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Boson sampling is a simple model for non-universal linear optics quantum computing using far
fewer physical resources than universal schemes. An input state comprising vacuum and single
photon states is fed through a Haar-random linear optics network and sampled at the output using
coincidence photodetection. This problem is strongly believed to be classically hard to simulate. We
show that an analogous procedure implements the same problem, using photon-added or -subtracted
squeezed vacuum states (with arbitrary squeezing), where sampling at the output is performed via
parity measurements. The equivalence is exact and independent of the squeezing parameter, and
hence provides an entire class of new quantum states of light in the same complexity class as boson
sampling.

INTRODUCTION

Scalable quantum computing [1] is likely to usher in a
new age for computing. Certain problems, such as inte-
ger factorization [2], search algorithms [3] and quantum
simulation [4] are believed to be more efficient on quan-
tum computers than on classical computers. Whilst there
are a number of differing models for realizing scalable
quantum computing, linear optics quantum computing
(LOQC) [5, 6] appears to be one of the most promising.
Photons are not only relatively easy to prepare, manipu-
late, and measure, but also also have very long decoher-
ence times. Unfortunately, the hurdles for implementing
full universal LOQC remain very challenging and appear
to be impractical with current technologies. Hence, there
is much interest in simpler, more feasible approaches that
could be demonstrated with existing technology.

In this spirit, Aaronson & Arkhipov (AA) introduced
the boson sampling model [7, 8]. Whilst not universal for
quantum computing, boson sampling uses only passive
linear optical elements to efficiently implement a partic-
ular sampling problem, which is strongly believed to be
hard on a classical computer. This makes boson sampling
vastly simpler than full-fledged LOQC because it does
away with some of the more challenging experimental
requirements, namely fast-feedforward, optical quantum
memory, and the need for a plethora of optical elements.

The mere fact that boson sampling implements a com-
putationally hard problem using technologies that are,
for the larger part, available today makes it of great prac-
tical interest. Its relative simplicity and frugal physical
resource requirements may render it the route towards
building the first post-classical quantum computer. Re-

cently, there have been numerous elementary experimen-
tal demonstrations of boson sampling using three photons
[9–12]. Also, there have been proposals for scalable im-
plementations of boson sampling in optical systems and
ion traps [13–16]. As a first application of the model, bo-
son sampling (with a suitably modified input state) has
been shown to yield a practical tool for difficult molecular
computations to generate molecular vibronic spectra [17].

Recent research efforts include showing certification of
true boson sampling to distinguish it from uniform sam-
pling, classical sampling, or random-state sampling [18–
22]. The impact of mode-mismatch, spectra of the bosons,
and spectral sensitivities of detectors in realistic im-
plementations of boson sampling have also been stud-
ied [23, 24]. This has further paved the way to a theory
of interference with partially indistinguishable particles,
where any realistic imperfections in the source and de-
tectors can be completely characterized [25, 26].

In other theoretical considerations, the surprising dis-
covery of the complexity of sampling Fock states via lin-
ear optics opened inquiry into the complexity of other
linear optical systems. The obvious open question is ‘are
there other quantum states of light, other than Fock
states, which also yield computationally hard sampling
problems?’ To this end, several other quantum states
of light have been shown to implement likely-hard sam-
pling problems similar to AA’s original boson sampling.
Gaussian states, when measured in a Gaussian basis, are
known to be classically simulatable [27, 28]. Sampling
Gaussian states in the photon-number basis, however,
has attracted recent interest in light of boson sampling.
It has been shown that sampling some Gaussian states
with photon number counting can be just as hard as bo-
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son sampling [14]. More specifically, while thermal state
inputs can be simulated efficiently by a classical algo-
rithm [29], sampling two-mode squeezed vacuum states
can be hard to simulate [14, 30]. Photon-added coher-
ent states have been shown to implement computation-
ally hard sampling problems in the photon number ba-
sis in the low amplitude limit [31]. Sampling generalized
cat states (arbitrary superpositions of coherent states,∑
i λi|αi〉) have also been considered [32] and shown to be

computationally hard for sampling in the photon-number
basis.

Here we will demonstrate that, in general, boson sam-
pling using photon-added or -subtracted squeezed vac-
uum (PASSV) states and parity measurements yields a
computational problem of equal complexity to Fock state
boson sampling in all parameter regimes. Importantly,
because the mapping is exact, AA’s robustness result for
approximate boson sampling holds. Note that experimen-
tal implementation of PASSV sampling is not the focus
of our result, as doing so is more difficult than single
photon boson sampling. Our goal is to provide clarity
on the theory of classifying the sampling complexity of
quantum states. In particular, we wish to demonstrate
that Fock states are not unique – on the contrary, there
are a plethora of other quantum states of light which
yield sampling problems with similar complexity to bo-
son sampling. Nevertheless, we believe it is still important
to show that such a device is still physically realizable.

PASSV SAMPLING

In order to show that the complexity of the boson sam-
pling model introduced by AA also extends to PASSV
sampling, we prove that it implements the same logical
problem, i.e. that the output of the device corresponds to
the same matrix permanent sampling problem as in AA
boson sampling. The advantage of this method is that it
allows us to avoid the very lengthy analysis comprising
AA’s original complexity proof, yet we can still apply all
of the same results. However, one must be careful to show
equivalence throughout the problem.

Both models employ a similar general setup; m optical
input modes are fed into a passive, linear interferome-
ter and the resulting output is measured in each mode,
with the joint distribution of the measurement constitut-
ing one sample. However, the details differ in each step
(which we will classify by input, evolution, output,
and measurement). To carefully guide the reader, we
will first provide the details of each step of both models
head-to-head, discussing the relevant differences. We will
then proceed to show that the two models implement the
same sampling problem, and thus exhibit the same com-
putational complexity. For consistency and simplicity, we
will consider the case of photon-added states throughout
the comparison.

Contrast with Fock State Boson Sampling

We now provide a detailed comparison for each step of
the model.
Input: AA’s Fock state boson sampling begins by

preparing the first n modes of a passive linear optics
interferometer with single photons and the remaining
m− n modes with vacuum states, where m = Ω(n2) (i.e.
m is asymptotically bounded below by some positive con-
stant times n2). As conjectured by AA, this requirement
ensures that the probability of more than one photon
arriving at a given output mode is small (sometimes re-
ferred to as the ‘bosonic birthday paradox’). A stronger
requirement of m = Ω(n6) will suffice if one does not
wish to adopt this additional conjecture. The input state
is thus,

|ψ〉AA
in = |11, . . . , 1n, 0n+1, . . . , 0m〉

= â†1 . . . â
†
n|01, . . . , 0m〉, (1)

where subscripts denote mode number and â†i is the pho-
tonic creation operator on the ith mode.

In contrast, for PASSV boson sampling we prepare the
first n modes of a similar interferometer with PASSV
states and the remaining m− n modes with squeezed
vacuum (SV) states. We let the squeezing parameter ξ
be arbitrary, but ensure each mode has the same amount
of squeezing. In the case of photon-added states, the in-
put state is thus,

|ψ〉SVin = â†1Ŝ1(ξ) . . . â†nŜn(ξ)Ŝn+1(ξ) . . . Ŝm(ξ)|01, . . . , 0m〉
= â†1 . . . â

†
n|ξ1, . . . , ξm〉, (2)

where we have abbreviated Ŝi(ξ)|0i〉 = |ξi〉 and again
the subscript indicates mode number (not separate vari-
ables). The state in Eq.(2) is not normalized, but this
can be corrected by considering the state N|ψ〉SVin where

N =
[√

1 + sinh2(ξ)
]−n

. (3)

Since the normalization does not affect our result, we
leave it out of subsequent equations for simplicity. Here,

Ŝ(ξ) = exp

[
1

2
(ξ∗â2 − ξâ†2)

]
, (4)

is the squeezing operator and â† and â are the photon
creation and annihilation operators respectively. In the
Fock basis, if ξ = reiθ, then Ŝ(ξ)|0〉 = |ξ〉 has the repre-
sentation [33],

|ξ〉 =
1√

cosh(r)

∞∑
m=0

(−1)m
√

(2m)!

2mm!
eimθ tanhm(r)|2m〉,

(5)
and thus the SV state contains only even photon-number
terms. From the action of the creation or annihilation
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operator, a PASSV state then contains only odd photon-
number terms. In the limit of vanishing squeezing, the SV
state approaches the vacuum state, limξ→0 |ξ〉 = |0〉, and
the photon-added SV state approaches the single-photon
state, limξ→0 â

†|ξ〉 = |1〉. Thus, we see that in the limit
of vanishing squeezing, photon-added SV boson sampling
reduces to ideal Fock state boson sampling.

Photon-added SV states may be prepared by mixing a
SV state (obtained from a degenerate parametric down-
converter) with a single-photon state on a low reflectivity
beamsplitter and post-selecting upon detecting the vac-
uum state in the reflected mode. Successful post-selection
heralds the preparation of the photon-added SV state in
the other mode. Thus, the preparation scheme is non-
deterministic, but may be performed offline via trial-and-
error in advance, enabling efficient state preparation. The
preparation scheme is shown in Fig. 1. Photon-subtracted
SV states may be prepared similarly by sending in a
squeezed state and a vacuum state to the inputs and
post-selecting on one photon in the reflected mode.

FIG. 1: Preparation of a photon-added SV state. A SV state
is mixed with a single-photon state on a low reflectivity beam-
splitter. The reflected mode is detected, and upon measuring
the vacuum state we herald the preparation of the photon-
added SV state in the other mode. The process is highly non-
deterministic, but can be performed offline in advance.

Evolution: In both models, the input state is fed into
a passive linear optics interferometer consisting of beam-
splitters and phaseshifters, which in general transforms
the creation operators according to a linear map,

Û â†i Û
† →

∑
j

Ui,j â
†
j , (6)

where Û is an m × m matrix. For AA boson sampling,
ÛAA is chosen to be a Haar-random, unitary matrix.

Unlike the Fock state model, for PASSV boson sam-
pling we consider an interferometer consisting of real
beamsplitters which implements an orthogonal matrix
(also chosen to be Haar-random). Thus, for Fock state
boson sampling ÛAA ∈ SU(m), whereas for PASSV bo-
son sampling ÛSV ∈ SO(m). Reck et al. showed that for
both cases, any m×m unitary or orthogonal matrix can
be implemented with at most O(m2) optical elements,
and an efficient algorithm for finding the decomposition
exists [34].

It is important to discuss the complexity of choosing
an orthogonal matrix instead of a unitary because one
should be concerned with the possibility of choosing a
subset of matrices from SU(m), whose permanent is ef-
ficiently simulatable by a classical computer. If this were
the case, the result would not be interesting, since the
novelty of boson sampling is that it simulates a system
which is classically intractable. We will later prove this is
not the case and that, in fact, the associated complexities
are equivalent.
Output: The output state for the Fock state model

after passing through the interferometer is thus,

|ψ〉AA
out = ÛAA|ψ〉AA

in

= ÛAA

[
â†1 . . . â

†
n|01, . . . , 0m〉

]
=
[
ÛAA(â†1 . . . â

†
n)Û†AA

]
ÛAA|01, . . . , 0m〉

=
[
ÛAA(â†1 . . . â

†
n)Û†AA

]
|01, . . . , 0m〉, (7)

where the last equality holds because UAA|0〉 = |0〉, i.e.
UAA represents passive optics elements and hence cannot
generate new photons. Since the unitary transforms the
creation operators according to Eq. 6, the output of the
interferometer can also be represented as,

|ψ〉AA
out =

∑
S

γS |S1, . . . , Sm〉, (8)

where S is an output configuration of the n photons with
Si photons in the ith mode, and γS is the correspond-
ing amplitude. Note that γS ∝ Per(US), where US is an
n× n sub-matrix of ÛAA given as a function of the con-
figuration S. The number of distinct configurations is

|S| =
(
n+m− 1

n

)
, (9)

which can be easily verified to be the number of ways
to configure n indistinguishable photons into m distinct
modes. This expression grows superexponentially with n
from the earlier requirement that m = Ω(n2).

For PASSV boson sampling, we can use the same tech-
nique as in Eq. 7, such that the output state is,

|ψ〉SVout = ÛSV|ψ〉SVin
=
[
ÛSV(â†1 . . . â

†
n)Û†SV

]
ÛSV|ξ1, . . . , ξm〉. (10)

It was shown by Jiang et. al [30] that for a pure prod-
uct state input to a linear optical network, the output
is entangled unless the input is either a tensor product
of coherent states or a tensor product of squeezed states
(with the same squeezing), provided that the network
does not mix the squeezed and anti-squeezed quadra-
tures. The latter condition is equivalent to the network
comprising real beamsplitters. This condition is satisfied
since ÛSV ∈ SO(m) and thus,

|ψ〉SVout =
[
ÛSV(â†1 . . . â

†
n)Û†SV

]
|ξ1, . . . , ξm〉. (11)
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Fock state boson-sampling

PASSV state boson-sampling

Number-resolved or
on/off  photodetection

Parity measurement

FIG. 2: (top) Fock state boson sampling. We feed an m-
mode linear optics interferometer with n single photons and
m− n vacuum states. Following evolution, the state is sam-
pled via coincidence number-resolved photodetection. (bot-
tom) PASSV boson sampling. We prepare n PASSV states
and m− n SV states. Following evolution we perform coinci-
dence parity measurement.

The leading operator corresponds to a configuration of n
creation operators as in Eq. 7. The output for a photon-
added SV state input is therefore of the form,

|ψ〉SVout =
∑
S

γ′S

[
(â†1)S1 . . . (â†m)Sm

]
|ξ1, . . . , ξm〉, (12)

where,

γ′S =
γS√

S1! . . . Sm!
=

Per(US)√
S1! . . . Sm!

, (13)

but in the binary regime γ′S = γS . Recall from Eq. 5 that
squeezed states represented in the Fock basis have only
even photon-number terms. Thus, for a configuration S
where mode i does not have a creation/annihilation op-
erator acting on it, mode i is a superposition of only
even photon number states, whereas if S applies a cre-
ation/annihilation operator to mode i it contains only
odd photon-number terms.

For photon-subtracted SV states the output is of the
same form, replacing â†i with âi, but γS will now relate

to Û†SV instead of ÛSV , which is also Haar-random, and
thus has the same computational complexity. We exclude

the case of the photon-subtracted states when ξ = 0 since
â|0〉 = 0.
Measurement: The last step of boson sampling is

to measure the output distribution. For Fock state bo-
son sampling, this may be implemented via number-
resolved photodetection. However, since m = Ω(n2),
Si = {0, 1} ∀ i in Eq. 8, on/off (or ‘bucket’) detectors are
sufficient to recover the configuration S. Repeating the
sampling procedure multiple times yields partial informa-
tion of the joint photon-number distribution PS = |γS |2,
which was shown by AA to be a computationally complex
sampling problem.

For PASSV boson sampling, we perform a parity mea-
surement capable of distinguishing only between odd
and even photon-number. Such measurements are char-
acterised by the measurement operators,

Π̂+ = |0〉〈0|+ |2〉〈2|+ |4〉〈4|+ . . . (14)

Π̂− = |1〉〈1|+ |3〉〈3|+ |5〉〈5|+ . . .

Most simply, one could implement this measurement
using photon-number-resolving detectors. Measuring an
even photon-number at output mode i then implies that
there was no creation/annihilation operator associated
with that mode, whereas measuring an odd photon-
number implies that there was. This measurement thus
perfectly recovers the configuration S, and hence contin-
ued sampling yields the desired distribution. Since the
squeezing parameter ξ has no effect on the parity of the
state, the sampling amplitudes are completely indepen-
dent of the squeezing.

More formally, in standard boson sampling we are sam-

pling from a set of strings si = {s(1)i , . . . , s
(m)
i }, where s

(j)
i

is the sampled photon-number in the jth mode associated
with string i, of which there are an exponential number.

In the limit of large m, s
(j)
i ∈ {0, 1}. On the other hand,

with PASSV boson sampling we are sampling from the
same set of strings, with the same probability distribu-

tion, where now s
(j)
i ∈ {−1, 1}. This proves that PASSV

boson sampling implements the same logical sampling
problem as Fock state boson sampling, independent of
the squeezing parameter.

Complexity Concerns

We previously mentioned, while discussing the evolu-
tion of the input state, whether choosing an orthogonal
matrix has any implications for the complexity of PASSV
sampling. Since we have now shown that the PASSV
model samples permanents of submatrices in the same
way as Fock state sampling, this is the only barrier to
completing our proof that the two models are in the same
complexity class.

The first consideration is whether or not a Haar-
random matrix in SO(m) might have an efficiently com-
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putable exact or approximate permanent. The exact per-
manent case is known to be #P-complete even for binary
entries, Ui,j ∈ {0, 1} [35]. There is also a known algorithm
for efficiently approximating a permanent if the matrix
has entries consisting of only non-negative real numbers.
In the same work, it is shown that for a matrix with
even a single negative entry, an efficient approximation
algorithm would allow one to compute an exact {0, 1}-
permanent efficiently [36]. Although having to compute a
difficult permanent is a necessary but not sufficient con-
dition for computational hardness, since SO(m) is con-
sidered to be universal for linear optics [37], there is no
such complexity gap between unitary and orthogonal ma-
trices.

More concretely, it has been shown that SU(m) ⊂
SO(2m) [38], i.e. for a 2m-mode interferometer, the set
of all orthogonal transformations includes all unitary m-
mode transformations as a subgroup. Thus, the complex-
ity of sampling the output from a boson sampling device
implementing an arbitrary matrix from SO(2m) is at
least as hard as sampling matrices from SU(m), and for
only a linear cost in the number of modes. Since trivially
SO(2m) ⊂ SO(2m+ 1), the same complexity extends to
an odd number of modes as well. Note that this also car-
ries the implication that Fock state boson sampling itself
remains hard under orthogonal transformations.

We can now conclude that PASSV boson sampling is
in the same complexity class as the Fock state boson
sampling proposed by AA. Suppose that A is some com-
plexity class containing Fock state boson sampling. Since
the output of PASSV boson sampling is completely in-
dependent of the squeezing parameter ξ, we may assume
without loss of generality that ξ = 0. In this limit, how-
ever, |ξi〉 = |0i〉 and thus, by construction, any instance
of PASSV boson sampling reduces to an instance of Fock
state boson sampling since SO(m) ⊂ SU(m). Thus, the
class A also contains PASSV boson sampling. Conversely,
suppose B is some complexity class containing PASSV
boson sampling. Again choosing ξ = 0, the inclusion
SU(m) ⊂ SO(2m) similarly implies B also contains Fock
state boson sampling.

DISCUSSION

Our result can be distilled to a relatively simple idea
which is most evident in light of Eq. 7, where the ket
acts as a ‘background’ signal whose form is invariant un-
der the evolution of ÛSV . Since the leading operator in
Eq. 11 takes exactly the same form as Eq. 7, we would like
the ket to also be independent of the choice of ÛSV un-
der some measurement, while still being distinguishable
from a state which has an added or subtracted photon.
It may be possible to use the same technique to charac-
terize other states which implement a logically equivalent
classically intractable sampling problem. A desirable goal

would be to prove an even more experimentally friendly
set of states and measurements that implements the same
problem.

One criticism of PASSV boson sampling is that the use
of photon-number resolving detectors to implement the
parity measurement is experimentally harder than on/off
detection. Whilst this is true, one does not need to dis-
tinguish between arbitrarily large even and odd photon-
number Fock states. For any given ξ and error rate, one
can truncate the maximum number of necessarily distin-
guishable Fock states. Indeed, PASSV boson sampling
can be regarded as a generalization of Fock state boson
sampling, since in the limit of small squeezing (ξ → 0),
the SV reduces to a vacuum state and an on/off detec-
tor suffices. For large squeezing, additional experimental
hurdles may arise in reducing squeezing parameter er-
ror and in the increased sensitivity of squeezed states
to noise. We do not address these issues here. Rather,
despite PASSV states being more difficult to experimen-
tally prepare, our goal is to theoretically demonstrate the
non-uniqueness of Fock states for computationally hard
sampling problems.

After having spent some effort showing that orthogonal
matrices are sufficiently complex for PASSV sampling, a
natural question is whether or not choosing a unitary ma-
trix could change the complexity of the sampling prob-
lem. Because Eq. 11 no longer holds, we cannot establish
a straightforward relationship between the output proba-
bilities and submatrix permanents. Conventional wisdom
seems to suggest that the problem would not become eas-
ier. In the limit of zero squeezing, we know there is no
complexity divide because PASSV sampling reduces to
Fock state sampling. Thus, if a complexity divide did ex-
ist, then we would expect a complexity phase transition
at ξ = 0. It may be possible to construct a more com-
plicated measurement scheme which produces the same
sampling probabilities.

We have shown a direct mapping between Fock state
boson sampling and PASSV boson sampling. An open
question in the field is ‘what classes of quantum states
of light yield hard sampling problems with linear op-
tics?’ This result, in conjunction with previous results on
photon-added coherent states and generalized cat states,
demonstrates that there is a large class of non-Fock
states, which yield sampling problems of equal compu-
tational complexity.

Importantly, unlike previous work on non-Fock state
boson sampling, PASSV boson sampling operates in all
parameter regimes. Thus there are no bounds on the
amount of squeezing and no approximations are made.

Whilst PASSV boson sampling may be experimentally
more challenging than Fock state boson sampling, this
result certainly confirms that there is nothing unique
about the computational complexity of Fock states. In
fact, there is a plethora of other quantum states exhibit-
ing similar sampling complexity, and computational com-
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plexity appears to be a ubiquitous property of sampling
quantum states of light.

We hope that future research will enable us to fully
characterize what it is that makes a quantum optical sys-
tem computationally hard, and what classes of states are
required for computational complexity.
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