
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Correlation effects in La, Ce, and lanthanide ions
M. S. Safronova, U. I. Safronova, and Charles W. Clark

Phys. Rev. A 91, 022504 — Published  9 February 2015
DOI: 10.1103/PhysRevA.91.022504

http://dx.doi.org/10.1103/PhysRevA.91.022504


Correlation effects in La, Ce, and lanthanide ions

M. S. Safronova1,2, U. I. Safronova3, and Charles W. Clark2

1Department of Physics and Astronomy, 217 Sharp Lab,
University of Delaware, Newark, Delaware 19716,

2Joint Quantum Institute, National Institute of Standards and Technology
and the University of Maryland, Gaithersburg, Maryland 20899,

3Physics Department, University of Nevada, Reno, Nevada 89557
(Dated: January 15, 2015)

We carry out a comprehensive study of higher-order correlation effects to the excitation energies
of La, La+, Ce, Ce+, Ce2+, and Ce3+. The calculations are carried out using two hybrid approaches
that combine configuration interaction with second-order perturbation theory and the linearized
coupled-cluster all-order method. Use of two approaches allows us to isolate the effects of third-
and higher-order corrections for various configurations. We also study the contribution of higher
partial waves and investigate methods to extrapolate the effect of omitted partial waves. The
effects of the higher partial waves for the monovalent configuration of La2+ and Ce3+ are compared
with analogous effects in multivalent configurations of La, La+, Ce, Ce+, and Ce2+. Tests of
our extrapolation techniques are carried out for several Cd-like lanthanide ions. The results of the
present studies are of particular interest to the development of high-precision methods for treatment
of systems with partially filled nf shells that are of current experimental interest for a diverse set
of applications.

PACS numbers: 31.15.ac, 31.15.ag, 31.15.aj

I. INTRODUCTION

While tremendous progress has been made recently in
high-precision atomic calculations, accurate treatment of
correlations in systems with open nf shells remains a
challenge. Accurate properties of lanthanides, actinides,
and their ions are of interest for many current appli-
cations including studies of fundamental interactions,
atomic clock research, analysis of astrophysical data,
plasma science, studies of quantum degenerate gases, and
quantum information.

For example, a number of lanthanide ions have been
recently suggested as candidates for the development of
atomic clocks, search for the variation of fine-structure
constant α, and quantum information [1, 2]. Dysprosium
has been used for study of weak interactions (parity vio-
lation) [3, 4] and for search of the variation of the fine-
structure constant [5, 6]. Lanthanides have recently be-
came of interest in ultracold atomic physics. In 2014, sub-
Doppler laser cooling and magneto-optical trapping of
holmium was demonstrated [7]. Both Bose-Einstein con-
densates and quantum-degenerate Fermi gases have been
produced in isotopes of dysprosium [8]. Schemes have
been identified for generating a synthetic magnetic field
and spin-orbit coupling in highly magnetic lanthanide
atoms such as dysprosium [9]. Employing these atoms
offers several advantages for realizing strongly correlated
states and exotic spinor phases [10]. Erbium has been a
subject of recent experimental work [11–13] owing to its
possible use in a variety of applications, including narrow
linewidth laser cooling and spectroscopy, unique collision
studies, and degenerate bosonic and fermionic gases with
long-range magnetic dipole coupling. Quantum informa-

tion studies use Yb+ [14] states for the realization of
the quantum bit. Recent proposal identified holmium for
quantum information applications, due to its rich ground
hyperfine manifold of 128 states [15].

Photoabsorption [16–19], electron scattering [20, 21],
and inelastic x-ray scattering [22] by lanthanides near
the 3d and 4d electron edges are important tools for un-
derstanding magnetic materials. They reveal atomic-like
4f features that show effects of orbital collapse similar
to those we study here. This subject has been of active
interest since the 1970s, when conflicting ideas emerged
regarding the role of single-particle vs. collective excita-
tions in photoabsorption by the atomic 4d shell of lan-
thanides and neighboring elements [23]. It has also arisen
again in the interpretation of recent experiments on mul-
tiple ionization of Xe by intense extreme ultraviolet ra-
diation produced at free-electron laser facilities [24–28].

In a number of these applications, accurate atomic the-
ory is indispensable to the design and interpretation of
experiments, with direct experimental measurement of
relevant parameters being impossible or infeasible. It
is also necessary to be able to evaluate the uncertainty
of theoretical predictions: this requires understanding of
the accuracy of the method and the importance of physics
beyond the Dirac-Hartree-Fock approximation.

Since complete treatment of all electron correlations is
not possible even for relatively light systems, the corre-
lation interactions are generally separated into core-core,
core-valence, and valence-valence sectors. For example,
La is considered to have three valence electrons in a 6s25d
ground state configuration outside of a closed Xe-like core
that contains 54 electrons. The treatment of lanthanides
thus separates into two major problems: (1) inclusion
of valence-valence correlations, (2) inclusion of core-core
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and core-valence correlations. We use a hybrid approach
that combines configuration interaction (CI) with a lin-
earized coupled-cluster all-order method leading to natu-
ral separation of these correlation effects. In this method,
the coupled-cluster approach is used to construct an effec-
tive Hamiltonian that contains dominant core and core-
valence correlation corrections to all orders. After the
constriction of the effective Hamiltonian, the CI method
is then used to treat valence-valence correlations. The
importance of various correlations will depend upon the
number of core shells and valence electrons. For exam-
ple, the valence CI space for excitations of two valence
electrons can be numerically saturated, i.e. addition of
the other configurations to the valence CI space will not
improve accuracy further. Efficient construction of the
relatively complete CI spaces for several electrons is a
difficult problem explored in this work. Omission of
important CI configurations may lead to major errors.
However, the higher-order core-valence correlations are
also particulary important for lanthanides, and we study
these contributions in detail here.

We carry out extensive study of various correlation
effects to the excitation energies of La, La+, Ce, Ce+,
Ce2+, and Ce3+. Our calculations are carried out us-
ing two hybrid approaches that combine configuration
interaction with second-order perturbation theory and
a linearized coupled-cluster all-order method. This al-
lows us to isolate the effects of third- and higher-order
corrections for various configurations. The inclusion of
the core-valence effects involves sums over the partial
waves that are usually truncated at relatively low val-
ues of l such as l = 5. We find that the effects of higher
partial waves are large for states with the 4f electrons.
We developed methods to extrapolate the contribution
of these higher partial waves. We have conducted addi-
tional studies of such higher partial wave contributions
in several Cd-like lanthanide ions, where clear compari-
son with monovalent systems is possible. The implication
of this work for the development of further methodolo-
gies is discussed in our conclusion. We conclude that at
least perturbative valence triple excitations have to be
included into the all-order construction of the effective
hamiltonian to further improve the accuracy.

II. REVIEW OF CURRENT KNOWLEDGE OF
STRUCTURE OF LA, CE, AND THEIR IONS

One of the first analysis of lanthanum spectra that in-
cluded 540 lines in La, 728 lines in La+, and 10 lines in
La2+ was presented by Russell and Meggers [29] in 1932.
The analyses of all three spectra were supported by mea-
surements of Zeeman effects, which were interpreted with
the aid of Landé theory. The splitting factors, i.e. g val-
ues, showed marked departure from the theoretical values
for many levels, but the “sum rule” was valid wherever
it was tested [29].

Preliminary analysis of the first spark spectrum of Ce

and Ce+ was performed by Albertson and Harrison [30]
which identified the 4f5d6s and 4f5d2 as the lowest con-
figuration in Ce+. Absorption spectra of cerium was
recorded by Paul [31] where approximately 600 lines were
observed. For wavelengths less than 320 nm, the inten-
sity of the absorption lines falls off very rapidly and very
few were observed. Reviews of atomic spectra of rare
earth elements presented by Meggers [32] raised a lot of
questions in identification of cerium spectra, including
determination of Ce2+ ground state.

The third spectrum of cerium (Ce III) was investigated
by Russell et al. [33] in 1937. Thirty-three triplet and
singlet terms of Ce2+ had been recognized, accounting
for 294 lines, including almost all of wavelengths exceed-
ing 200 nm. The electron configurations 4f5d, 4f6p, 5d2,
4f6s, 4f6d, and 5d6s have been almost completely iden-
tified. The last three configurations showed evidence of
jj-coupling.

New description and analysis of Ce2+ was given by
Sugar [34] in 1963 including 1700 lines not previously
reported. The ground level of this ion was established as
the 3H4 state of the 4f2 electronic configuration. One
hundred twenty-six newly discovered energy levels were
given, together with revised values of previously known
levels. The ionization limit, at 161955 cm−l, was derived
from the three members of the 4fnd series [34].

The second spectrum of cerium (Ce II) was compiled
by Corliss [35] in the wavelength region between 250 nm
and 2400 nm. For the 11000 lines in the list, about 7500
were classified [35] as transitions between 192 odd levels
and 288 even levels. The odd levels arise from 5 configu-
rations, 4f5d2, 4f5d6s, 4f6s2, 4f26p, and 4f3, and the
even levels from 7 configurations, 4f26s, 4f25d, 4f5d6p,
4f6s6p, 5d3 , 5d26s, and 5d6s2.

Low-lying levels of Ce were analyzed in 1963 by Martin
[36], who showed that the ground level is 6s25d4f 1G4,
rather than 6s24f2. The latter incorrect identification of
the ground configuration can still be found in reference
literature today [37]. The cerium spectrum emitted by
an electrodeless lamp was observed by Verges et al. [38]
in the wavelength region from 0.82 µm to 2.42 µm. From
the 2076 lines observed, about 1100 lines have been clas-
sified as transitions in the energy level system of Ce+ and
400 as lines of Ce2+.

One of the first NIST compilations of the La, La+,
Ce, Ce+, and Ce2+ energies was published by Martin
et al. [39]. Energy level data were given for 66 atoms
and atomic ions of the 15 elements lanthanum (Z=57)
through lutetium (Z=71). These data were critically
compiled from published and unpublished material. Only
experimentally determined energy levels were included.

A compilation for the neutral and singly-ionized atoms
of cerium and lanthanum was published in 2005 by San-
sonetti and Martin [40]. The wavelengths, intensities,
and spectrum assignments were given for each element
and the data for the approximately 12 000 lines of all
elements were collected into a single table and sorted by
the wavelength [40].
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Quinet and Biémont [41] calculated Landé g-factors for
experimentally determined energy levels of La2+. Con-
figuration interaction and relativistic effects had been in-
cluded in the computations using the relativistic Hartree-
Fock (HFR) technique combined with a least-squares fit-
ting of the Hamiltonian eigenvalues to the observed en-
ergy levels [41]. In 2004, Biémont and Quinet [42] pre-
sented an overview of the recent developments concern-
ing the spectroscopic properties of lanthanide atoms and
ions with nuclear charge Z = 57 − 71. That review was
focussed on advances made during the previous twenty
years in the analysis of the spectra, transition probabili-
ties, radiative lifetimes, hyperfine structures and isotope
shifts.

The relativistic coupled-cluster method was applied by
Eliav et al. [43] to evaluate the ionization potentials and
excitation energies of La+ and La2+. Good agreement
with available experimental data was obtained. Large
relativistic effects were observed, affecting transition en-
ergies by up to 2.5 eV even for lanthanum [43].

Recently, Dzuba et al. [44] calculated the scalar static
polarizabilities of lanthanides and actinides. Among dif-
ferent atoms, numerical results for the ground state of
the scalar polarizabilities of Ce and La were listed. The
configuration interaction technique was used [44].

A systematic study of La2+ properties including ener-
gies, transition rates, lifetimes, and multipole polarizabil-
ities was carried out in [45] using the all-order coupled-
cluster method.

III. MONOVALENT CALCULATIONS

A. All-order method

The calculations for monovalent Ce3+ were carried out
using the relativistic all-order method discussed in de-
tail in the review [46]. Briefly, the wave function of the
valence electron v in the single-double (SD) approxima-
tion can be represented as an expansion that contains all
possible single and double excitations of the lowest-order
wave function:

|Ψv〉 =

[
1 +

∑
ma

ρmaa
†
maa +

1

2

∑
mnab

ρmnaba
†
ma
†
nabaa+

+
∑
m6=v

ρmva
†
mav +

∑
mna

ρmnvaa
†
ma
†
naaav

 |Φv〉. (1)

Φv is the lowest-order atomic state function, which is
taken to be the frozen-core Dirac-Hartree-Fock (DHF)
wave function of a state v:

|Φv〉 = a†v|0C〉,

where |0C〉 represents the DHF wave function of the

closed [Xe] core. In equation (1), a†i and ai are creation
and annihilation operators, respectively. We refer to ρma,

ρmv as single core and valence excitation coefficients and
to ρmnab and ρmnva as double core and valence excitation
coefficients, respectively. The following letters are used
to distinguish core, excited, and valence states through-
out the text:

a, b, c core states
m, n, r excited states
v, w valence states
i, j, k, l any state.

In the SDpT version of the all-order method, valence
triple excitations described by the term

1

6

∑
mnrab

ρmnrvaba
†
ma
†
na
†
rabaaav|Φv〉

are included perturbatively to ρmv and correlation energy
equations as described in [46]. To derive the equations for
the excitation coefficients, the wave function Ψv, given by
Eq. (1), is substituted into the many-body Schrödinger
equation

H|Ψv〉 = E|Ψv〉, (2)

where the Hamiltonian H = H0 + VI is the relativistic
no-pair Hamiltonian

H0 =
∑
i

εia
†
iai,

VI =
1

2

∑
ijkl

gijkla
†
ia
†
jalak −

∑
ij

Uija
†
iaj , (3)

gijkl are Coulomb matrix elements, and Uij is taken to
be a frozen-core DHF potential. The equation for the
correlation energy is given by

δEv =
∑
ra

g̃vavrρra+
∑
rab

gabvrρ̃rvab+
∑
rna

gvbrnρ̃rnvb, (4)

where g̃ijkl = gijkl − gijlk and ρ̃ijkl = ρijkl − ρijlk.
While the correlation energy calculated in the single-
double (SD) approximation contains fourth and higher-
order terms, it is known to omit the part of the third-
order contribution which we calculate separately and re-

fer to as E
(3)
extra. The energy calculated in the SDpT ap-

proximation is complete in third order.

B. Estimation of higher partial wave contribution:
monovalent case

All m, n, r sums in the all-order equations or perturba-
tion theory terms imply the sums over all possible excited
states. For example, the sum over r in Eq. (4) is over all
excited states with with quantum numbers nr lr jr mr,
jr = lr ± 1/2, and is carried out using a finite basis set
method with B-splines [46]. The sum over the magnetic
quantum numbers m is performed analytically. While
the sum over the principal quantum number n is made
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TABLE I: Comparison of the second-order and all-order values calculated with different number of partial waves. Final second-
order values include extrapolated contribution to l = ∞. Units: cm−1.

Ion State Second-order values All-order values
lmax = 5 lmax = 6 lmax = ∞ l = 6 l > 6 lmax = 5 lmax = 6 l = 6

La2+ 4f5/2 -38895 -40198 -41473 -1302 -1275 -26722 -27758 -1036
4f7/2 -38165 -39455 -40717 -1290 -1262 -26367 -27399 -1032
5d3/2 -11159 -11485 -11845 -326 -360 -8330 -8540 -210
5d5/2 -10657 -10973 -11322 -316 -349 -8034 -8239 -205
6s1/2 -8425 -8491 -8575 -66 -84 -6070 -6096 -26
6p1/2 -5446 -5493 -5548 -47 -55 -4271 -4299 -28
6p3/2 -4948 -4992 -5043 -44 -51 -3883 -3910 -27

Ce3+ 4f5/2 -43887 -45388 -46880 -1501 -1492 -28710 -29859 -1149
4f7/2 -43275 -44769 -46252 -1494 -1483 -28386 -29533 -1147
5d3/2 -12759 -13147 -13575 -388 -428 -9539 -9795 -256
5d5/2 -12229 -12606 -13023 -377 -417 -9248 -9497 -249
6s1/2 -10040 -10121 -10223 -81 -102 -7088 -7126 -38
6p1/2 -7160 -7224 -7297 -64 -73 -5506 -5544 -38
6p3/2 -6541 -6600 -6668 -59 -68 -5056 -5096 -40

finite by the use of the finite basis set method, the sum
over the partial waves l has to be truncated at relatively
low value of l, typically lmax = 6 for the all-order com-
putations. The effects of the higher partial waves can be
extrapolated in second order. The second-order calcu-
lation is very fast and can be done with large values of
lmax, such as lmax = 10 or 11 with the remainder extrap-
olated. In Table I, we list second-order and the all-order
results calculated with lmax = 5, lmax = 6, and their dif-
ference that gives the contribution of l = 6 partial waves.

The all-order SD results include the E
(3)
extra contribution.

Final second-order values include contribution extrapo-
lated to lmax = ∞. We list the difference of lmax = ∞
and lmax = 6 results in column labelled “l > 6”. We find
that the contribution of the l = 6 partial wave is very
close to the extrapolated contribution of partial waves
with l > 6. This empirical result was previously ob-
served for Ag-like and In-like highly-charged ions [1], so
this simple rule appears to be valid for a wide variety of
monovalent systems with 4f electrons. Therefore, we use
the all-order l = 6 contribution listed in the last column
of the table as an estimate of the all-order extrapolated
contribution. We note that the use of the second-order
extrapolation would overestimate the actual l > 6 con-
tribution since the second order overestimates the corre-
lation correction for Ce3+ by about 50 %.

C. Energies of Ce3+ and the phenomenon of 4f
“orbital collapse”

Contributions to removal energies of Ce3+ and compar-
ison of the results calculated in different approximations
with experiment are given in Table II in cm−1. These
include lowest-order DF result, second and third-order
contributions, SD and SDpT all-order values, and the

E
(3)
extra part of the third order not accounted for by the SD

R (a.u.)
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FIG. 1: Large component of the 4f5/2 orbital in the

5s25p64f5/2 level of Cs, Ba+, La2+, and Ce3+ as cal-
culated in the DHF approximation.

method. The total third-order, SD all-order, and SDpT
all-order removal energies are listed in the next three
columns and are calculated as follows: the third-order to-
tal values are the sum of the DF, second, and third order
contributions; the SD total values are the sum of the DF,

SD, and E
(3)
extra contributions; and the SDpT total values

are the sum of the DF and SDpT contributions. The
differences between the removal energies obtained in dif-
ferent approximations and experimental values [47] are
listed in the last four columns of Table II in cm−1. The
comparison with experiment indicates anomalously large
correlation corrections and contributions of higher orders
for 4f states. The discrepancies between the 4f second-
order energies with experiment are larger than those val-
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TABLE II: Contributions to removal energies of Ce3+ and comparison of the results calculated in different approximations with
experiment [47]. Units: cm−1.

State Contributions Totals Expt. Differences with expt.

DF E(2) E(3) ESD E
(3)
extra ESDpT E(2) E(3) ESD ESDpT E(2) E(3) ESD ESDpT

4f5/2 -262168 -46762 16126 -38021 7013 -32470 -308930 -292804 -293176 -294638 -297670 11260 4866 4494 3032
4f7/2 -260351 -46135 15858 -37581 6901 -32100 -306486 -290628 -291031 -292451 -295417 11069 4789 4386 2966
5d3/2 -236832 -13541 3886 -11766 1715 -10271 -250373 -246487 -246883 -247103 -247933 2440 1446 1050 830
5d5/2 -234738 -12991 3643 -11354 1608 -9934 -247729 -244086 -244484 -244672 -245444 2285 1358 960 772
6s1/2 -203193 -10210 1027 -8743 1579 -7439 -213403 -209666 -210357 -210632 -211068 2335 1402 711 436
6p1/2 -168882 -7287 2369 -6624 1042 -5742 -176169 -173800 -174464 -174624 -175085 1084 1285 621 461
6p3/2 -164655 -6659 2155 -6079 945 -5282 -171314 -169159 -169789 -169937 -170378 936 1219 589 441

FIG. 2: The 4f orbitals of the 1P, 3P, 1D, 3D, 1F,
3F, 1G, 3G, 1H and 3H terms of the configuration
Cs+ 4d94f5s25p6, and of the “term averaged” orbital as
calculated in the term-dependent HF approximation. La-
bels, as read from top to bottom and left to right, are in
order of increasing energy and radius of the orbital max-
imum. Reproduced from Ref. [48]

ues for other states by at least a factor of 4 and are
over 8500 cm−1. The total third-order contributions and
third-order parts arising from triple excitations, E

(3)
extra,

are also larger for 4f states than for any other states.
Comparison of the third order, SD and SDpT results in-
dicates that triple excitations are particularly important
for the accurate evaluation of the correlation correction
for the 4f states. Such anomalously large correlation cor-
rections for the 4f states are due to the “orbital collapse”
discussed below.

The phenomenon of 4f “orbital collapse” was discussed
by Maria Goeppert Mayer in 1941 [49]. She noted that,
for atomic numbers around Z = 57, the Thomas-Fermi
model of the atom produces an effective double-well ra-
dial potential for f electrons: a deep, but narrow, inner
well near the nucleus; and a shallow, but broad well of
the form (in atomic units) V (r) → 6r−2 − Zeffr

−1 for

large electron nucleus distances r, where Zeff is the spec-
trum number, e.g. Zeff = 1 for La, Zeff = 2 for La+, etc.
The 4f wave function collapse in DHF calculations was
discussed in [50, 51].

For Cs (Z = 55) the 4f electron is localized in the outer
potential well, and so is a classic example of a Rydberg
electron. The Cs 4f orbital is almost the same as the
4f orbital of H (Z = 1): the experimental value of the
effective principal quantum number of Cs 4f is n∗ =
3.978 vs. n = 4 for H 4f . As Z increases along the Cs
5p64f isoelectronic sequence, the inner well grows deeper,
and at some point the 4f orbital becomes localized within
the atom, in the vicinity of the other N -shell orbitals 4s,
4p and 4d.

Fig. 1 shows the evolution of large component of the
DHF 4f5/2 orbital along the Cs 5p64f isoelectronic se-
quence. The presence of two potential wells is vividly
suggested by the 4f orbital of Ba+ 5p64f , which has
two local maxima. This was noticed by Connerade and
Mansfield [52] in the context of an HF calculation of Ba+

5p64f , and by Johnson and Guet [53] in a MBPT study of
f -wave scattering of electrons in the first three members
of the Xe 5p6 isoelectronic sequence: Xe, Cs+ and Ba2+.
For the 5p64f isoelectronic sequence, the progression of
orbital collapse is quite regular, but the balance between
inner and outer wells is generally sensitive to details. For
example, Johnson and Guet [53] were unable to get a sat-
isfactory account of the low-energy phase shift for f -wave
scattering by Ba2+, until they introduced a phenomeno-
logical potential to represent the effects of core polariza-
tion. No such potential was needed to get satisfactory
agreement with experiment for the phase shifts for elec-
tron scattering by Xe or Cs+, or for any other partial
wave in electron scattering by Ba2+. Evidently the core
polarization potential is not particularly strong, but it is
sufficient to tip the balance between inner and outer po-
tential wells in Ba. Another such example is found [48]
in Cs+ 4d94f5s25p6, which is an analogue of Ce3+ due to
the 4d hole. There, the Hartree-Fock 4f orbitals of differ-
ent LS terms display the full range of behavior depicted
in Fig. 1, as is shown in Fig. 2. In the 4d photoabsorp-
tion spectrum of the Ba isonuclear sequence, oscillator
strength is shifted dramatically from the continuum into
the discrete spectrum in the transition from Ba to Ba2+
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[54, 55]. Thus orbital collapse amplifies the effects of cor-
relation in 4f states in this region of the periodic table,
and makes their accurate calculation particularly chal-
lenging compared to what is possible for states with no
4f occupancy.

IV. CI+MBPT AND CI+ALL-ORDER
METHODS

We carry out calculations for systems with two, three,
and four valence electrons using both CI+MBPT and
more accurate CI+all-order methods to establish the ef-
fect of the higher orders. The CI+MBPT method was
developed in Ref. [56] and applied to the calculation of
atomic properties of various systems in a number of pre-
vious works. In the CI method, the many-electron wave
function is obtained as a linear combination of all distinct
states of a given angular momentum J and parity:

ΨJ =
∑
i

ciΦi,

and energies and wave functions of the low-lying states
are determined by diagonalizing the Hamiltonian:

H = H1 +H2.

The first part of the Hamiltonian H1 represents the one-
body part of the Hamiltonian, and H2 represents the
two-body part, which contains either Coulomb vijkl or
Coulomb + Breit matrix elements. The precision of
the CI method is drastically limited for large systems
by the number of configurations that can be included.
The CI + MBPT approach allows one to incorporate
core excitations in the CI method by constructing an
effective Hamiltonian that includes second-order terms:
H1 → H1 + Σ1, and H2 → H2 + Σ2. The CI method is
then applied as usual with the modified Heff to obtain
improved energies and wave functions

The second-order matrix elements (Σ
(2)
1 )yx are given

by [57]

(
Σ

(2)
1

)
yx

=
∑
mab

gmyab g̃mxab

εab − εxm + ε̃y − εy
+
∑
mna

gmnxa g̃mnya

ε̃y + εa − εmn
.

(5)
In the equation above, the one-particle energies εi are
written together as εij = εi + εj for brevity. The summa-
tion over index i implies the sum over the quantum num-
bers ni κimi. While the energy ε̃y should be calculated
from the particular eigenvalue of the effective Hamilto-
nian, we use the practical solution to set the energy ε̃y
to the Dirac-Fock energy of the lowest orbital for the
particular partial wave.

The second-order matrix elements (Σ
(2)
2 )mnvw are

given by [57](
Σ

(2)
2

)
mnvw

=
∑
cd

gvwcd gmncd

εcd − εmn + ε̃v − εv + ε̃w − εw
(6)

+

[∑
rc

g̃wrnc g̃mrvc

ε̃v + εc − εmr + ε̃w − εw
+

(
m ⇔ n
v ⇔ w

)]
.

Since the expression above involves the sums over the
excited states, the construction of the effective Hamil-
tonian also involves the truncation of the higher partial
wave contribution described in Section III B. We discuss
this issue in detail in Section IV A.

In the CI + all-order approach [57–61] corrections to
the effective Hamiltonian are calculated using the vari-
ant of the linearized single-double coupled cluster (all-
order method) described in Section III A. To implement
CI+all-order method, the all-order equations discussed
in Section III A are re-written in terms of the quantities
Σ instead of the excitation coefficients ρ as follows:

Σma = ρma (εa − εm) ,

Σmnab = ρmnab (εab − εmn) ,

Σmnva = ρmnva (ε̃v + εa − εmn) . (7)

The quantities Σma, Σmnab, and Σmnva are used in the
all-order iteration procedure but do not explicitly appear
in the effective Hamiltonian. The terms that contain
no core summations are excluded from the equations to
avoid double-counting of such terms by the CI part of
the calculations. The one-body correction to the effec-
tive Hamiltonian Σ1 is given by

(Σ1)mv = ρmv (ε̃v − εm) , (8)

where ρmv are valence excitation coefficients. The two-
body correction to the effective Hamiltonian Σ2 is con-
structed using the final Σma, Σmv, Σmnab, and Σmnva

values (see [57] for complete expressions). The CI method
is then used to evaluate valence-valence correlations.
Therefore, the effective Hamiltonian in the CI+all-order
method contains dominant core and core-valence corre-
lation corrections to all orders.

A. Estimation of higher partial wave contributions:
multivalent case

It is interesting to explore whether the partial wave
contributions obtained for the states of monovalent sys-
tems such as Ce3+ are consistent with similar contribu-
tions that arise from the construction of Σ1 and Σ2 cor-
rections to the effective Hamiltonian for the multivalent
systems. To analyze this issue, we first study this effect
in highly-charged Cd-like ions that also have low-lying
states with 4f electrons. Although these systems differ
considerably from those that are the principle subjects
of this paper, they exhibit the effects of 4f correlation
with great clarity, and in a way which sheds light on
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TABLE III: Contribution of l = 6 partial wave to the two-electron energies of Cd-like ions in cm−1.

Cd-like La9+ Cd-like Ce10+ Cd-like Pr11+ Cd-like Nd12+ Cd-like Sm14+

Level l = 6 Level l = 6 Level l = 6 Level l = 6 Level l = 6
5s2 1S0 -358 5s2 1S0 -374 5s2 1S0 -387 5s2 1S0 -400 4f2 3H4 -2760
5p2 3P0 -353 5p2 3P0 -387 4f2 1G4 -2501 4f2 3H4 -2600 4f2 3H5 -2755
5p2 3P1 -341 4f5p 3G3 -1407 4f2 3H5 -2497 4f2 3H5 -2596 4f2 3F2 -2720
5p2 1D2 -351 4f5p 3F2 -1374 4f2 3H6 -2492 4f2 3H6 -2591 4f2 3H6 -2751
5p2 3P2 -363 4f5p 3F3 -1402 4f2 3F2 -2441 4f2 3F2 -2562 4f2 3F3 -2720
4f5p 3G3 -1326 4f5p 3G4 -1410 4f2 3F3 -2439 4f2 3F3 -2561 4f2 1G4 -2723
4f5p 3F3 -1316 4f2 1G4 -2439 4f2 1G4 -2563 4f2 3F4 -2717
4f5p 3F2 -1277 4f2 3F4 -2454 4f2 3F4 -2558 5s2 1S0 -481

5s5p 3P0 -359 5s5p 3P0 -378 4f5s 3F2 -1474 5s4f 3F2 -1529 4f5s 3F2 -1619
5s5p 3P1 -356 5s5p 3P1 -375 4f5s 1F3 -1473 5s4f 3F3 -1528 4f5s 3F3 -1618
5s5p 3P2 -346 4f5s 3F2 -1412 4f5s 3F4 -1468 5s4f 3F4 -1523 4f5s 3F4 -1613
5s5p 1P1 -338 4f5s 3F3 -1410 4f5s 3F3 -1475 5s4f 1F3 -1529 4f5s 1F3 -1618
4f5s 3F2 -1334 5s5p 3P2 -364 5s5p 3P0 -392 5s5p 3P1 -405 5s5p 3P0 -435
4f5s 3F3 -1332 4f5s 3F4 -1405 5s5p 1P1 -390 5s5p 3P2 -392 5s5p 3P1 -432
4f5s 3F4 -1328 4f5s 1F3 -1414 5s5p 3P2 -378 5s5p 1P1 -384 5s5p 3P2 -418
4f5s 1F3 -1336 5s5p 1P1 -356 5p5d 1P1 -370 5s5p 1P1 -411

systematics observed in low-ionization stages. This se-
lection of Cd-like ions is particularly interesting due to
the change of the order of levels within this sequence of
ions described in detail in [1].

The contribution of the l = 6 partial wave to the two-
electron energies of Cd-like La9+, Ce10+, Pr11+, Nd12+,
Sm14+ ions in cm−1 is given in Table III. These values
are obtained as the differences of the CI+all-order calcu-
lations where effective Hamiltonian was constructed with
lmax = 6 and with lmax = 5, respectively. We find that
the divalent l = 6 values are nearly equal to the sum of
the corresponding monovalent (Ag-like) l = 6 contribu-
tions [1, 2], which are quite similar to the correspond-
ing contribution for La2+ and Ce3+ listed in Table I.
While there is a small increase in the value for ions with
higher degree of ionization, each 4f electron contributes
1150 cm−1 − 1300 cm−1 and each 5s or 5p electron con-
tributes 150 cm−1−200 cm−1. These contributions from
two electrons can simply be added to obtain the data for
the Cd-like ions, with 4f2 state l = 6 contribution being
about twice that of the states with only one 4f electron,
since 5s or 5p contributions are so small.

Next, we explore the partial wave truncation for Ce,
La, and their ions. We begin by showing results for Ce
in Table IV where we list the CI+all-order 4-electron en-
ergies (in cm−1) of the lowest states of neutral cerium
calculated with different numbers of partial waves. As
in the previous example with Cd-like ions, these val-
ues are obtained by constructing the effective Hamil-
tonian with lmax = 5 and with lmax = 6, respectively.
The column l = 6 gives the contribution of this par-
tial wave, calculated as the difference of two previous
columns. Similar monovalent and divalent cases were
listed in Tables I and III, respectively. To compare the
four-electron l = 6 values for Ce with one-electron l = 6
contributions for Ce3+, we sum 4 respective one-electron

TABLE IV: The CI+all-order 4-electron energies (in cm−1)
of the lowest states of neutral cerium calculated with different
number of partial waves. The last column gives an estimate
of l = 6 contribution in Ce based on sum of 4 respective
one-electron l = 6 contributions for Ce3+ from Table I.

Level lmax = 5 lmax = 6 l = 6 One-el.
4f5d6s2 1G4 -596039 -597526 -1487 -1476
4f5d6s2 3F2 -596061 -597535 -1474 -1476
4f5d6s2 3H4 -594572 -596065 -1493 -1476
4f5d26s 5H4 -593521 -595088 -1567 -1690
4f5d26s 5H3 -593230 -594767 -1536 -1690

4f26s2 3H4 -593280 -595623 -2343 -2372
4f26s2 3H5 -591766 -594104 -2337 -2372
4f26s2 3H6 -590176 -592506 -2330 -2372
4f5d6s6p 3F2 -581265 -583337 -2072 -1477
4f5d6s6p 3D2 -577074 -579134 -2060 -1477

l = 6 contributions El=6 for Ce3+ listed in the last col-
umn of Table I according to the electronic configuration.
For example, the value for the 4f5d6s2 configuration
was obtained as El=6(4f) + El=6(5d) + 2 × El=6(6s) =
−1148 cm−1 − 252 cm−1 − 2× 38 cm−1 = −1476 cm−1,
where we averaged j = l±1/2 El=6 values. These results
are listed in the last column of Table IV labelled “One-
el.”. We find that these approximate one-electron values
match the actual four-electron values very closely for the
4f5d6s2 and 4f26s2 configurations. The results for other
configurations are affected by configuration mixing, for
example 4f5d6s6p is strongly mixed with configurations
containing two 4f electrons causing the actual l = 6 con-
tribution to exceed the simple one-electron estimate. The
l = 6 values for Ce+, Ce2+, La and La+ are essentially
the same as for the neutral Ce example. Our results
very clearly show that the multivalent case still follows
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TABLE V: Comparison of the CI+MBPT and CI+all-order
energy levels (in cm−1) with experiment [47] for La and La+.
The higher-order contribution, estimated as the difference of
the CI+all-order and CI+MBPT values, is listed in column
“HO”. The difference of the final all-order values with exper-
iment is given in the last column.

Level J MBPT All Expt. HO Diff.
La 5d6s2 2D 3/2 0 0 0 0 0

5d6s2 2D 5/2 1136 1075 1053 -61 -22
5d26s 4F 3/2 2538 2550 2668 12 118
5d26s 4F 5/2 2917 2901 3010 -16 109
5d26s 4F 7/2 3449 3395 3495 -54 100
5d26s 4F 9/2 4146 4040 4122 -107 82
5d26s 2F 5/2 7162 7025 7012 -137 -13

5d6s6p 4F 3/2 13911 13487 13260 -424 -227
5d6s6p 5/2 14113 13412 13631 -700 219
5d6s6p 4D 1/2 14773 14326 14096 -447 -230
5d6s6p 4D 3/2 15261 14871 14709 -390 -162
5d6s6p 4F 5/2 15817 15382 14804 -435 -578
5d6s6p 4F 7/2 15528 14814 15020 -713 205
5d6s6p 3/2 15674 15208 15032 -466 -176
4f6s2 2F 5/2 8719 13250 15197 4531 1947
5d6s6p 1/2 15845 15407 15220 -438 -187
5d6s6p 4D 5/2 16038 15660 15504 -378 -156

La+ 5d2 3F 2 0 0 0 0 0
5d2 3F 3 1093 1018 1016 -75 -2
5d2 2 1654 1543 1394 -110 -149
5d6s 3D 1 2188 2052 1895 -136 -157
5d2 3F 4 2146 2002 1971 -144 -31
5d6s 3D 2 2956 2767 2592 -188 -176
5d6s 3D 3 3669 3439 3250 -230 -188
6s2 1S 0 7753 7666 7395 -88 -271

4f6s 2 6799 11543 14148 4744 2605
4f6s 3 7000 11740 14375 4740 2635
4f6s 4 8465 13108 15699 4643 2590
4f5d 1G 4 8840 13237 16599 4396 3362
4f5d 3F 2 9309 13777 17212 4468 3435
4f5d 3H 4 10475 14841 17826 4366 2985

the one-electron partial wave convergence pattern. Then,
our empirical finding that the contributions from all par-
tial waves with l > 6 should contribute about the same
as l = 6 partial wave is also valid for multivalent case.

V. RESULTS FOR CE, LA, AND THEIR IONS

Comparison of the CI+MBPT and CI+all-order en-
ergy levels (in cm−1) with experiment [47] is given in
Table V for La and La+ and in Table VI for Ce, Ce+,
and Ce2+. These tables give a representative sample of
various configurations which most clearly illustrate the
higher-order correlation correction in lanthanides.

TABLE VI: Comparison of the CI+MBPT and CI+all-order
energy levels (in cm−1) with experiment [47] for Ce, Ce+,
and Ce2+. The higher-order contribution, estimated as the
difference of the CI+all-order and CI+MBPT values, is listed
in column “HO”. The difference of the final all-order values
with experiment is given in the last column.

Level J MBPT All Expt. HO Diff.
Ce 4f5d6s2 1G 4 0 0 0 0 0

4f5d6s2 3F 2 12 4 229 -8 225
4f5d6s2 3H 4 1449 1455 1389 5 -66
4f5d26s 5H 4 2428 2357 2438 -71 81
4f5d26s 5H 3 2437 2710 2369 273 -341

4f26s2 3H 4 -6694 1047 4763 7741 3716
4f26s2 3H 5 -5017 2572 6239 7589 3667
4f26s2 3H 6 -3250 4177 7780 7427 3603
4f5d6s6p 3F 2 7736 13604 14646 5868 1042
4f5d6s6p 3D 2 12306 17818 16534 5513 -1284

Ce+ 4f5d2 4H 7/2 0 0 0 0 0
4f5d2 9/2 1071 1062 988 -9 -75
4f5d2 4I 9/2 1614 1771 1410 157 -361
4f5d2 1/2 2209 1897 2140 -312 243
4f5d6s 5/2 2774 2838 2635 64 -203

4f26s 4H 7/2 -7719 430 3854 8149 3424
4f26s 4H 9/2 -7382 747 4166 8129 3419
4f25d 4K 11/2 -3724 4053 7092 7776 3039
4f26s 4F 3/2 -3391 4332 7455 7722 3123
4f26s 4F 5/2 -3108 4603 7722 7712 3119

Ce2+ 4f2 3H 4 0 0 0 0 0
4f2 3H 5 1704 1565 1528 -139 -37
4f2 3H 6 3518 3227 3127 -291 -100
4f2 1G 4 8526 7650 7120 -876 -530
4f2 1D 2 15122 13786 12835 -1336 -951

4f5d 1G 4 16075 7529 3277 -8546 -4252
4f5d 3F 2 16371 7865 3822 -8506 -4043
4f5d 3H 4 18236 9614 5127 -8622 -4487
4f5d 3F 3 18189 9862 5502 -8327 -4360
4f5d 1D 2 19294 10429 6571 -8864 -3858

A. La and La+

We find excellent agreement of the La CI+all-order
results with experiment with the exception of the
4f6s2 2F5/2 level. This is expected due to very large
contributions of the higher orders for any configuration
that involves the 4f state: note that higher-order con-
tribution is 4531 cm−1 for this level. As we show be-
low, this is consistent with the difference of the Ce3+

energy levels with experiment given in Table II. In the
case of La+, all low-lying odd configurations contain one
4f electron, and the respective differences with experi-
ment and higher-order contributions are very similar to
those for the 4f6s2 2F5/2 level of La. Strong mixing of

the 4f6s2 2F5/2 and 5d6s6p 4F5/2 levels leads to slightly

better agreement with experiment for the 2F5/2 La level

than for the 4f6s levels of La+, since configuration mix-
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ing reduces the “fraction” of the 4f electron in the 4f6s2

configuration in this case.

B. Ce, Ce+, and Ce2+

The higher-order contributions increase for Ce and its
low-charged ions to 7500 cm−1 − 8500 cm−1. This leads
to CI+MBPT giving the wrong ground state for Ce and
Ce+: all CI+MBPT results for even levels are negative
indicating the wrong order with respect of the ground
state. This is the most startling failure of the CI+MBPT
method of which we are aware in few-electron systems.
As a result, odd levels are shifted with respect to even lev-
els, which is a well-know problem in lanthanides and ac-
tinides. The CI+all-order agreement with experiment is
significantly improved, reducing even-odd shift by a fac-
tor of 3 to 4. The sources of the remaining odd-even shift
are the missing triple and higher-excitations in the con-
struction of the effective Hamiltonian, as is demonstrated

by Table II that compares SD, SD+E
(3)
extra and SDpT

monovalent results. We do not observe deterioration of
the agreement with experiment for Ce in comparison to
Ce+ and Ce2+. This demonstrates that we included a
sufficient number of configurations to effectively saturate
the configuration space for this four-electron system.

Finally, we note that the contribution of the partial
waves with l > 5 appears to have a sign that is opposite
to that of the triple and higher excitation core-valence
correlations that we presently omit at the construction
of the effective Hamiltonian. The l = 6 partial wave
contributes about 1200 cm−1 for any configuration in-
volving a 4f electron, with l > 6 contributing another
1200 cm−1, totaling 2400 cm−1 which is rather close to
the CI+al-order difference with respect to experiment.
As a result, the lmax = 5 values agree very well with
experiment, “conspiring to hide” the problem of higher-
order contributions.

VI. CONCLUSION

We carried out extensive studies of various correlation
effects on the excitation energies of La, La+, Ce, Ce+,
Ce2+, and Ce3+, focusing specifically on the contribution
of high partial waves and third- and higher-order correc-
tions. Our calculations are carried out using two hy-
brid approaches that combine configuration interaction
with second-order perturbation theory and a linearized
coupled-cluster all-order method. This approach allows

us to isolate the effects of third- and higher-order correc-
tions for various configurations. Comparison of results
for monovalent and multivalent systems allowed us to
separately study the importance of the core-valence and
valence-valence correction. Our findings are summarized
as follows:

1. For the multivalent configurations, the correction
due to high partial waves is largely determined by
a number of 4f electrons in a configuration.

2. The high partial wave contribution for multivalent
systems mirrors the respective one-electron high
partial wave contribution, unless significant mixing
occurs between configurations with different num-
bers of the 4f electrons.

3. For monovalent systems, we found empirically that
the net correction for all partial waves with l > 6
was approximately equal to the contribution of a
single l = 6 partial wave. Since the partial wave
convergence for the multivalent case seems to fol-
lows the one-electron partial wave convergence pat-
tern that empirical finding holds for multivalent
systems.

4. The third- and higher-order core-valence contribu-
tion is very large for configuration including the 4f
electrons. This causes large shift between odd and
even configurations containing different numbers of
4f electrons.

5. Strong cancellation is found between the l > 5
partial wave contributions and higher-order core-
valence correlations.

In summary, the above problem of the even-odd configu-
ration energy shift may be resolved by adding triple core-
valence excitations to the construction of the effective
Hamiltonian within the framework of the CI+all-order
approach.
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