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The mixed configuration-interaction many-body perturbation theory (CI-MBPT) method is ac-
curate in divalent atoms. In more complex atoms, with the number of valence electrons it becomes
progressively more difficult to saturate CI space. Here a four-valence electron atom, Si I, is con-
sidered. It is found that by using a relatively small cavity of 30 a.u. and by choosing carefully
configuration space, it is possible to obtain quite accurate agreement between the theory and exper-
iment. After subtraction of systematic shifts of 481 cm−1 and -426 cm−1 for the lowest even states
and odd states respectively,the deviation between theory and experiment becomes at the level of
100 cm−1. This agreement is comparable to that in divalent atoms where the CI saturation has
been achieved. It is anticipated that the approach can also give good results for atoms with more
valence electrons to be considered in the future.

PACS numbers: 31.10.+z, 31.15.A-, 31.15.ac

I. INTRODUCTION

The spectra of complex atoms are of great interest in
many applications. Neutral silicon, Si I, in particular has
astrophysical importance due to its high abundance and
significant contribution to solar and stellar opacities. Si
atom properties are also needed for various industrial ap-
plications, including in nano-technology. Several meth-
ods are available for accurate calculations of low states
of Si I and other multi-valence atoms that are based
on multi-configuration expansions. In the configuration-
interaction (CI) method the atomic states are expanded
in the basis of fixed radial orbitals. While the method
can be quite accurate for few-electron atoms, it has diffi-
culty in atoms such as silicon due to a large size of full CI
space. If CI is limited to the valence electron sector, the
important core-excitation effects are neglected, but even
the partial inclusion of configurations to account for these
effects at reasonable level would lead to very large CI ma-
trices. Double excitations in particular create two holes
and two extra virtual electrons, so the number of particles
in CI grows from 4 to 8. The configuration space can be
decreased with multi-configuration Hartree-Fock method
(MCHF), in which the radial orbitals are optimized to ap-
proach the physical radial basis. Thus fewer orbitals are
required. Still there are difficulties with including core
excitations, and convergence of MCHF can be a problem.
Another possibility is to use adjustable parameters to
take into account core-excitations, valence-valence inter-
actions, and relativistic effects. This approach is imple-
mented in Cowan’s code [1]. The advantage of Cowan’s
code is that the energy can be fitted accurately to exper-
imental values providing means of identification in com-
plex spectra; however, wavefunctions are not necessary
accurate, as in other semi-empirical methods. A most ef-
ficient ab initio way to include valence-core interactions
is to combine CI and many-body perturbation theory
(MBPT). Because valence-core interaction is relatively
weak, MBPT can treat it with adequate accuracy, while
CI can be constructed only from valence electrons.
Returning to Si I, its energies and transition proper-

ties have been computed with the relativistic Cowan code
(relativistic MCHF with adjustable electrostatic param-
eters) [2], MCHF (the Breit-Pauli approximation) [3], B-
spline R-matrix BSR code [4], and other methods. While
in various methods, especially of semiempirical type, en-
ergy levels can be accurately reproduced, the lifetimes
and transitions rates are not. A good comparison of ex-
perimental and theoretical lifetimes is provided in Ref.[5],
which illustrates that Si I lifetimes obtained with the
Cowan code have significant deviations from the experi-
ment and more accurate theories.

In this paper we use CI-MBPT approach, which has
not been applied to the Si I atom before. The CI-MBPT
method is very accurate for divalent atoms, but for ma-
jority of atoms with a larger number of valence electrons,
the accuracy is lower due to difficulty of the saturation
of the valence CI space. For example, if the basis is lim-
ited by the maximum principal number Nmax = 8 and
angular momentum lmax = 3, the number of CI states,
as calculated with the CI-MBPT code, increases rapidly
from Si III J=2 to Si II J=3/2 to Si I J=2 for single (S),
double (D) and triple (T) excitations from the ground
state in the following progression: Si III: 12→352→352;
Si II: 63→2077→11,912; Si I: 340→7,007→86,582. Ap-
parently for an atom with four valence electrons such as
Si I to maintain a reasonable size of the CI matrix either
the triple excitations have to be restricted or the basis has
to be substantially truncated compared to that typically
used in divalent CI-MBPT calculations (Nmax = 15).
Thus some strategy is needed for both optimizing the
basis and minimizing the number of states and configu-
rations.

One approach that can help to substantially reduce
the basis for expanding lowest states is to reduce the
cavity size. The cavity is introduced into CI-MBPT cal-
culations to replace the infinite number of Rydberg and
continuum states with a small number of cavity-bound
states. Because smaller cavities have larger spacing be-
tween the energy levels of the basis functions and because
high-energy basis functions do not overlap much with
low-energy atomic states of interest, for a given accu-
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racy, Nmax will be reduced. This approach is suitable as
long as the calculated atomic wavefunctions and energy
levels are not significantly perturbed by the cavity. Later
it will be shown that a cavity of 30 a.u. can be used to
calculate a large number of lowest Si I states with a good
accuracy. The second approach is to optimize the choice
of configurations. Not all configurations couple strongly
to the lowest states of interest, so by choosing an optimal
set, a good level of accuracy might be possible to achieve
with a reasonable number of configurations. In this re-
gard, energy calculations for a four-valence electron (4v)
atom such as Si I are of great interest to the theory as
an intermediate step in calculations between currently
well-understood divalent atoms and much more complex
atoms such as Fe I, U I, etc., where even assignment
of theoretical levels can be problematic due to the low
accuracy of existing methods and possibility of order re-
versal between levels. Without unambiguous assignment
the theory can not be reliably used for calculations of
other, unknown properties. Moreover, in some cases en-
ergies might not be available altogether and alternative
semi-empirical methods cannot be used. Previously, cal-
culations with the CI-MBPT method were performed for
other 4v atoms such as Ge, Sn, Pb [6]. The comparison
between results will be of interest to see the trend in ac-
curacy. Si I has smallest relativistic and core-polarization
corrections, which are treated quite accurately with the
MBPT method, so the accuracy is mostly limited by the
CI space saturation. The main focus of this work is on
improving the accuracy of valence-valence CI part.

II. METHOD

In this work a CI-MBPT method developed for open
shell atoms with multiple valence electrons is used (see
for example [6]). The effective CI-MBPT Hamiltonian
for Si I can be split into two parts:

Heff =

M∑

i=1

h1i +

M∑

i6=j

h2ij . (1)

The one-electron contribution

h1 = cα · p+ (β − 1)mc2 − Ze2/r + V N−4 +Σ1 (2)

in addition to the V N−4 DHF potential contains the va-
lence electron self-energy correction, Σ1 [7]. In the cur-
rent CI-MBPT program, the self-energy correction is cal-
culated with the second-order MBPT. The two electron
Hamiltonian is

h2 = e2/|r1 − r2|+Σ2 (3)

where Σ2 is the term accounting for Coulomb interaction
screening arising from the presence of the core [8]. In the
program, the screening is also calculated in the second
order. Further details on the CI-MBPT approach can
be found in Ref.[9]. In terms of specific numerical steps,

first, Dirac-Hartree-Fock (DHF) VN−4 potential for the
closed-shell Si V ion is calculated. Alternatively, Si III
potential can be used, but additional subtraction dia-
grams will be required, which in some CI-MBPT codes
are not incorporated. No significant improvement in ac-
curacy of Si I energies has been observed by using the
VN−2 potential. Second, the basis in the frozen VN−4

is calculated with the help of a B-spline subroutine for
the ion in a cavity of radius R. The basis is then used
to evaluate the CI-MBPT terms in Eq. 1. Finally, the
eigenvalue problem is solved for the effective Hamiltonian
matrix. The program generates a set of configurations by
single-, double-, etc. excitations of the input configura-
tions limited by the lmax and Nmax.

III. CI-MBPT CALCULATIONS

To test the accuracy of CI-MBPT method in Si I, the
energies of the lowest states with J=0-3 that are not yet
affected by the cavity shift have been calculated. This
shift was estimated from trends in the deviations of en-
ergies from experiments for different cavity sizes, which
starting with some energy for a given J and parity rapidly
increases. The cavity shift for a given state is related
to the removal energy of the least bound electron and
its asymptotic behaviour. In the final calculations the
cavity size of 30 a.u. has been adopted. The configura-
tions were chosen as follows. For the even states J=0-3,
one and two electrons of the reference valence configu-
rations 3s2 3p2, 3s23p4p, and 3s4s3p2 were excited with
the limits on the excited states lmax = 3 and Nmax that
generated states with a specific J and parity. For ex-
ample, single excitations from 3s23p2 produce configura-
tions of type 3sns3p2, 3snd3p2, 3s23pnp, and 3s23pnf ,
while double excitations produce configurations of type
3s2npmp, nsmp3p2 and many others. The number of
double-excited states considerably exceeds the number
of single-excited states. Some effective triplet excitations
from the ground states are included via the initial choice
of reference configurations. Similar procedure was car-
ried out for the odd states. The reference configurations
were chosen 3s3p3, 3s23p4s, and 3s23p3d. The list of non-
relativistic configuration was converted automatically to
the list of relativistic configurations. The total number
of states, the size of the effective Hamiltonian matrix,
ranged from 6k to 30k, depending on J and Nmax as
illustrated in Table I. Table I also illustrates that the
deviation from experiment decreases for larger Nmax, as
expected. Unfortunately, currently the program has a
limitation on the number of states about 34k. To have
uniform accuracy for the considered states with J=0-3,
we chose Nmax = 8 that resulted in the number of states
not exceeding 34k.
After various preliminary tests and optimizations of

the cavities and configurations, as described above, we
have calculated the energy levels for the lowest J=0-3
states that are not affected by the cavity (30 a.u.). The
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TABLE I: Number of states (NStates) for given configuration
input parameters. The basic configurations for the even states
are: 3s23p2, 3s23p4p, and 3s4s3p2. The single and double
excitations are restricted with Lmax = 2 and Nmax specified
in the table. ∆ is the deviation of theoretical energies from
experiment in cm−1.

J Parity Nmax NStates ∆
0 even 8 6,073 569
0 even 10 11,581 535
0 even 12 18,857 459
0 even 14 27,901 425
1 even 8 15,847 327
2 even 8 20,862 356
3 even 8 19,999 389
0 odd 8 6,806 -482
0 odd 10 13,062 -408
0 odd 12 21,342 -332
0 odd 14 31,646 -130

TABLE II: Comparison of CI-MBPT and NIST (experimen-
tal) energy levels for the lowest J=0-3 even states that do not
have strong cavity perturbation. The differences between CI-
MBPT and NIST energies have a substantial systematic shift
∆ = 481 cm−1, which if subtracted brings the theory in close
agreement with experiment, at the level of 100 cm−1 (the
last column). Such small residual deviation facilitates posi-
tive identification of the levels. The shift is not subtracted
from the ground-state fine-structure levels.

Configurations J ECI−MBPT ENIST ∆ ∆-∆
3s23p2 3P 0 0 0 0 0
3s23p2 1S 0 15963 15394 569 88
3s23p4p 3P 0 49559 49028 531 50
3s23p4p 1S 0 52325 51612 713 232
3s23p2 3P 1 80 77 3
3s23p4p 1P 1 47611 47284 327 -154
3s23p4p 3D 1 48398 48020 378 -103
3s23p4p 3P 1 49577 49061 516 35
3s23p4p 3S 1 49843 49400 443 -38
3s23p2 3P 2 234 223 10
3s23p2 1D 2 6655 6299 356 -125
3s23p4p 3D 2 48485 48102 383 -98
3s23p4p 3P 2 49726 49189 537 56
3s23p4p 1D 2 50823 50189 634 153
3s23p4p 3D 3 48654 48264 389 -92

even states are compiled in Table II. A close and con-
sistent agreement has been achieved at the level of 400
cm−1; however, it can be noted that a relatively con-
stant systematic shift exists for all the considered levels,
except for the fine-structure ground state levels (of the
same configuration). The nature of the shift is not clear,
but it can most likely be attributed to the omitted states
n > Nmax, especially belonging to continuum. Actually,
Table I shows that at least in case of J=0 with increase
in Nmax the shift is substantially reduced for both even
and especially odd states. (Note that other J states of
Si I and generally of other more complex atoms require

the number of configurations beyond the current limit, so
the trends with Nmax are difficult to investigate.) This
trend for J=0 states and the fact that the shift is simi-
lar for other J states allow us to implement an ab initio
shift removal by calculating it for lowest-J states (J=0
in our specific case) in the limit of large Nmax. Alter-
natively, the shift can be removed semi-empirically when
some or all experimental levels are available. We chose
the semi-empirical approach to illustrate in Table II the
ultimate reduction in deviation. After subtracting the
average shift, found to be 481 cm−1, the level of agree-
ment with experiment becomes much better, at the level
of 100 cm−1. The shift subtraction, although it does not
improve apparently wavefunctions, can help in the posi-
tive identification of levels.
Similar accuracy and the systematic shift are observed

between CI-MBPT and NIST energies in odd states (Ta-
ble III). However, the shift is negative, -426 cm−1. If
subtracted it brings experiment and theory in agreement
at the 100-cm−1 level. The increase in Nmax from 8 to
14 for J=0 states leads to the reduction of the deviation
from -482 to -130 cm−1, by 352 cm−1, which is close to
452 cm−1, the average systematic shift for all levels in
Table III. For odd states it seems possible to predict the
shift ab initio with quite good accuracy using the lowest
J=0 state.

IV. DISCUSSION AND CONCLUSION

Atoms with four valence elections were not much inves-
tigated with the precision CI-MBPT method in the liter-
ature, with the notable exception being work by Dzuba[6]
motivated by the alpha-variation project. Lead is of ad-
ditional interest to theory due to parity-non-conservation
(PNC) fundamental symmetry experiments [10–12].
On examples of J=0-3 even and odd states we have

shown that CI-MBPT theory gives good results if ap-
propriate cavity and configurations are chosen, especially
when systematic shifts are removed. This should be com-
pared to calculations by Dzuba[6] for Ge, Sn, and Pb. In
Ge I for the states beyond the ground-state fine struc-
ture manifold, the deviation of theory from experiment
on the order of 1,000 cm−1 is observed. Moreover, al-
though there are two different systematic shifts for even
and odd states that can be removed to improve accuracy,
the deviation still remains at 300 cm−1 for odd states.
Even states reveal better accuracy, but the number of lev-
els considered is quite small to evaluate the performance
of theory by analyzing statistics. In Sn I the situation
is similar; however, the MBPT core-valence corrections
become larger, more than 1,000 cm−1 and require more
careful treatment. In Si I, the valence-core corrections
are the smallest and omitted high-order effects are in-
significant.
The deviation of energies from experiment of the

MCHF method (the Breit-Pauli approximation) [3]
ranges to 1000 cm−1, alhtough many states have quite
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TABLE III: Comparison of CI-MBPT and NIST (experimen-
tal) energy levels for lowest J=0-3 odd states. A systematic
shift ∆ = −426 cm−1 if subtracted brings the theory in close
agreement with experiment, at the level of 100 cm−1 (the last
column). The ground-state fine structure levels do not have
large shift.

config. J ECI−MBPT ENIST ∆ ∆-∆
3s23p4s 3P 0 39201 39683 -482 -56
3s23p3d 3P 0 50257 50602 -345 81
3s23p5s 3P 0 53797 54245 -448 -22
3s23p4d 3P 0 56415 56733 -319 107
3s23p4s 3P 1 39282 39760 -479 -53
3s23p4s 1P 1 40606 40992 -386 40
3s3p3 3D 1 44852 45276 -424 2
3s23p3d 3P 1 50219 50566 -347 79
3s23p3d 1P 1 52957 53387 -430 -4
3s23p3d 3D 1 53725 54185 -460 -34
3s23p5s 3P 1 53869 54314 -445 -19
3s23p5s 1P 1 54460 54871 -411 15
3s3p3 5S 2 32507 33326 -819 -393
3s23p4s 3P 2 39485 39955 -470 -44
3s3p3 3D 2 44871 45294 -422 4
3s23p3d 1D 2 46944 47352 -408 18
3s23p3d 3F 2 49559 49851 -292 134
3s23p3d 3P 2 50149 50500 -351 75
3s23p3d 3D 2 53745 54205 -460 -34
3s23p5s 3P 2 54093 54528 -435 -9
3s3p3 3D 3 44903 45322 -419 7
3s23p3d 3F 3 49647 49934 -287 139
3s23p3d 1F 3 52931 53362 -431 -5
3s23p3d 3D 3 53800 54258 -457 -31

small deviations below 100 cm−1. No specific systematic
shift can be identified. The lifetimes are in good agree-
ment with experiment as well. At this point it is not clear

which method is better, but it is definitely important to
have independent calculations to avoid a bias existing
in each approach. It seems that even slightly better ac-
curacy is achieved in B-spline R-matrix calculations [4],
also based on expansions using MCHF calculations.

In this paper, we have demonstrated that CI-MBPT
theory performs well for Si I and there are ways for im-
proving accuracy. We have observed systematic shifts
for even and odd systems of states, and if these shifts
are subtracted the deviation of theory from experiment
become at the level of 100 cm−1. This is almost an order
of magnitude improvement over CI-MBPT calculations
in Sn I. The shifts can be attributed to the omitted high-
energy states in CI, and in some cases the shifts can be
predicted ab initio using the lowest states that require
smallest number of configurations. In order to obtain en-
ergies for a relatively large number of states, we have cho-
sen the cavity 30 a.u., a compromise between the cavity
shift effect and the speed of convergence with the num-
ber of excited states. In addition to choosing carefully
the cavity, the configurations also were chosen in such a
way that the deviations of theory from experiment be-
came quite uniform. Finally, we hope in the future the
method can be further developed to treat most atoms in
the periodic table as complex as actinides.
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