward
to see that T = πf †. Similarly, the matrix S is proved
to be S = πg†.
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