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Although the simulation of quantum chemistry is one of the most anticipated applications of
quantum computing, the scaling of known upper bounds on the complexity of these algorithms is
daunting. Prior work has bounded errors due to Trotterization in terms of the norm of the error
operator and analyzed scaling with respect to the number of spin orbitals. However, we find that
these error bounds can be loose by up to sixteen orders of magnitude for some molecules. Further-
more, numerical results for small systems fail to reveal any clear correlation between ground state
error and number of spin orbitals. We instead argue that chemical properties, such as the maximum
nuclear charge in a molecule and the filling fraction of orbitals, can be decisive for determining the
cost of a quantum simulation. Our analysis motivates several strategies to use classical processing
to further reduce the required Trotter step size and to estimate the necessary number of steps, with-
out requiring additional quantum resources. Finally, we demonstrate improved methods for state
preparation techniques which are asymptotically superior to proposals in the simulation literature.

I. INTRODUCTION

The idea that the simulation of quantum systems
would be efficient on a quantum computer dates back to
Feynman’s original work on quantum mechanical com-
puters [1]. Almost a decade after Abrams and Lloyd [2]
demonstrated a scalable scheme for the quantum sim-
ulation of fermions, Aspuru-Guzik et al. [3] proposed
that these techniques could be used to efficiently deter-
mine the ground state energy of molecular Hamiltonians,
solving what chemists refer to as the electronic structure
problem. Since then, a great deal of work has focused on
specific strategies for the quantum simulation of quantum
chemistry. While most of these approaches are based on
a second quantized representation of the problem making
use of both phase estimation and Trotterization [3–13],
recently some have proposed alternative schemes such
as the quantum variational eigensolver [14], an adiabi-
atic algorithm [15] and an oracular approach based on
a 1-sparse decomposition of the configuration interaction
Hamiltonian [16]. In fact, quantum chemistry is such a
popular application that toy problems in chemistry have
been solved on a variety of experimental quantum in-
formation processors which include quantum optical sys-
tems [14, 17], nuclear magnetic resonance [18, 19] and
solid-state Nitrogen-vacancy center systems [20].

Recently, a series of papers [10–13] has provided im-
proved analytical and empirical bounds on the resources
required to simulate classically intractable benchmarks
using a quantum computer. While the initial findings in
[10] were pessimistic, improvements in both bounds and
algorithms introduced in [11] and [12] have reduced these
estimates by more than thirteen orders of magnitude for
simulations of Ferredoxin. The primary contribution of
[13] was to point out that in the limit of large molecules,
the use of a local basis can substantially reduce asymp-
totic complexity of these algorithms. In this paper we
build on the findings of [10–13] to offer new perspectives
regarding the scaling of the second quantized, Trotter-

ized, phase estimation algorithm for quantum chemistry.
In particular, we question a basic assumption implicit in
all of these works: that the Trotter error explicitly de-
pends on the number of spin orbitals being simulated.

Instead, we argue that chemical properties such as the
filling fraction of electrons in a given basis, the partic-
ular choice of orbital basis and the nuclear potential
play a more significant role in determining the Trotter
error than does the number of spin orbitals for small
molecules. We support these arguments with numerical
analysis based on the explicit computation of the Trot-
ter error operator derived in [12]. Additionally, we show
that classically tractable approximations to the ground
state wavefunction can be used to efficiently estimate the
Trotter error expected in a particular ground state sim-
ulation. This result is of significant practical importance
because without a procedure for estimating the Trotter
error, one must rely on analytical error bounds which (as
we show) tend to overestimate the ground state error by
many orders of magnitude. Finally, we show asymptot-
ically improved circuits for state preparation based on
these classical ansatz states.

A. The electronic structure problem

The electronic structure problem is to estimate the en-
ergy of electrons interacting in a fixed nuclear potential
to within an additive error of ε. This Hamiltonian may
be written as,

H = −
∑
i

∇2
ri

2
−
∑
i,j

Zi
|Ri − rj |

+
∑
i,j>i

1

|ri − rj |
(1)

where we have used atomic units, {Ri} denotes nuclear
coordinates, {ri} electronic coordinates, and {Zi} nu-
clear charge. Often times, the utility of these energies
is to provide Born-Oppenheimer surfaces for molecular
modeling at finite temperatures. Usually, chemists are
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interested in obtaining free energy landscapes which pro-
vide mechanistic insight into chemical events of signifi-
cant practical importance such as drug binding, catalysis
and material properties. These free energy landscapes
must be extremely accurate as chemical rates are expo-
nentially sensitive to changes in free energy. Under typi-
cal laboratory conditions of room temperature and atmo-
spheric pressure, “chemical accuracy” is required which
sets ε to the order of 10−3 hartree [21] where 1 hartree is

~2

mee2a20
and me, e and a0 denote the mass of an electron,

charge of an electron and Bohr radius, respectively.

We represent the electronic structure Hamiltonian in
second quantization [21] as this requires significantly
fewer qubits than approaches using the first quantized
Hamiltonian [22, 23],

H =
∑
pq

hpqa
†
paq +

1

2

∑
pqrs

hpqrsa
†
pa
†
qaras (2)

in which creation and annihilation operators act on a ba-
sis of orthogonal spin orbitals, {ϕi} and the one-electron
and two-electron integrals are

hpq =

∫
dσ ϕ∗p(σ)

(
−∇

2
r

2
−
∑
i

Zi
|Ri − r|

)
ϕq(σ) (3)

hpqrs =

∫
dσ1 dσ2

ϕ∗p(σ1)ϕ∗q(σ2)ϕs(σ1)ϕr(σ2)

|r1 − r2|
(4)

where σi contains spatial and spin degrees of freedom for
the electrons. The operators a†p and ar obey the fermionic
anti-commutation relations

{a†p, ar} = δp,r, {a†p, a†r} = {ap, ar} = 0. (5)

In principle, the number of spin orbitals used to repre-
sent a molecule is not a property of the molecule. How-
ever, the quantum chemistry community has certain con-
ventions (based on periodic trends) for the number of spin
orbitals that should be used for each atom in the period
table, depending on the desired level accuracy in the cal-
culation. In a minimal basis, first period atoms receive
two spin orbitals, second period atoms receive 10 spin
orbitals and third period atoms receive 18 spin orbitals.
The reasoning behind this scheme is that the most impor-
tant orbitals are those which have a principal quantum
number less than or equal to that of the highest occupied
orbital according to Hund’s rules.

In addition to choosing a spatial basis, one must choose
an orbital basis that associates orthogonal spatial func-
tions constructed from the spatial basis, with the second
quantized sites. Throughout this paper we investigate
three such orbital basis sets: the “local basis” is the
set of orthogonal atomic orbitals discussed in [13], the
“canonical basis” is the Hartree-Fock molecular orbitals,
and the “natural basis” is that which diagonalizes the
one-electron density matrices associated with the exact

ground state1. It is worth pointing out that the canon-
ical orbitals are the natural orbitals of a Hartree-Fock
calculation using a single determinant.

From Eq. (2), we see that the number of terms in the
Hamiltonian scales as Θ

(
N4
)

2. However, McClean et al.
[13] recently pointed out that the basis functions decay
super-exponentially with distance in a local basis. This
means that the integrals in Eq. (3) and Eq. (4) will be
negligibly small for many of the orbitals which in turn
allows the number of terms in the Hamiltonian to be
truncated to Õ

(
N2
)

or Õ (N) depending on the size and
geometry of the molecule. All of the particular bench-
marks studied in this paper involve less than four atoms
and so we consider the number of non-negligible terms in
the Hamiltonian to scale as Θ(N4), even in a local basis.

B. Quantum simulation of quantum chemistry

The electronic structure problem is classically in-
tractable to current methods even after discretizing the
Hilbert space. This intractability can be understood as a
consequence of the exponential size of the Hilbert space
for the second quantized Hamiltonian. Similarly, exist-
ing methods such as configuration interaction, require
consideration of a number of electronic configuration
states that increases exponentially as the approximation
becomes more exact. Quantum simulation offers a way
to circumvent these challenges by directly mapping
the chemical system onto a set of qubits that can be
manipulated using a quantum computer. The particular
problem that we focus on is the problem of computing
the ground state energy of the system. Other important
physical quantities such as dipole moments can be found
by evaluating their expectation value with respect to
the prepared state. The simulation problem that we
consider is as follows.

Problem: Assume that the user is provided with a
classical database containing hpq and hpqrs for a molecule
with N spin orbitals and a blackbox state preparation al-
gorithm that prepares an approximation |0̃〉 to the ground
state |0〉 such that |〈0̃|0〉|2 ∈ Ω

(
poly

(
N−1

))
. Design a

quantum circuit that uses these elements to estimate the
ground state energy of Eq. (2) within additive error ε us-
ing a minimal expected number of gates and qubits.

1 The natural basis can be well approximated without performing
an exact calculation by repeating truncated configuration inter-
action calculations from reference states defined using the natural
orbitals associated with a previous solution.

2 We use the typical computer science convention that f ∈ Θ(g),
for any functions f and g, if f is asymptotically upper and lower
bounded by a multiple of g, O indicates an asymptotic upper
bound, Õ indicates an asymptotic upper bound up to polylog-
arithmic factors, Ω indicates the asymptotic lower bound and
f ∈ o(g) implies f/g → 0 in the asymptotic limit.
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Most proposals for quantum computer simulation of
chemical systems use similar strategies to solve this prob-
lem. The first step involves translating the basis of the
second quantized Hamiltonian to that of the quantum
computer. The standard way to do this is to use the oc-
cupation number basis in which individual quits encode
the occupation of a spin orbital. For example, the state
|00011〉 would refer to an electronic state where the first
two spin orbitals are occupied and the remaining three
spin orbitals are unoccupied.

Although representing states is trivial, representing
the Hamiltonian is not. The reason is that, although
it may seem that the creation and annihilation operators

a†i and ai are translated to (Xi− iYi)/2 and (Xi + iYi)/2
respectively, the resulting operators do not obey the
anti-commutation relations in Eq. (5). This problem
is addressed by using either the Jordan-Wigner trans-
formation [3, 24] or the Bravyi-Kitaev transformation
[9, 25] to modify these operators to have the correct
anti-commutation relations. Importantly, the operators
that result from using either of these representations are
tensor products of Pauli operations. While the number
of such terms in the transformed Hamiltonian scales as
O(N4) using both approaches, the locality (i.e. many-
body order) of these terms scales as O (N) under the
Jordan-Wigner transformation and O (logN) under the
Bravyi-Kitaev transformation [9].

Since exponentials of a polynomial number of Pauli op-
erators are known to be efficiently simulatable, e−iHt |ψ̃〉
can be implemented using a polynomial number of gates
using a quantum computer. There are many different ap-
proaches that can be used to achieve this and the major-
ity of these rely on Trotter decompositions, which we will
discuss in more detail later. However, each of these meth-
ods solves a dynamical simulation problem and does not
directly solve the ground state energy estimation prob-
lem. The phase estimation algorithm provides the con-
nection needed to relate the eigenvalue estimation prob-
lem to a dynamical simulation problem.

The quantum phase estimation algorithm (PEA) uses a
quantum computer to efficiently estimate energies from
the phases {θn (t)} accumulated during time evolution
under a propagator UH (t) associated with the Hamilto-
nian of interest H; i.e.

eiHt |n〉 = UH (t) |ψn〉 = eiθn(t) |ψn〉 (6)

θn (t) = (Ent) mod 2π (7)

where {|ψn〉} and {En} represent eigenstates and eigen-
values of H. If we initialize a quantum register in a state
|ψ̃0〉 then time evolution under a static Hamiltonian pro-
duces the superposition,

UH (t) |ψ̃0〉 =

2N−1∑
n=0

eiθn(t) |ψn〉〈ψn|

 |ψ̃0〉 . (8)

Measuring the phase of this superposition projects the
system to state |ψ0〉 with probability |〈ψ0|ψ̃0〉|2. Thus,
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FIG. 1. Spin-orbitals versus ground state Trotter error for
various molecular benchmarks in three different basis sets.
Despite analytical predictions to the contrary (in prior works),
it would appear that no clear relation holds between the Trot-
ter error induced on the ground state and the number of spin
orbitals for these benchmarks.

under the assumptions of our problem, at most a poly-
nomial number of repetitions of the phase estimation al-
gorithm will be needed to find the ground state energy.

There are obviously two contributions to the cost of
solving the electronic structure problem via quantum
computing: (a) the overlap |〈ψ0|ψ̃0〉|2 and (b) the cost of
simulating the dynamics of the system. Since the overlap
is independent of the simulation method used (to second-
order in perturbation theory) most work on the topic has
focused on reducing the latter cost. We discuss both of
these issues in the following.

Our main focus is on Trotter-Suzuki based meth-
ods, which involve a discretization of the time evolution
known as Trotterization. Trotterization approximates
UH (t) as a series of time steps known as “Trotter slices”
during which only one of the Hamiltonian terms is actu-
ally active. A Trotter series containing µ Trotter slices is
said to have a “Trotter number” of µ and the error in this
approximation, which arises from non-commutativity of
the Hamiltonian terms, vanishes as µ → ∞. For a fixed
order Trotter-Suzuki formula, each Trotter slice contains
a number of gates that is proportional to the number of
terms in the Hamiltonian, m. The value of m depends
on basis and molecular size and its scaling with N ranges
from Õ (N)− Õ

(
N4
)
. Since the the total complexity of

the quantum simulation circuit for chemistry is Õ (mµ),
understanding how both of these terms scales is vital for
determining whether quantum chemistry will be viable
on small scale quantum computers.

The big question that several recent papers have at-
tempted to address is: “how does µ scale with N?” In-
deed, this issue is central to the optimizations introduced
in many of these simulation methods. Given the impor-
tance of this issue in the literature, the data in Figure 1
may come as a complete surprise. We see there that
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for modestly small molecules, the error in the second-
order Trotter-Suzuki formula does not have a clear func-
tional dependence on N . This is especially surprising for
cases of canonical and natural orbitals where there is lit-
tle evidence of even an increasing trend in the error as a
function of N . This lack of monotonicity is particularly
striking for the atoms N, O, F, Ne which show negli-
gibly small Trotter errors. In fact, for these molecules
(along with others such as Helium Hydride and Lithium
Hydride) µ = 1 or µ = 2 is sufficient to achieve chemical
accuracy despite the fact that their Hamiltonians contain
hundreds of non-commuting terms.

In order to understand why the Trotter error devi-
ates so strongly from prior expectations, we analyze a
leading order perturbative expression for the error in the
second-order Trotter formula. The insights gained from
this analysis raise an interesting point: although there
is not a strong correlation between N and the Trotter
error, other chemical properties play a decisive role in
the Trotter error. This forces us to reconsider how we
conceptualize the scaling of quantum chemistry simula-
tion relative to prior results in quantum simulation, e.g.
[2, 3, 11–13, 23, 26–29].

II. ANALYSIS OF TROTTER ERROR
OPERATOR

The second-order Trotter-Suzuki decomposition allows
us to approximate the propagator as a series of unitaries
corresponding to the individual Hamiltonian terms. In
particular, the second-order3 Trotter formula gives us,

UTS
H (∆t) ≡

m−1∏
α=0

Um−α

(
∆t

2

) m∏
α=1

Uα

(
∆t

2

)
(9)

where,

Uα

(
∆t

2

)
= e−iHα∆t/2. (10)

The second-order formula applies each unitary twice with
the second half of the Trotter series in reverse order of
the first half to cancel out error terms in the ground state
energy that would arise at first-order in ∆t. We use this
to make the approximation, valid for sufficiently small
values of ∆t, that

U = eiHt ≈
(
UTS (∆t)

)µ
, ∆t = t/µ. (11)

Poulin et al. [12] focus on bounding the error in this ap-
proximation with the Baker-Campbell-Hausdorff (BCH)

3 Note that in work that focuses on high-order Trotter-Suzuki for-
mulas Eq. (9) is often called the first-order Trotter Suzuki for-
mula because it is the lowest iteration order in Suzuki’s iterative
construction of high-order splitting formulas.

formula,

log
(
eXeY

)
= X + Y +

1

2
[X,Y ] (12)

+
1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] + ...

By recursively applying Eq. (12) to Eq. (9), the error
operator may be written as V =

∑∞
j=1 V

(j). The leading
order term in this expansion is,

V (1) = −∆2
t

12

∑
α≤β

∑
β

∑
γ<β

[
Hα

(
1− δα,β

2

)
, [Hβ , Hγ ]

]
(13)

with errors on the order of O
(
∆4
t

)
.

The leading order shift in the energy of the ith eigen-
state is given by non-degenerate perturbation theory as,

∆Ei = 〈ψi|V (1) |ψi〉+O
(
∆4
t

)
(14)

where H |ψi〉 = Ei |ψi〉. Solving the electronic structure
problem requires fixed precision in the energy, i.e. ∆E =
O (1). This suggests that we must shrink the time step
for larger problem instances in order to offset any increase
in Trotter error. In order to make the leading order shift
in the energy eigenvalue at most δ it suffices to take

µ=O

t
√√√√1

δ

〈∑
α≤β

∑
β

∑
γ<β

[
Hα

(
1− δα,β

2

)
, [Hβ , Hγ ]

]〉 .

(15)

Higher-order Trotter-Suzuki algorithms can be used to
reduce the scaling of µ; however they require a number of
gates that scales exponentially with the order of the Trot-
ter formula. This means that for many problems with
modest error tolerances, the second-order Trotter for-
mula Eq. (9) yields the most efficient results. Although a
similar expression based on degenerate perturbation the-
ory must be used for molecules near disassociation, in
most practical cases Eq. (15) will accurately predict the
required Trotter number in the limit of small δ.

In practice, it is difficult to determine precisely how
this error scales with problem size for real molecules. By
inspection of Eq. (13), a loose bound of µ = O

(
N5
)

is
obtained [12]. This bound is obtained by recognizing that
the double commutator sum in Eq. (13) contains O(N12)
terms but only O(N10) such terms are non–zero. In some
cases, such as large molecules represented in a local or-
bital basis, many of these interactions can be neglected
and the actual scaling of µ needed to achieve chemical
accuracy may be closer to µ = Õ

(
N3
)

or µ = Õ
(
N3/2

)
.

All of these scalings follow from worst case assumptions
about the error and liberal application of the triangle in-
equality. Such arguments are not sufficient to explain
the data in Figure 1 which does not show a clear depen-
dence of µ on N . We therefore focus in the remainder on
two quantities: (a) the error in the ground state energy
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and (b) the operator norm of the Trotter error operator.
While (a) is the best measure of the error in quantum
chemistry simulation, we also focus on (b) because it up-
per bounds (a) and because it can be well approximated
without diagonalizing the Hamiltonian.

In the numerics that follow we construct error opera-
tors by explicitly computing all O(N10) nonzero terms
in Eq. (13). Once all the terms in the error operator
are constructed, we simplify the resulting expression by
normal-ordering the result. Here normal-ordering refers
to a sorting process where any chain of creation and anni-
hilation operators that result from Eq. (13) are reordered
such that creation operators always occur at the left-
most part of the chain. This reordering is done by using
the anti-commutation relations in Eq. (5). For exam-

ple, a2a1a
†
1a
†
3 = a†1a

†
3a1a2 − a†3a2. These normal-ordered

terms are then grouped, allowing their actions on com-
putational basis states to be efficiently computed.

The Trotter scheme we investigate does not use the co-
alescing strategies introduced in [12], which would surely
lead to even more error cancellation. We use a minimal
spatial basis (STO-6G). The Trotter series is ordered in
the “interleaving” scheme introduced in [11] and PQRS
terms are ordered lexicographically. All molecular inte-
grals in this work were calculated at equilibrium config-
urations using the GAMESS electronic structure pack-
age [30, 31]. While computing the error operator is ef-
ficient, evaluating the error operator on an eigenstate of
the Hamiltonian cannot be performed in polynomial time
on a classical computer. Due to the expensive nature of
these calculations, we limit our investigation to bench-
marks containing less than twenty spin orbitals. We
study the scaling of the norm of the Trotter error op-
erator as this quantity is the focus of analytical bounds
introduced in [10] and [12]. Though the bounds in [12]
are based on a upper bound for the operator norm of the
error operator, here we use the exact value of ‖V (1)‖.

A. Comparison of norm of error operator and
ground state error

An important question to ask is, “how does the error in
the simulated ground state energy compare to that pre-
dicted by the norm of the error operator?” This is impor-
tant for two reasons. The first reason is that there can be
substantial cancellation in the sum implicit in Eq. (14).
This effect is also discussed in [12]. The second reason
is that the ground state may only have limited overlap
with the eigenstates of the error operator that have large
eigenvalues. We will discuss these two effects in detail
later, but for now it suffices to ask how substantial the
differences between the two measures are.

Figure 2 shows that substantial differences exist be-
tween the computed Trotter error and the norm of the
error operator. In particular, for O, F and Ne these dis-
crepancies can be as large as sixteen orders of magni-
tude. Other molecules, such as H2O and HF differ by
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FIG. 2. A comparison between the norm of the error opera-
tor and the error induced in the ground state. Notice that in
many cases the basis of natural orbitals have the lowest Trot-
ter error (especially for examples with large Trotter error).

only two orders of magnitude. This shows that existing
estimates of the error can ludicrously overestimate the
error in Trotter Suzuki formulas if the properties of the
ground state are not also taken into account. Similar
comparable results have also been observed for random
many-body Hamiltonians [32].

To see this, let us consider Ne. By the convention for
second-period atoms, Ne is given 10 spin orbitals in a
minimal basis but it also has 10 electrons. This means
that all of its spin orbitals will be occupied, i.e. |ψ0〉 =

|1〉⊗10
. If we consider the action of a single normal-

ordered term from Eq. (14), αa†p1 · · · a†p5aq1 · · · aq5 , then

we see that 〈ψ0|αa†p1 · · · a†p5aq1 · · · aq5 |ψ0〉 = 0 unless
{p1, . . . , p5} = {q1, . . . , q5} up to permutations. Thus,
the vast majority of the terms present in the error oper-
ator will evaluate to zero, irrespective of the magnitude
of their coefficients. A similar argument can be made for
F and O except that the ground state will no longer pre-
cisely be the Hartree-Fock state and instead will be a lin-
ear combination of computational basis states. Nonethe-
less, it is easy to see that the vast majority of these ex-
pectation values will be zero for these highly constrained
systems. We therefore expect from this argument that
molecules that have spin orbitals that are nearly fully
occupied will have abnormally low error compared to
molecules that are half filled where the dimension of the
space is maximal for a given number of basis functions.
This not only justifies the shockingly small error in N,
O, F, and Ne but also explains why only considering the
norm of the error operator obscures this trend.

For most benchmarks there is still evidence of corre-
lation between the norm of the error operator and the
Trotter error. This means that trends in the norm of
the error operator are often reflected in the simulation
error. As we have seen, the properties of the molecules
in question can change the nature of this relationship.
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Basis Type Orbitals error / norm

STO-6G local 4 0.2063

3-21G local 8 0.0568

6-31G local 8 0.0592

6-31++G local 12 0.0328

STO-6G canonical 4 0.1131

3-21G canonical 8 0.0231

6-31G canonical 8 0.0242

6-31++G canonical 12 0.0108

STO-6G natural 4 0.1131

3-21G natural 8 0.0472

6-31G natural 8 0.0547

6-31++G natural 12 0.0194

TABLE I. Ratio of ground state error to error operator norm
for molecular hydrogen in various basis sets.

B. Dependence on basis

In addition to showing that Trotter error in the ground
state is usually substantially less than the error operator
norm, Figure 2 suggests that the error is also basis de-
pendent. While previous works have focused on the local
and canonical basis sets, this figure suggests that using
natural orbitals can often lower Trotter error by several
orders of magnitude relative to a local orbital basis.

Furthermore, we argue that the discrepancy between
error norm and ground state error increases with the
number of spin orbitals to such an extent that the for-
mer should not be used to make arguments about the
asymptotic scaling of the latter. One can always add
more spin orbitals to a molecular Hamiltonian but given a
reasonable orbital basis, the ground state and physically
meaningful excited states will have increasingly limited
occupancy in high energy orbitals. In this context, the
energy of an orbital is understood to mean the energy of
a single electron occupying that orbital in the absence of
other electrons (appropriate for atomic orbitals) or in the
presence of the average density of all other electrons (ap-
propriate for the canonical orbitals). Additionally, the
natural orbital basis is known to have the property that
states with an odd number of excitations from ground
state reference often have negligible overlap with the ex-
act ground state [33].

While the error operator will inevitably contain many
terms involving excitations to and from these high energy
spin orbitals, eigenstates of physical interest (e.g. the
ground state) are superpositions of configurations which
have a limited number of excitations. Accordingly, terms
involving combinations of high energy orbitals are not
expected to significantly contribute to the error induced
in relevant eigenstates despite increasing the norm of the
error operator. This principle is demonstrated in Table I
which shows the ratio between ground state error and
error norm for molecular hydrogen in various basis sets.
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of a positive slope appears to be a symptom of increasing
nuclear charge as the number of spin orbitals increase. Red
dots are atoms and blue dots are molecules.

C. Dependence on nuclear charge

Figure 3 indicates that Trotter error norm corre-
lates especially well with the maximum nuclear charge,
as further demonstrated in Figure 4. The local basis
is formed from the set of orthogonal atomic orbitals
which are obtained for molecules using Löwdin symmet-
ric orthogonalization on the original non-orthogonal local
Gaussian orbitals [13]. These Gaussian basis functions
are constructed as approximations to eigenfunctions of
Hydrogen-like systems, with some fitting adjustments.
As such, we can determine the scaling behavior by consid-
ering the eigenfunctions of Hydrogen-like systems which
are simple enough to permit analytical determination of
how each term in the Hamiltonian will scale with nu-
clear charge. We begin by writing the eigenfunctions of
a single electron in the potential of a point charge Z in
a convenient way,

ψn`m (ρ, θ, φ) = (16)√(
2Z

n

)3
(n− `− 1)!

2n (n+ `)!
e−

ρ
n

(
2ρ

n

)`
L2`+1
n−`−1

(
2ρ

n

)
Y m` (θ, φ)

where ρ = rZ, L2`+1
n−`−1

(
2ρ
n

)
is a generalized Laguerre

polynomial of degree n−`−1, and Y m` (θ, φ) is a spherical
harmonic of degree ` and order m. With the convention,

ϕp (σi) = ψp (ρi, θi, φi)χ (si) ∝ Z3/2 (17)

dσi =
ρ2
i dρi
Z3

sin (θi) dθi dφi dsi ∝ Z−3 (18)

∇2 = Z2

(
∂2

∂ρ2
+

2

ρ

∂

∂ρ

)
+

Z2

ρ2 sin2 (θ)

∂2

∂φ2

+
Z2

ρ2 sin2 (θ)

∂2

∂φ2
∝ Z2 (19)
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a molecule when using a local basis of atomic orbitals. The
black line is the line of best fit for a Z6

max scaling.

where χ (si) is a spin assignment and σ represents all
degrees of freedom for an electron, we rewrite Eq. (3)
and Eq. (4) in terms of ρ, assuming a single nuclei,

hpq =

∫
dσ ϕ∗p(σ)

(
−∇

2

2
− Z2

ρ

)
ϕq(σ) (20)

hpqrs =

∫
dσ1 dσ2

ϕp (σ1)ϕq (σ2)ϕs (σ1)ϕr (σ2)

|ρ1 − ρ2|/Z
. (21)

For both integrals, factors of Z from the differential vol-
ume elements dσ cancel with factors of Z from the spin
orbitals ϕ and we find that,

|hpq| = Θ
(
Z2
)

(22)

|hpqrs| = Θ (Z) . (23)

Thus, it is clear that we can upper bound the scaling
of individual Hamiltonian terms with nuclear charge as
O
(
Z2

max

)
. While this result is rigorous only when the

orbital basis is the basis of true atomic orbitals, we expect
qualitatively similar behavior in other bases. Assuming
the hpq terms dominates the error in the Trotter formula
then Eq. (13) implies that the Trotter error should scale
as O(Z6

max). This scaling is qualitatively consistent with
the empirical scaling in Figure 4 which fits Z6

max scaling
to the norm of the error operator with an r2-value of
0.994. Comparable results to this scaling have also been
observed in diffusion Monte Carlo algorithms [34, 35].

These results imply that if an atomic basis is used
then the error in the second-order Trotter-Suzuki formula
scales at most as

‖V (1)‖ ∈ O
(
N4Z6

max +N10Z3
max

)
. (24)

This result is a direct consequence of bounds on the
Trotter-Suzuki error in [11] and the observation that dou-
ble commutators of the one- and two-body terms produce
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FIG. 5. The norm of the error operator appears also well
correlated with the maximum nuclear charge in a molecule
when using the canonical basis of molecular orbitals. The
black line is a least squares fit to the data which is roughly
consistent with a Z5

max scaling.

at most N4 and N10 terms respectively. This implies
that the computational complexity of performing the
simulation on an arbitrary state, given fixed error toler-

ance of chemical accuracy, is O(N4(N2Z3
max +N5Z

3/2
max)).

However, our numerical results are consistent with an
O(N4Z3

max) which suggests that this scaling may be
loose. It also important to note that the gate depth
can be further reduced by using interleaving and nest-
ing as per [11], which is significant when the algorithm is
implemented on systems where quantum operations can
be executed in parallel. It is also worth noting that the
one-body terms dominate the two-body terms in every
numerical example that we considered. Larger molecules
with more hpqrs terms may lead to Trotter errors that
scale as O(Z3

max) rather than O(Z6
max). More extensive

numerical results may be needed to determine the con-
ditions under which the two-body terms asymptotically
dominate the one-body terms (if such conditions exist).

Figure 5 shows that these error estimates are pes-
simistic for the molecules considered when using the
canonical basis. While the error norm is still strongly cor-
related to nuclear charge, unlike the scaling in the local
basis, the fit to a Z6

max scaling is less convincing. Instead,
the data empirically seems to follow a Z5

max scaling. In-
tuitively, this is easy to envision because the molecular
orbitals are inherently delocalized and thus it is natural
to expect that the maximum nuclear charge should make
less of an impact in this basis. We also see no evidence of
explicit scaling withN over this range in Zmax. It is inter-
esting to note that although the number of non-negligible
integrals in a local orbital basis can be quadratically or
quartically smaller than the size of an untruncated canon-
ical molecular orbital basis, the scaling with Zmax seems
to be better by a linear factor. This suggests interest-
ing trade-offs between the two methods and hints that
neither is intrinsically superior for quantum simulation.
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FIG. 6. This plot shows the coefficients of normal-ordered
terms in the error operator for water in a local basis as a
function of the orbitals on which they act. The coefficients of
the error terms are binned according to the orbitals involved
in the term. This plot shows the marginal distribution of the
magnitudes of those terms.

D. Dependence on orbital structure

The terms that appear in the error operator include
interactions between every orbital in the basis set. This
begs the question of whether terms in the Hamiltonian
that involve particular orbitals have larger contribution
to the error. In order to assess this, we compute the
error operator for a number of different molecules and
normal-order the resultant operator. We then sum the
magnitudes of every remaining term that either create or
annihilate an electron in each of the orbitals. An example
of this is provided in Figure 6, which shows the marginal
coefficient magnitudes of all terms in the error operator
(after normal-ordering) in terms of two spin orbitals they
contain. Appendix B shows similar analysis for other
molecules in other basis sets. As we can see, terms which
involve the inner shell electrons dominate the norm of
the error operator in the local basis.

We see from such figures that the inner orbitals, es-
pecially the single particle terms which are on the di-
agonal of the plot above, have a substantial impact on
the Trotter error. This is not surprising as the inner
atomic orbitals interact very strongly with nuclei so the
single particle integrals are likely to be much larger than
the interaction integrals for these orbitals. Interestingly,
although the valence shell electrons are often the most
important for determining the chemical properties of
a molecule, the inner orbitals are the ones that affect
the error most significantly. This suggests that pseudo-
potentials, which allow the core electrons to be treated
as effectively “frozen”, may provide a way to reduce the
Trotter error in some circumstances. We leave this as an
open question for future work.
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FIG. 7. This plot shows the distribution of expectation val-
ues of the error operator for water in the local basis over its
eigenstates and Haar random vectors. We see that the ran-
dom vectors lead to substantially less error, on average, than
do the Hamiltonian eigenstates. The Haar distribution of er-
rors has a standard deviation of 4.82 while the Hamiltonian
error distribution has standard deviation of 10.68.

E. Dependence on structure of eigenstates

Due to the substantial discrepancy between error in-
duced on the ground state and operator norm, we might
ask the following question: given the error operators for
real molecules, what is the distribution of errors that
would be induced on a random ensemble of vectors?
This question is important as the answer will help us
to identify the source of the observed error cancellation.
We consider the ensemble of Haar random vectors which
form a unitarily invariant ensemble of vectors with uni-
formly distributed complex elements. Unitary invariance
ensures that the ensemble has uniform distribution in an
arbitrary complete, orthonormal basis such as the eigen-
basis of the error operator.

Denoting vectors from the random ensemble as |v〉 and
eigenvectors of the error operator as |k〉 with eigenvalue
λk, we are interested in analyzing properties of the fol-
lowing distribution of expected errors given by,

∆E (v) =
∑
k

λk|〈v |k〉|2. (25)

First, note that
∑
k λk = 0. This is because if C =

[A,B] =
∑
j λk |k〉〈k| then∑

k

λk = Tr(C) = Tr(AB)− Tr(BA) = 0, (26)

from the cyclic property of the trace. Since V (1) is the
sum of such operators, it follows that its trace is also zero.
This implies that the Haar-expectation value of the error,
over all possible random states, is

EH(∆E(v)) =
∑
k

λkEH |〈v |k〉|2 =
1

2N

∑
k

λk = 0. (27)
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FIG. 8. These are histograms of the eigenspecta of the error operators for various molecular and atomic benchmarks in the
local basis. Proceeding clockwise from the top left, the molecules are water, Hydrogen Fluoride, Methylene, atomic Beryllium,
atomic Carbon and atomic Neon. Error operators for all of our benchmarks have surprisingly similiar eigenspectra, regardless
of the orbital basis. The source of this striking similarity and the reason for the particular structure is unknown.

This shows that there is no inherent bias that arises from
Trotterization towards either overestimating or underes-
timating the true expectation value.

This result does not represent the typical error that
we expect to see in a simulation. We also need to find
the Haar variance of the expected error to estimate the
typical variation of simulation errors about the mean. It
is then easy to see that the Haar variance is

VH(
∑
k

λk|〈v|k〉|2) =
∑
k

λ2
kVH(|〈v|k〉|2). (28)

In Appendix A, we derive the Haar variance of the
squared projection,

VH
(
|〈v |k〉 |2

)
=

2

2N (2N + 1)
− 1

22N
, (29)

where N is the number of spin orbitals. Combining
Eq. (29) and Eq. (28) and using Chebyshev’s inequality,
we see that with high probability over |v〉

| 〈v|V (1) |v〉 | ∈ O
(√∑

k λ
2
k

2N

)
. (30)

Eq. (30), surprisingly, shows that a concentration of mea-
sure argument causes the expectation of the Trotter error
to be asymptotically zero if (a) |v〉 is typical of a Haar
random state, (b)

∑
k λ

2
k ∈ o(22N ) and (c) |v〉 is chosen

independently of the |k〉.

We do not expect a concentration of measure argument
like this to hold for actual quantum simulations because
it would imply that the Trotter errors in eigenvalue es-
timation shrink rapidly with system size for physically
reasonable distributions of λk. Thus, it is natural to ex-
pect that one or both of assumptions (a) and (c) are not
reasonable for eigenvalue estimation.

In Figure 7, we show the expected errors according to
Eq. (25) over an ensemble of Haar random vectors as
well as the expected errors over the eigenstates of the
Hamiltonian for water. The results clearly show that
the errors observed in this chemical example are much
greater than we would expect from Haar random states.
Furthermore, we see little evidence of concentration of
measure of the errors about zero for the case where |v〉
is an eigenvector of H; whereas the Haar random |v〉
lead to results that are much more concentrated about
zero error. This suggests that the discrepancies between
the norm of the error operator and the ground state error
cannot be explained by a simple randomization argument
as the actual errors observed are much worse than would
be otherwise expected.

Eq. (25) shows that the expected error is the convo-
lution of the functions λk and |〈v|k〉|2. Thus, we expect
the distribution of errors to resemble the underlying dis-
tribution of eigenvalues of V (1). This intuition can eas-
ily be seen by comparing Figure 7 to the eigenspectrum
of the water error operator in Figure 8a. As expected,
the distribution of errors for the random ensemble (Fig-
ure 7) resembles the error operator eigenspectrum (Fig-
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ure 8a) with concentration about the mean (as antici-
pated by Eq. (30)). Also, it is interesting to note that the
eigenspectra of the error operators for various molecules
and atoms studied in this paper bear a remarkable degree
of similarity and appear extremely structured as Figure 8
demonstrates. Additionally, every example has a sharp
peak in its spectrum about zero error. This suggests that
much of the rift between the norm of the error operator
in Figure 2 may be due to the large number of eigenvec-
tors with near-zero eigenvalue.

III. IMPROVED SIMULATION METHODS
INSPIRED BY CLASSICAL APPROACHES TO

QUANTUM CHEMISTRY

Given the large disparity between error operator norm
and error induced on the exact ground state, any efficient
method which allows one to approximate the error in-
duced on the ground state (which implies an estimate for
the number of Trotter steps needed) would be of critical
importance for anyone wishing to actually run a quan-
tum chemistry simulation on a quantum computer. A
natural way to address this problem is to directly eval-
uate the error over a mesh in position and fit the data
to a power law. This process can be made efficient using
the SWAP test, as proposed by Wiebe et al [36]. A ma-
jor drawback of this approach is that it requires roughly
twice the qubits that the basic simulation used and also
the variance in the estimate returned by the SWAP test
can be prohibitively large. In this section, we propose an
alternative method that estimates the error in the ground
state energy by evaluating the error operator on a classi-
cal ansatz for the ground state numerically. This method
also allows the contribution to the error in the quantum
simulation from the Trotter error to be subtracted off of
the final estimate, improving the accuracy of the simula-
tion without requiring additional quantum operations.

Perhaps the most well-known classical algorithm for
solving the electronic structure problem is a mean-field
approach known as the Hartree-Fock method [21]. In this
scheme, single particle molecular orbitals are obtained us-
ing a self-consistent variational procedure in which each
particle is made to interact with the average density of
the other particles. The output of this calculation pro-
vides molecular orbitals which, together with a spin as-
signment, are used to approximate the n-particle wave-
function as an anti-symmetric product of the orbitals
(known by chemists as a Slater determinant).

Unfortunately, the Hartree-Fock method is incapable
of approximating dynamic electron correlation and is
known to overestimate energies by an amount that is
typically well above the threshold of chemical accuracy.
To correct for this problem, one can expand the wave-
function in a basis of multiple Slater determinants and
variationally solve for the coefficients which minimize the
electronic energy. In general, there are M =

(
N
n

)
valid

configurations for n electrons arranged into N spin or-

bitals. The ground state wavefunction in Eq. (1) may
be represented as a linear combinations of these arrange-
ments,

|Ψ〉 =

M∑
i=1

ai |i〉 . (31)

The energies may be solved for variationally,

E = min
{ai}

〈Ψ|H |Ψ〉
〈Ψ|Ψ〉 → HCI |Ψ〉 = E |Ψ〉 (32)

where HCI
ij = 〈i|H |j〉. In chemistry this method is

known as full configuration interaction (FCI).
FCI is strongly believed to be classically intractable

because M scales combinatorially with N and n. Ac-
cordingly, a common classical approach is to truncate the
expansion in Eq. (31) to include only configurations that
represent a fixed number of excitations from a reference
configuration. Though this work and recent work [13] dis-
cuss using different orbital basis choices, usually the ref-
erence is taken to be the Hartree-Fock state (this orbital
basis is known in chemistry literature as the “canonical
basis”). This approach defines a hierarchy of methods
referred to as truncated configuration interaction (CI)
which approach exactness as the number of excitations is
increased to the FCI space spanned by N−n excitations.
Fixing the maximum number of excitations at k, combi-
natorics suggests that the number of basis functions in

truncated CI scales as Θ
((
N−n
k

)(
n
k

))
. Truncation to the

level of single and double excitations is referred to as
configuration interaction singles, doubles (CISD) and is
used for several purposes in this paper. Finally, we note
that the accuracy of truncated CI is extremely sensitive
to the quality of the reference state and it is therefore
difficult to determine when these methods are expected
to approximate the ground state energy within even a
fixed multiplicative error.

Since the error operator can be efficiently computed
and normal-ordered in second quantized form, we suggest
evaluating the expectation value of this operator on a
classical ansatz for the ground state. In particular, we
focus on the use of the configuration interaction ansatz.
Figure 9 illustrates the utility of this idea by showing
the discrepancy between actual error and the error from
evaluation of the error operator using a classical ansatz.
Figure 10 shows the extent to which the effective error is
reduced using a classical ansatz.

Apart from estimating errors, CISD states may also be
of use in coalescing schemes [12] which use the Hartree-
Fock approximation to determine whether a term in the
Hamiltonian can be executed less frequently without sig-
nificantly impacting the quality of the simulation. This
process can substantially reduce the costs of simulating
molecules with many small, but non–negligible, hpqrs
terms but may fail if the Hartree-Fock approximation
breaks down. In such cases, the use of CISD states may
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FIG. 9. Magnitude of the Trotter error in the exact ground
state against the magnitude of the error induced on a classical
ansatz for the ground state. Truncated CI computations are
only performed when inexact; e.g., we have not computed HF
using CISD because the calculation is exact in STO-6G.

lead to superior coalescing schemes at the price of requir-
ing more classical computing time to find the coalescing
schedule.

Though the Hartree-Fock ansatz is usually not ac-
curate enough to reduce error by an order of magni-
tude, the use of a truncated CI ansatz often exhibits
enough accuracy to very substantially reduce effective
error. While we focus on the CI ansatz to provide proof-
of-principle, we believe that more intelligent truncation
schemes can substantially increase ansatz accuracy with-
out additional computational cost. For instance, the use
of multi-reference methods has been shown to greatly im-
prove the quality of the classical solution in many cases,
especially near molecular dissociation limits where the
exact electronic states become nearly degenerate [21].

The idea of using a classical ansatz to reduce the ef-
fective error in a quantum calculation is useful for two
reasons. The first reason is that the error in a quantum
simulation can usually be reduced by approximating the
error with a classical ansatz at the CISD level of theory or
greater, as demonstrated in Figure 10. The second (and
perhaps more important) reason this technique is useful
is that it gives a realistic a priori estimate of the error to
expect in the quantum simulation (expected to be cor-
rect to at least an order of magnitude) which provides
a methodology for selecting the number of Trotter steps
required to obtain a desired precision. Finally, we point
out that while the error operator might be computation-
ally costly to compute (albeit, efficient in the polynomial-
time scaling sense), Monte Carlo methods could be used
to tractably sample the error operator expectation values
with a classical ansatz.
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FIG. 10. Magnitude of the Trotter error induced in the ex-
act ground state against percentage of the error that remains
after subtracting the ansatz error from the exact error. This
plot is intended to indicate the reduction in effective error
when using a classical ansatz estimate. A black line is drawn
at one-hundred percent remaining. In all benchmarks, using
these ansatzs reduces effective error. Note that the quadru-
ple calculation is so accurate for Be and LiH that the effective
error appears to be exact to within double precision.

A. Circuit for state preparation based on CI ansatz

In contrast to the Hartree-Fock states, CISD states are
not computational basis states. Instead they are a linear
combination of quantum states that are formed by single
and double excitations away from a reference state which
is often taken to be the Hartree-Fock state. Although the
CISD state can be efficiently computed for a given elec-
tronic structure problem, preparing the state on a quan-
tum computer is non-trivial. Here we present a method
based on state-of-the-art multi-qubit synthesis methods
to prepare the CISD state. Previous work has consid-
ered preparing this state using single qubit rotations and
CNOT gates [37–39]. Such gate sets are unrealistic for
fault tolerant quantum computing so we discuss the prob-
lem of compiling the state preparation circuit into Clif-
ford and T gates. In the following analysis we will take
the cost of the circuit to be given by the number of T
gates because these gates are the most expensive gates
to implement fault tolerantly in error correcting codes
such as the surface code.

Let us begin by assuming the initial state for the quan-
tum simulation (i.e. the state we wish to prepare) is of
the form

|ψ〉 =

D∑
k=1

αk |jk〉 , (33)

where jk is a sequence of computational basis vectors
that spans the space that state has support over and D
is the dimension of that space.

It is unrealistic to assume that the state |ψ〉 will be ex-
actly preparable using gates from the Clifford + T gate
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library. Instead, the initial state will typically have to
be approximated using these circuit elements. For years
the Solovay-Kitaev algorithm provided the best known
method for solving this approximation problem, but re-
cently more advanced methods based on number theo-
retic results have provided much more efficient ways of
performing this decomposition [40–42].

Therefore the problem of finding the best sequence of
Clifford and T gates to approximate a multi-qubit uni-
tary reduces to the following problem

1. Find integers x0, x1, y0, y1 such that

Up,q ≈ Ũp,q =
x0 + x1

√
2 + iy0 + iy1

√
2√

2
m .

and Ũ is a unitary that can be exactly synthesized
using elements from the gate library.

2. Find a sequence of Clifford and T gates that exactly
implements Ũ .

Note that because we are interested in preparing a state,
not implementing a multi-qubit unitary, only the first
column of U needs to be approximated. In particular,
the first column of Ũ should approximate |ψ〉 to within
a fixed error tolerance δ.

Before proceeding it is necessary to briefly review num-
ber theoretic approaches to multi-qubit circuit synthesis
using Clifford and T gates. The key insight behind this
strategy is that the unitary matrices that can be prepared
with such circuits take on a very special form. The form
can easily be seen from the Hadamard and T gates,

H =
1√
2

[
1 1

1 −1

]
, T =

[
1 0

0 1+i√
2

]
. (34)

It is then clear that any unitary matrix formed by a se-
quence of H and T gates will consist of matrix elements
that are of the form

Ũi,j =
x0 + x1

√
2 + iy0 + iy1

√
2√

2
m , (35)

for integer x0, x1, y0, y1. Since the remainder of the gate
set consists of CNOT gates and Pauli gates which have
(complex) integer valued matrix elements, it is then clear
that every unitary that can be formed by the gate library
also has matrix elements whose denominators are powers
of
√

2 and whose numerators are in the ring of Gaussian
integers Z[1/

√
2, i].

Just like ordinary fractions, these fractions also can
be reduced. This notion of reducing a fraction manifests
itself as the least denominator exponent k. In order to
understand this concept concretely, it is necessary to in-
troduce some terminology. Let ω = eiπ/4 and

Z[ω] = {aω3 + bω2 + cω + d|a, b, c, d ∈ Z}. (36)

Similarly, if we let D = {a2−b|a, b ∈ Z} denote the ring of

dyadic fractions then we can express the ring Z[1/
√

2, i]
as

D[ω] = {aω3 + bω2 + cω + d|a, b, c, d ∈ D}. (37)

Then for every t ∈ D[ω] there is a notion of a least denom-
inator exponent that describes the fraction in Eq. (35)
and uses the smallest value of m possible while requiring
that x0, x1, y0, y1 are integer. Or more formally, the least
denominator exponent, k, is the smallest non-negative

integer such that t
√

2
k ∈ Z[ω].

The smallest denominator exponent measures the pre-
cision in the approximation U ≈ Ũ because Eq. (35) al-
lows arbitrary complex numbers to be represented with
zero error in the limit as k → ∞. This means that the
value of k used in the rounding process of the first column
of U is a key property for characterizing the complexity
of the state preparation. In fact, the problem of bound-
ing the error in this approximation problem as a function
of k has already been solved by Kliuchnikov [43]:

‖(U − Ũ) |0〉 ‖ ≤ 2(D+ 2)2−4k + 2
√

2(D + 2)2−2k, (38)

where D is the number of nonzero components of the
state |ψ〉 = U |0〉. As a technical point, the dimension of

Ũ is at most D+2 rather than D because the first column
of U must have at least two zero-valued components in or-
der to guarantee that a solution exists to the Diophantine
equation for Ũ . This requires enlarging the Hilbert space
dimension by two in the worst case scenario, which may
require adding at most an additional qubit. However,
the CISD state vector will likely have many zero valued
components so this extra qubit will often not be needed
in practice.

Using Eq. (38) we see that the state preparation error
can be made less than δ by choosing

k =

⌈
1

4

[
1 + log2

(
D + 2

(
√

1 + δ − 1)2

)]⌉
. (39)

This means that if D is polynomial in n then k ∈
O(log(n/δ)).

Once the unitary Ũ has been found then the task of
decomposing the unitary into fundamental operations re-
mains a non-trivial problem. This problem is addressed
by Giles and Selinger in [44]. The idea behind this ap-

proach is to decompose Ũ into a series of two level unitary
operations. These two level unitary operations are then
implemented using a Clifford circuit and a series of con-
trolled operations to map each two level subspace to a
single qubit. This process involves first identifying pairs
of levels that can be simplified and then performing cir-
cuits of the form HwT xHyT z to the two level subspace
such that the denominator exponent is systematically re-
duced. Once the least denominator exponent is reduced
to 0 then the subspace either takes the form [ωp, 0]T or
[0, ωp]T for integer p. Thus, the inverse of the state prepa-
ration circuit can be found (up to a global phase) by
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performing this reduction process iteratively of the D di-
mensional initial state until only one nonzero component
remains and then mapping this component to |0〉 using
a Clifford circuit and a multiply controlled not gate.

At most k reduction steps are needed to reduce each
two level subspace and there are at most (D+2)−1 sub-
spaces that must be looped through. Therefore, there are
at most k(D + 1) reduction steps taken. Each reduction
step consists of applying at most two H gates and two T x

gates to each subspace, as well as a multiply controlled
not gate to map the final state to one proportional to
|0〉. Hence, in order to assess the cost of the algorithm
we need to compute the costs of each of these gates.

Let us imagine that we need to perform a gate on
the subspace span(|j〉 , |k〉). We want to map this to
span(|2n − 1〉 , |2n − 2〉) so that the gate can be applied
to the last qubit. By performing a sequence of O(n) X
gates, we can map

span(|j〉 , |k〉)→ span(|j ⊕ k ⊕ 2n − 1〉 , |2n − 1〉),
where ⊕ is bitwise exclusive or. There are two cases that
we need to consider. If j ⊕ k = 1 mod 2 then the least
significant bit of j⊕ k⊕ 2n− 1 is 0. This means that the
state |j ⊕ k ⊕ 2n − 1〉 can be mapped to |2n − 2〉 using
a sequence of n − 1 zero-controlled not gates while not
affecting |2n − 1〉. Otherwise, if j ⊕ k = 1 mod 2 then
we can reduce this case by finding the least significant
bit where j and k differ and swap that bit with the least
significant bit. Since |2n − 1〉 is an eigenstate of the swap
operator, the swap does not affect that vector. Hence in
either case we can perform the subspace mapping using
O(n) Clifford operations.

In order to apply the H and T gates required by the
synthesis algorithm on the correct qubits, we need to
implement controlled variants of these circuits. There
are many constructions for these controlled gates [45–
47]. Here we anticipate that the cost of state preparation
for the CISD state will be sub-dominant to the cost of
the simulation. This means that minimizing the number
of qubits needed is an important design goal. Let us
define Λm(G) to be the m-controlled version of the gate
G. Then the gate Λm(H) can be implemented using two
Λn−1(X) gates, a Λ1(H) gate and an ancilla qubit,

• •
...

...• •
0 • 0

H

Controlled T q gates can be performed similarly,

• •
...

...• •
• •

0 T q 0

The resulting circuits can be further optimized by not-
ing that many of the Toffoli gates needed to perform the
reductions of the least denominator exponent are redun-
dant. In particular we can express the simplified reduc-
tion circuit as,

• •
...

. . . ...• •
0 • • • 0

H • • . . .

0 T q

The gate Λ1(H) requires 2 T -gates [44], and the Toffoli
gates can be implemented, up to an irrelevant phase, us-
ing 4 T -gates [46, 47] and an ancilla qubit. The entire
process requires at most N + 4 qubits, which is typically
less memory than is required for the quantum simulation
and eigenvalue estimation phases of the algorithm. This
means that the additional four qubits required for the
state preparation algorithm will not impact the memory
requirements of the overall simulation algorithm.

For the present problem, the CISD state is in C2N+1

(recall one additional qubit is needed to ensure a solution
to the norm equations for synthesis). This means that we
also need to consider the cost of implementing ΛN (X)
gates. Although highly time-efficient constructions for
the multiply controlled circuits can be made using the
circuits of [48], they require a large number of qubits. In
order to ensure that the space complexity of state prepa-
ration does not dominate the algorithm, we use the less
time-efficient construction of Barenco et al [49] to com-
pile the ΛN (X) gates. Using Corollary 7.4 from [45] and
the Λ2(iX) gate from [46, 47] to implement the Toffoli
gate, the cost of implementing such circuits is at most

Tcount

(
ΛN (iX)

)
≤ 32(N − 3). (40)

At most N + 4 qubits, where N ≥ 5, are needed to im-
plement these gates [45].

The reduction of each of the two dimensional subspaces
requires two steps. First, the application of the ΛN (X)
gates to mark the subspace and a sequence of k controlled
operations to reduce the denominator exponent of that
subspace. This reduction process requires k steps, each
of which involves at most two Λ1(H) and two Λ2(T q).
Including the cost of the two ΛN (X) gates, the total cost
of the reduction is at most 22k + 64(N − 3) T -gates. At
most D+1 reduction steps are required in this process as
well as potentially a swap of the final state into the |0N+1〉
state (which can be performed using Clifford operations).
Thus the overall T–count for this process is

(22k + 64(N − 3))(D + 1). (41)

This also is the T–count for for preparing the CISD state
from the |0N+1〉 state because the necessary circuit can
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be found by taking the Hermitian conjugate of the resul-
tant gate sequence. Thus using Eq. (39) the total number
of non-Clifford operations required in the state prepara-
tion scales at most as

O
(
D log

(
D

δ

)
+ND

)
(42)

If the approach of Wang et al [38], coupled with recent
methods for decomposing single qubit rotations into T
gates, is used to prepare the CISD state then the resul-
tant T -count scales at most as Õ(2neNne/ne!) log(1/δ).
If ne ≈ N/2 then this method is inefficient, whereas ours
is not since D ∈ O(N4) for CISD states. If ne ≤ 3 then
the method of Wang et al does provide superior scaling
as N increases, though cases where ne ≤ 3 and N is
large may be rare. In contrast, the method of Ortiz et
al [37] requires Õ(D2N2 log(1/δ) gates, which is nearly
quadratically slower than our method.

As a final point, the cost of the state preparation al-
gorithm is O(N5) in worst case scenarios. This can be
comparable to, or greater than, the cost of quantum sim-
ulation in the limit of large N . This means that us-
ing a näıve CISD approximation in cases with half filling
may seriously degrade the performance of the algorithm.
This means that in order to see the performance advan-
tages promised by recent algorithms, which have scaling
near O(N4), sophisticated state preparation methods are
needed in cases where the Hartree-Fock state has poor
overlap with the FCI ground state.

IV. CONCLUSION

Our work calls into question the basic assumption that
the error in Trotter-Suzuki based methods for simulating
quantum chemistry is explicitly a function of the num-
ber of spin orbitals used to represent the system. We
find through numerical evidence that such errors do not
seem to be directly related to the number of spin orbitals
in the system for small molecules. We observe this lack
of correlation for a variety of orbital bases including lo-
cal, canonical and natural orbitals. Instead, we see that
chemical features such as the maximum nuclear charge
is a strong indicator of the complexity of a simulation.
We argue that the errors should scale as O(Z6

max) for an
atomic orbital basis, which is in close agreement with the
scaling observed numerically. We also observe that some
atoms, such as Oxygen, Fluorine and Neon, have vanish-
ingly small Trotter errors despite available error bounds
predicting large Trotter errors for these molecules. We
show that this discrepancy can be understood as a con-
sequence of the large filling fraction for these molecules.
This suggests that chemical features of a molecule may
be much better predictors of the number of Trotter steps
needed in a simulation than the number of spin orbitals
assigned to the molecule.

We further analyze the errors and see that the discrep-
ancy between the observed Trotter error and the norm of
the error operator does not arise from random cancella-
tion. Indeed, the errors observed are much greater than
what would be expected if the ground state were a Haar
random state that was chosen independently from the
eigenvectors of the error operator. Furthermore, we ob-
serve that the distribution of eigenvalues of the error op-
erator is highly structured and has many near-zero eigen-
values, which likely is the cause of the orders of magni-
tude separation between the Trotter error and the norm
of the error operator.

We also use the error operator to improve quantum
simulation methods by providing a computationally ef-
ficient algorithm for estimating the error in a simula-
tion. This leads to two applications: (a) compensating
for Trotter error in a quantum simulation by subtracting
the prediction off the result and (b) predicting the num-
ber of Trotter steps needed in a simulation. Finally, we
provide a quantum algorithm for preparing CISD states
that is polynomially more efficient than existing methods
and may provide a viable alternative to adiabatic state
preparation in cases where the Hartree-Fock approxima-
tion to the ground state leads to poor success probability.

There are several natural avenues of inquiry that this
work reveals. First, although this work shows strong nu-
merical evidence for small molecules we do not have suf-
ficient evidence to state conclusively that the error in the
Trotter-Suzuki formula is independent ofN in the asymp-
totic limit. Larger numerical experiments may be needed
to shed more light on the scaling of Trotter–Suzuki errors
in this regime. Secondly, Ferredoxin is often suggested as
a strong candidate for quantum chemistry simulation but
Fe2S2 has large nuclear charges which make it a challeng-
ing molecule from the perspective of simulation. This
suggests that there may be other large organic molecules
with smaller nuclear charges that may be even more nat-
ural targets for quantum simulation. Finally, although
our work has suggested that the number of spin orbitals
in a molecule may not uniquely characterize the cost of
a quantum chemistry simulation, it does not provide a
simple criteria for determining which molecules are easy
or hard to simulate. Finding molecular features, beyond
the maximum nuclear charge and the filling fraction, that
can be used to predict the relative difficulty of simulation
would not only constitute an important step forward for
quantum chemistry simulations but would also be an im-
portant contribution to quantum chemistry as a whole.
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Appendix A: Computation of Haar Expectations

In order to determine whether the error cancellations
observed for ground state quantum simulations arise be-
cause of properties of the eigenstates of the Hamiltonian,
we need to determine whether these results would also
be typical of random vectors. Here we provide a deriva-
tion, for completeness, of the Haar expectation value and
variance of the |〈v|k〉|2.

In the following we will take k to be fixed and v to
represent the Haar random variable. We will also use
the convention that EH denotes the expectation value
of a quantity over a set of Haar random vectors, and
VH denotes the variance over the set. To be clear,
EH |〈v|k〉|2 =

∫
U∈Haar

| 〈0|U† |k〉 |2dU .
We wish to compute the variance,

VH(|〈v|k〉|2) = EH(|〈v|k〉|4)− EH(|〈v|k〉|2)2, (A1)

of the square of the overlap of an arbitrary Haar random
vector, |0〉, with an eigenvector of an arbitrary Hermitian
operator (in this case, the Trotter error operator), |k〉.
We begin by stating the correspondence,

|v〉 〈v| = U |0〉 〈0|U† (A2)

where U is the unitary Gram matrix which affects a ba-
sis transformation into the error operator eigenbasis (for
instance), and |v〉 represents |0〉 in the error operator
eigenbasis. We are interested in the projection of this
state onto an eigenvector of the error operator,

ak = 〈k |v〉 = 〈k|U |0〉 (A3)

|ak|2 = 〈k|U |0〉 〈0|U† |k〉 (A4)

= tr
[
|k〉 〈k|U |0〉 〈0|U†

]
.

We compute this trace in two steps. From the unitary
invariance of the Haar measure we have that∫

U(n)

[
U |0〉 〈0|U†

]
dU =

11

2N
(A5)

Therefore

EH(|ak|2) = tr

[
|k〉〈k| 11

2n

]
=

1

2N
. (A6)

Thus, EH(|ak|2) = 1
2N

, and hence EH(|ak|2)2 = 1
22N .

Focusing on the remaining component of the variance,

|ak|4 = 〈k|U |0〉 〈0|U† |k〉 〈k|U |0〉 〈0|U† |k〉 (A7)

= tr
[
(|k〉 〈k|)⊗2

U⊗2 (|0〉 〈0|)⊗2
U†⊗2

]
.

To further evaluate the trace we follow the treatment in
[50] which uses the spectral theorem to derive orthogonal
projectors onto symmetric and antisymmetric subspaces.

This begins by defining a flip operator, F ∈ C22N×22N

,

F (|ψ〉 ⊗ |ϕ〉) = |ϕ〉 ⊗ |ψ〉 . (A8)

From this definition it is clear that

F = πsym − πantisym (A9)

11⊗2 = πsym + πantisym. (A10)

Thus,

πsym =
1

2

(
11⊗2 + F

)
(A11)

πantisym =
1

2

(
11⊗2 − F

)
. (A12)

Since tr
[
11⊗2

]
= 22N and tr(F) = 2N ,

tr [πsym] =
2N
(
2N + 1

)
2

(A13)

tr [πsym] =
2N
(
2N − 1

)
2

. (A14)

Since |0〉 〈0| ⊗ |0〉 〈0| is entirely symmetric, it is straight
forward to see from unitary invariance that∫

U(n)

[
U⊗2 (|0〉 〈0|)⊗2

U†⊗2
]

dU =
2

2N (2N + 1)
πsym.

(A15)

Thus,

EH(|ak|4) =
2

2N (2N + 1)
tr
[
πsym (|k〉 〈k|)⊗2

]
=

2

2N (2N + 1)
. (A16)

Finally, we arrive at the variance of |ak|2,

VH(|ak|2) =
2

2N (2N + 1)
− 1

22N
. (A17)

This gives us the variance in the |ak|2 terms, which in
turn allows us to find the deviation from the expected
error for a quantum chemistry simulation. The key point
here is that the standard deviation is on the order of
the expectation value which means that we expect rel-
atively large fluctuations in the probabilities that corre-
spond to particular eigenvalues of the Trotter error oper-
ator. Hence we do not expect a concentration of measure
result to hold in high dimensional spaces.
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Appendix B: Contributions of orbitals to Trotter error operator
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(a) Water, local basis, Hamiltonian
coefficients.
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(b) Water, local basis, error coefficients.
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(c) Water, local basis, error contributions.
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(d) Water, natural basis, Hamiltonian
coefficients.
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(e) Water, natural basis, error coefficients.
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(f) Water, natural basis, error
contributions.
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(g) Beryllium hydride, local basis,
Hamiltonian coefficients.
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(h) Beryllium hydride, local basis, error
coefficients.
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(i) Beryllium hydride, local basis, error
contributions.
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(j) Beryllium hydride, natural basis,
Hamiltonian coefficients.

2 4 6 8 10 12 14

Orbital number

2

4

6

8

10

12

14

O
rb

it
al

nu
m

be
r

|Error coefficients|

0

4

8

12

16

20

24

28

32

36

(k) Beryllium hydride, natural basis,
error coefficients.
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(l) Beryllium hydride, natural basis, error
contributions.

FIG. 11. These plots show the coefficients of normal-ordered terms in the Hamiltonian and error operator as well as expectation
values of the error operator terms for the ground state. The terms are binned according to the orbitals involved in the term.
This plot shows the marginal distribution of the magnitudes of these terms.
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