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We show that universal holonomic quantum computation (HQC) can be achieved fault-tolerantly
by adiabatically deforming the gapped stabilizer Hamiltonian of the surface code, where quantum
information is encoded in the degenerate ground space of the system Hamiltonian. We explicitly pro-
pose procedures to perform each logical operation, including logical state initialization, logical state
measurement, logical CNOT, state injection and distillation,etc. In particular, adiabatic braiding
of different types of holes on the surface leads to a topologically protected, non-Abelian geometric
logical CNOT. Throughout the computation, quantum information is protected from both small
perturbations and low weight thermal excitations by a constant energy gap, and is independent of
the system size. Also the Hamiltonian terms have weight at most four during the whole process.
The effect of thermal error propagation is considered during the adiabatic code deformation. With
the help of active error correction, this scheme is fault-tolerant, in the sense that the computation
time can be arbitrarily long for large enough lattice size. It is shown that the frequency of error
correction and the physical resources needed can be greatly reduced by the constant energy gap.

PACS numbers: 03.65.Vf, 03.67.Lx, 03.67.Pp

I. INTRODUCTION

Quantum computers (QCs) provide the means to solve
certain problems that cannot be handled classically; yet
they are extremely vulnerable to errors during the com-
putation [1]. The threshold theorem indicates that if
errors are all local and their rates are below a certain
threshold, it is possible to implement large scale quan-
tum computation with arbitrarily small error [2–6] based
on active quantum error correction (QEC). However the
threshold is difficult to achieve, and tremendous physical
resources are required, making QCs very difficult to build
in practice.

In addition to protecting QCs by active QEC, much
work has been done on providing inherent robustness
through the hardware design, such as holonomic quan-
tum computation (HQC) [7], adiabatic quantum com-
puting (AQC) [8, 9], topological quantum computation
(TQC) [10–12]. However, these methods all have advan-
tages and disadvantages, which are detailed below. In
this paper, we will combine the good features of these
architectures and avoid their weakness by proposing the
scheme of fault-tolerant HQC in surface codes.

Holonomic QC uses the non-Abelian generalization of
Berry phase [13] induced by deforming the Hamiltonian
adiabatically and cyclic (closed-loop) to obtain unitary
gates in the ground space. These unitary gates depend
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only on the geometry of the paths in the control manifold.
This approach has been shown to be robust against var-
ious types of errors during the process [14–16] and could
in principle be done in several different systems [17–19].
Both closed-loop and open-loop HQCs can be compatible
with active QEC [20–24], and can achieve fault-tolerant
QC. However, for small quantum systems, it is difficult
to maintain the degeneracy of the ground space, which
is easily broken by even small perturbations, causing un-
avoidable phase errors.

Another method is to use adiabatic quantum com-
puting (AQC) by slowly changing the Hamiltonian to
a special final Hamiltonian, whose ground state encodes
the solution of the problem to be solved [8, 9]. This
method completely drops the standard circuit model.
AQC can suppress thermal noise when the evolution is
very slow [25], because of the the non-zero energy gap
between the ground state and the other excited states.
While considerable work has been done in this direction,
such as in Ref. [26, 27], a fault-tolerance theorem for AQC
is still lacking. Typically, the minimum energy gap of the
system scales as an inverse polynomial in the problem
size [28, 29], so that the temperature must be arbitrarily
low to prevent thermal excitation.

A third method is the beautiful idea of topological
quantum computation (TQC) first introduced by Ki-
taev [10], where excited states of system Hamiltonian
behave like particles with exotic statistics, called anyons.
By adiabatically braiding anyons around one another in
space-time, it induces the unitary operation that depends
only on the topology of the anyon world lines. Remark-
ably, some systems can support non-Abelian anyons, per-
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form universal quantum computation on information en-
coded in the label space of the anyons [30], while being
protected by an energy gap independent of the system
size. Unlike HQC, TQC is immune to the effect of small
perturbations, since quantum information is stored and
processed nonlocally, so that the splitting of the degener-
ate ground space will decrease exponentially with the sys-
tem size [31]. However, this topological protection does
not completely eliminate the need for active error correc-
tion. The energy gap can protect information only to a
certain extent, and unwanted anyons could be created if
the computation time is long enough. Besides, unwanted
anyons may be generated during the process of creation,
fusion and imperfect adiabatic motion of anyons, and
they may not be detectable. One must measure anyon oc-
cupations to determine when and where unwanted anyons
are created [32], but this is usually difficult in most TQC
models (like fractional quantum Hall systems).

On the other hand, a combination of ideas from TQC
and QEC gives schemes of active error correction archi-
tecture based on topological QEC codes, especially the
surface codes [33, 34] and color codes [35], using code de-
formation [36, 37]. In this approach, one works directly
with the quantum error correcting code used in TQC,
without introducing a Hamiltonian to protect quantum
information with energy gap [38]. In the case of surfaces
code, one truncates it by turning off some stabilizer gen-
erators in a region to create a hole or defect. Rather
than encoding information in the label space of anyons
in TQC, each hole can be viewed as an encoded qubit.
Via a sequence of measurements, the boundary of holes
can be deformed. One can then braid holes by using suit-
able deformations to perform logical operations between
logical qubits associated with the holes. Because of its
tolerance of local errors [38], scalable structure and high
threshold (0.57%) [39, 40], surface codes have attracted
a great deal of attention, and impressive experimental
progress in this direction has been made recently with
superconducting qubits [41].

In this paper, we try to combine the best features of
all the architectures mentioned above, and avoid their
weakness. We focus on surface codes with a stabilizer
Hamiltonian turned on to form a topological quantum
memory [38, 42] on a single 2D lattice, to protect quan-
tum information encoded in the degenerate ground space
from both thermal errors and perturbations. We explic-
itly construct all processes needed to do universal holo-
nomic quantum computation (HQC) based on the surface
code, by adiabatically deforming this gapped Hamilto-
nian. By adiabatically braiding different types of holes on
the surface, one performs a topologically protected non-
Abelian geometric logical CNOT gate. Throughout the
entire information processing procedure, including log-
ical state initialization, logical state measurement, log-
ical gates, state injection and distillation, quantum in-
formation is protected from local thermal excitations by
a constant energy gap, and the weight of the Hamilto-

nian terms is bounded by 4 during the whole adiabatic
code deformation process. To deal with unwanted exci-
tations caused by errors (creation of anyons) during the
adiabatic code deformation, we analyze errors propaga-
tion, and give conditions when turning off the stabilizer
Hamiltonian is needed to do syndrome measurement and
error correction. It can be shown that with gap protec-
tion the frequency of error correction and the physical
resources needed can be greatly reduced. We conclude
that the computation procedures are scalable, and that
the scheme is fault tolerant.

II. PRELIMINARY

A. Surface Code

A good introduction to the surface code can be found in
Refs. [39, 40]. In this section, we follow Ref. [40] and give
a brief review to establish our notation. Surface codes
can be viewed as a special kind of stabilizer codes defined
on a 2D square lattice. In this paper, we implement the
surface code on a two-dimensional L × L lattice, with
qubits on the edges of the lattice, as shown in Fig. 1 for
L = 8. The stabilizer generators of surface codes are two
different kinds of operators:

Xs =∏
i∈s

σxi
, Zp =∏

i∈p

σzi , (1)

that represents vertices (Xs) and plaquette operators
(Zp) on the square lattice.

Besides stabilizer generators inside the lattice, there
are also ones on the boundaries for each lattice. Typi-
cally, for each surface code, there are two kinds of bound-
aries: X boundaries and Z boundaries. X boundaries
comprise three-body Xs operators on the boundary of
lattice, while Z boundaries comprise three-body Zp op-
erators, as in the boundaries shown in Fig. 1. In general,
a lattice with two X boundaries and two Z boundaries
has 2L2 − 2L + 1 qubits and 2L2 − 2L stabilizer genera-
tors, and encodes 2 degrees of freedom to form a logical
qubit. The corresponding logical operators are given by
ZL = ∏k∈lz σzk and XL = ∏k∈lx σxk where lz and lx are
chains of qubits that support σz and σx operators all the
way across the lattice (see Fig. 1 for an example).

Not shown in Fig. 1 are additional syndrome qubits for
each plaquette and vertex, that enable one to check the
sign of the associated stabilizer generator, as shown in
Fig. 2. Inside the surface, each syndrome qubit contacts
four data qubits and performs four-qubit joint measure-
ment. On the boundaries, each syndrome qubit contacts
only three data qubits and performs a three-qubit joint
measurement. The corresponding quantum circuit for
one stabilizer generator measurement of the Zp and Xs

operators are
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XL

ZL

FIG. 1. (Color Online) A surface code based on an 8× 8 lat-
tice with 113 physical qubits on the edges. This code contains
1 logical qubit and has distance d = L = 8, where d is the dis-
tance of the code. The four-body (or three-body) plaquette
stabilizer generator (Zp) and vertex stabilizer generator (Xs)
are indicated as cyan and yellow plaquettes, respectively in-
side the lattice (or on the boundary). A particular choice of
logical operators XL and ZL is shown. A number of qubits
are affected by σx (red dots) or σz (purple dots) errors, lead-
ing to excited Zp operators (or m anyons) and Xs operators
(or e anyons). Measuring these operators yields the positions
of the excited vertices and plaquettes but reveals no informa-
tion about the actual physical errors which cause them. A
minimum-weight matching error correction procedure applies
σx and σz to the qubits marked by the larger red and purple
circles. While the σz errors are annihilated properly (up to
a trivial loop of multiplication of Zp operators), the red pair
underneath is connected by a topologically non-trivial path
across the surface. This introduces a logical error in the state
to be protected.

1zs

2zs 3zs

(a) (b)

2xs
3xs

4xs

1xs

4zs

FIG. 2. (Color online) Four-body plaquette operator Zp (a)
and vertex operator Xs (b) as stabilizer generators of sur-
face code inside the lattice. The black dot in the center of
the plaquettes are syndrome qubits used to do stabilizer mea-
surement.

∣0⟩ MZ

1 ●

2 ●

3 ●

4 ●

and

∣0⟩ H ● ● ● ● H MZ

1

2

3

4

respectively. The syndrome qubits are always initialized
to ∣0⟩ before the measurement.

If no errors of any kind occur, the code remains in
the simultaneous +1 eigenstate of all stabilizer genera-
tors. We will restrict our attention to σx bit-flip errors
and σz phase-flip errors, since very general noise can be
tolerated with just the ability to correct these two types
of error. If σx or σz errors occur, the value of the stabi-
lizer generators anticommute with errors will be flipped
to −1. Fig. 1 shows the effect of σx and σz errors on the
surface. If we can reliably detect when stabilizer gener-
ators become negative, it is possible for us to detect the
errors and correct them by finding paths that connect
the flipped syndromes of same kind such that the total
number of path edges is minimized. Note that σx errors
can also be matched to X boundaries and σz errors can
be matched to Z boundaries of the surfaces. An example
of decoding failure is also shown in Fig. 1.

However, the syndrome measurement processes are not
necessarily perfect. It is possible for the reported mea-
surement outcome to be wrong because of the imperfect
CNOT gates and measurement errors. To get around
this problem, one needs to keep track of every time the
reported eigenvalue of each stabilizer generator changes.
Pairs of flipped syndromes are then connected by paths
in both space and time, such that total number of edges
connected in space-time used to decode the errors is min-
imal. Polynomial time minimum weight matching algo-
rithms exists [43], and hence this can be done efficiently.

For the single logical qubit encoded in surface code, its
logical operators XL and ZL compose chains of σx and
σz operators crossing the entire lattice. So this way of
encoding is not suitable for larger lattices. Besides, no
matter how large the lattice, only a single logical qubit
can be stored, since the dimension of code space is fixed.
A more flexible approach of encoding is to create holes,
or defects, inside the lattice to build extra boundaries
on lattice. This can be done by turning off one or more
of the Xs and Zp stabilizer generators inside lattice to
form a hole. Here, “turn off” means that syndrome mea-
surement is no longer performed for this operator (see



4

XL1

ZL1 ZL2

ZL XL2

FIG. 3. (Color online). An example of double X-cut qubit,
with Xs operators turned off. Each X-cut hole forms a single
X-cut logical qubit and there are two kinds of logical opera-
tors. ZL1 (ZL2) connects left (right) hole with the Z boundary
on the top of lattice, while XL1 (XL2) are any loops encircling
left (right) hole. For double X-cut qubit, there is a more con-
venient way to define the logical operators is to set XL =XL1

and ZL = ZL1ZL2 . Note that ZL is equivalent to ZL1ZL2

up to multiplication by Zp operators inside the loop and has
effect of flip phases for both qubit holes.

example in Fig. 3) in subsequent computation, so that
extra degrees of freedom can be obtained to form a log-
ical qubit. We call the logical qubit obtained this way
an X-cut (Z-cut) single logical qubit when an Xs (Zp)
stabilizer generator is turned off. For the case of Fig. 3,
any chain of σz operators connecting this hole to an X-
boundary on the top of lattice and any chain of σx op-
erators encircling the X-cut hole can be used to manip-
ulate these extra degrees of freedom. We call any such
σz chain ZL, and any σx ring XL. If the eigenvalue of
Xs is +1 (−1) before it is turned off, the logical qubit
is initialized to the ∣+⟩ (∣−⟩) state of X-cut single logical
qubit, we represent it as ∣+XSL⟩ (∣−XSL⟩).

One can go further by making logical operators for
qubit not rely on operator chains that reach the boundary
of lattice. In particular, we can use a pair of X (Z)-cut
holes to form a single logical qubits and manipulate them
in a correlated way. This pair of holes are called double
X (Z)-cut logical qubit. Fig. 3 shows an example of a
double X-cut qubit. Four additional degrees of freedom
will be added to the lattice when two Xs are turned off,
which can be represented as:

∣+
X
SL⟩1∣+

X
SL⟩2, ∣−

X
SL⟩1∣−

X
SL⟩2,

∣−
X
SL⟩1∣+

X
SL⟩2, ∣+

X
SL⟩1∣−

X
SL⟩2,

(2)

where 1 denotes the single X-cut qubit on the left and
2 denotes the one on the right. Each single X-cut qubit
can be manipulated by defining XL1 and ZL1 for the left
X-cut hole and XL2 and ZL2 for the right X-cut hole.
The effect of each logical operator pair is:

XLj ∣±
X
SL⟩j = ±∣±

X
SL⟩j , ZLj ∣±

X
SL⟩j = ∣∓

X
SL⟩j . (3)

Manipulating the two qubit holes of a double cut logical
qubit in a correlated way can greatly simply the forms
of logical operators and increase the number of logical
qubits encoded on a single lattice. We can define the ∣+⟩

and ∣−⟩ states for double X-cut logical qubits as:

∣+
X
DL⟩ = ∣+

X
SL⟩1∣+

X
SL⟩2, ∣−

X
DL⟩ = ∣−

X
SL⟩1∣−

X
SL⟩2. (4)

A chain of σz operators connecting the two holes is then
used as the definition of the ZL operator for double X-
cut qubit, as shown in Fig. 3. The XL operator can be
defined as any ring of σx operators around either hole, as
can be seen from Eq. (3). We can then find the ∣0⟩ state
for the double X-cut qubit:

∣0XDL⟩ =
1

√
2
(∣+

X
SL⟩1∣+

X
SL⟩2 + ∣−

X
SL⟩1∣−

X
SL⟩2),

∣1XDL⟩ =
1

√
2
(∣+

X
SL⟩1∣+

X
SL⟩2 − ∣−

X
SL⟩1∣−

X
SL⟩2).

(5)

Similarly, the ∣0⟩ and ∣1⟩ states of double Z-cut qubits
can be defined as:

∣0ZDL⟩ = ∣0ZSL⟩1∣0
Z
SL⟩2, ∣1ZDL⟩ = ∣1ZSL⟩1∣1

Z
SL⟩2 (6)

and the corresponding ∣+⟩ and ∣−⟩ states of double Z-cut
qubits are

∣+
Z
DL⟩ =

1
√

2
(∣0ZSL⟩1∣0

Z
SL⟩2 + ∣1ZSL⟩1∣1

Z
SL⟩2),

∣−
Z
DL⟩ =

1
√

2
(∣0ZSL⟩1∣0

Z
SL⟩2 − ∣1ZSL⟩1∣1

Z
SL⟩2).

(7)

Note that for the logical qubits described here, the dis-
tance of the codes is bounded by 4, no matter how far
two holes are separated, because the perimeter of hole
created by turning off one stabilizer generator is limited
by 4 physical qubits. The error correction ability can be
significantly improved if we increase both the size and
spacing of the two holes, as this will increase the number
of physical qubits involved in ZL and XL. The details of
making larger holes for logical qubits will be discussed in
Sec. IV B.

B. Holonomic Quantum Computation

Consider a Hamiltonian family {Hλ} on an
N−dimensional Hilbert space. The point λ, parametriz-
ing the Hamiltonian, is an element of a manifold M
called the control manifold, and the local coordinates of
λ are denoted by λi (1 ≤ i ≤ dimM). Assume there are
only a fixed number of eigenvalues {εk(λ)} and suppose
the nth eigenvalue εn(λ) is Kn-fold degenerate for any
λ. The degenerate subspace at λ is denoted by Hn(λ).
The orthonormal basis vectors of Hn(λ) are denoted by
{∣φnα;λ⟩}, satisfying

Hλ∣φ
n
α;λ⟩ = εn(λ)∣φ

n
α;λ⟩, (8)
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and

⟨φnα;λ∣φmβ ;λ⟩ = δnmδαβ . (9)

Assume the parameter λ is changed adiabatically, which
means that

(εn(λ(t)) − εn′(λ(t)))T ≫ 1 (10)

is satisfied for n ≠ n′ during 0 ≤ t ≤ T ). Suppose the
initial state at t = 0 is an eigenstate ∣ψn(0)⟩ = ∣φnα;λ(0)⟩.
The Schrödinger equation is

i
d

dt
∣ψn(t)⟩ =H(λ(t))∣ψn(t)⟩, (11)

whose solution will have the form

∣ψn(t)⟩ =
Kn

∑
β=1

∣φnβ ;λ(t)⟩Uβα(t). (12)

where we have used the adiabatic approximation from
Eq. (10). Substituting Eq. (12) into Eq. (11), one finds
that Uβα satisfies

U̇βα(t) = − iεn(λ(t))Uβα(t)

−∑
µ

⟨φnβ ;λ(t)∣
d

dt
∣φnµ;λ(t)⟩Uµα(t).

(13)

The solution can be expressed as

U(t) = exp(−i∫
t

0
εn(λ(s))ds)×

T exp(−∫

t

0
An(τ)dτ) ,

(14)

where T is the time-ordering operator and

Anβα(t) = ⟨φnβ ;λ(t)∣
d

dt
∣φnα;λ(t)⟩ (15)

is the Wilczek-Zee (WZ) connection [13]. Define the con-
nection

A
n
i,βα(t) = ⟨φnβ ;λ(t)∣

∂

∂λi
∣φnα;λ(t)⟩, (16)

through which U(t) can be expressed as

U(t) = exp(−i∫
t

0
εn(λ(s))ds)×

P exp(−∫

λ(t)

λ(0)
∑
i

A
n
i dλi) ,

(17)

where P is the path-ordering operator. Eq. (17) is a
general description of both open loop and closed loop
adiabatic state evolution. Both are useful for our scheme
as will be shown in Sec. III and Sec. IV. In particular,
suppose the path λ(t) is a loop λ inM such that λ(0) =

λ(T ) = λ0 (closed loop). Then after transporting through
λ, states are transformed to

∣ψn(T )⟩ =
Kn

∑
β=1

∣ψnβ(0)⟩Uβα(T ). (18)

The unitary matrix

Γλ = P exp(−∮
λ
∑
i

A
n
i dλi) (19)

is called the holonomy associated with the loop λ(t). Γλ
is a purely geometric object, and is independent of the
parametrization of the path. Note that for a given Γλ,
there exist infinitely many paths λ. One of the main
objects of the paper to find the proper path in M that
will give us the desired state transformation in the code
space of the surface code under adiabatic transformation
of the stabilizer Hamiltonian. A geometric formulation
of the holonomic problem, which gives an alternative de-
scription as shown in Refs. [44, 45], is also given in Ap-
pendix A, which is useful in improving the results of the
next section.

III. SKETCH OF THE SCHEME

In this scheme, we always regard all physical qubits
on the lattice as a single big stabilizer code. We assume
that the qubits independently and weakly interact with a
thermal bath in the Markovian approximation. The cor-
responding thermal errors are local and low-weight dur-
ing a certain period of evolution. Those low-weight ther-
mal excitations will cause transitions from the ground
space to excited spaces. Their rate should decrease as
δthermal ∼ exp (−cβ∆min), where ∆min is the minimum
spectral gap of the system, β is the inverse of temper-
ature, and c is a constant depending on the coupling
strength between system and thermal bath [46]. This is
true even when the Hamiltonian is not static and changes
slowly, so long as the system is weakly coupled to the
thermal bath [25]. The goal is to do the whole quan-
tum computation fault-tolerantly, while the code space is
protected by an energy gap of the stabilizer Hamiltonian
that exponentially suppresses errors at low temperature
throughout the information processing procedure.

To analyze the error performance of the architecture,
we must first define a fault-tolerant procedure:

Definition 1. A procedure is fault-tolerant if it has the
property that if only one component (or more generally,
a small number of components) in the procedure fails,
the errors produced by this failure are not transformed
into an uncorrectable error by the procedure, before error
correction is applied.

With this definition, the fault-tolerance of a procedure
can be regarded as a property of the procedure itself re-
gardless of the error model of the system. Before we go
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deeper, we must impose some requirements to follow in
the rest of the paper:

1. Procedures like logical state preparation, logical
state measurement, encoded gate operations, state
injection and state distillation should be done when
the system Hamiltonian is “turned on”, so that a
constant energy gap protects the information and
the error rate for each procedure is low.

2. All procedures should be done fault-tolerantly ac-
cording to Def. 1, whether adiabatic or not.

3. Syndrome measurements and error correction
should be done before uncorrectable errors happen.

4. Syndrome measurements and error correction
should be done as seldom as possible, since they are
in general not compatible with the system Hamilto-
nian and we must turn off the Hamiltonian before
doing them. Besides, the syndrome measurement
procedure itself is quite expensive. The frequency
of error correction is expected to be low if all pro-
cedures are gap-protected.

5. A threshold theorem should exist, in the sense that
if the error rate is below the threshold, the com-
putation can be made arbitrarily long by suitably
increasing the lattice size.

6. It is possible to measure σx and σz of single phys-
ical qubits in certain circumstances even when the
Hamiltonian is turned on.

7. Maximum weight of the Hamiltonian terms should
be low, and the Hamiltonian should be geometri-
cally local.

8. All procedures should be done in a single lattice.

Requirements 1 − 4 are crucial to our main objective
of reducing the physical resources and 5 guarantees that
arbitrarily large-scale computation can be done. Require-
ment 6 is physically reasonable, and we will see its impor-
tance in Sec. IV. Requirement 7 comes from the fact that
in real experiments, high weight and nonlocal Hamiltoni-
ans are difficult or impossible. Requirement 8 is technical
rather than fundamental, since it simplifies the the com-
putation architecture.

A. Adiabatic processes

In most cases, adiabatic processes can be used to si-
multaneously fulfill most of the requirements above. For
the purpose of encoding and measuring logical qubits, we
will show that these can be done by open-loop adiabatic
processes (for logical measurement, we also need qubit
measurement), while the logical CNOT can be done by
a closed-loop adiabatic processes to get a holonomy on

the code space. Both such processes can be described by
Eq. (17). In this and the following sections, we will focus
on a special kind of adiabatic evolution that turns out to
be particularly useful. In addition, we will discuss how
it can be used to analyze propagation of potential errors
and parallelism of the processes.

Assume the total number of qubits on the lattice is
n = 2L2 − 2L + 1, so the dimension of the Hilbert space
is N = 2n. The number of logical qubits in our scheme
may change over time, since we can create defects on the
lattice to create logical qubits. However, we assume that
when an adiabatic process is applied, the dimension of
code space is fixed. This can be realized by isospectral
deformation of the Hamiltonian. Denote the number of
logical qubits encoded in the ground space by k. Assume
that at time t0, the initial Hamiltonian can be written as

H(t0) = −
n−k
∑
j=1

JSj , (20)

where the {Sj} are a set of stabilizer generators of the
surface code at time t0 and that ⟨Sj⟩ forms the stabilizer
group S. Consider the following way to adiabatically
deform the Hamiltonian isospectrally:

H(t) = −
n−k
∑
j=1

JSj(t)

= −
n−k
∑
j=1

JU(t, t0)Sj(t0)U
†
(t, t0),

(21)

with Sj(t) = U(t, t0)SjU
†(t, t0) and [Si(t), Sj(t)] = 0 for

all i, j. The {Sj(t)} can be viewed as a set of genera-
tors of an Abelian group, like the stabilizer group. The
Hamiltonian also has a spectral decomposition:

H(t) =∑
s

εsPs(t). (22)

Here, the {Ps(t)} are projectors onto the simultaneous
eigenspaces of all the Sj(t), with eigenvalues:

εs = −J∑
j

sj , (23)

where the labels sj = ±1 form a vector:

s = {s1, s2, . . . sn−k}. (24)

The ground space evolves with the system Hamiltonian.
This defines a time-dependent code space Ct. Let P0(t) =
U(t, t0)P0(t0)U

†(t, t0) be the projector onto the ground
space of H(t), such that sj = 1 for all j. We emphasize
that U(t + τ, t) should be chosen such that

[
∂

∂τ
U(t + τ, t)∣τ=0, Ps(t)] ≠ 0 for all s, (25)

for any time t, so that the deformation procedure is non-
trivial for all eigenspaces. In other word, U(t+τ, t) should



7

not belong to the isotropy group of Ps(t) for small values
of τ .

The adiabatic condition must hold for each eigenspace
Ps, so that each eigenspace undergoes nontrivial evolu-
tion under the adiabatic process, in case an error excites
the system to Ps during the process. The standard adi-
abatic condition [47] for any eigenspace {Psα} can be
reformulated as:

∥ Psα(t)
∂
∂t
H(t)Psβ(t) ∥1

K (εsα(t) − εsβ(t))
2

≈ 0, for any α ≠ β. (26)

Here, K is the degeneracy of each Ps. This must hold
for all t ∈ [t0, tp], where ∥ ⋅ ∥1 is the trace norm

(∥ A ∥1= Tr
√
A†A). It is very likely that for a Hamil-

tonian of the form Eq. (21), several Ps(t)
′s will share the

same eigenenergy, so that the adiabatic condition cannot
be directly satisfied. Fortunately, for the surface code, we
will show later that there is a natural way to cope with
this problem, so that each Ps(t) can satisfy the adiabatic
condition during the adiabatic code deformation.

As shown in Ref. [24], a closed loop adiabatic logical
gate operation can be built from a fault-tolerant circuit
of the corresponding stabilizer code. However, for the
surface code, we in general don’t know the exact fault-
tolerant circuit for encoded gate operations. Moreover,
we wish to do encoding and logical state measurement
with gap protection, so the result in Ref. [24] cannot be
applied here directly. Instead, in this paper, we con-
sider a special kind of quantum circuit G composed of a
sequence of gate operations {g1, g2 . . . gp} giving the uni-

tary operation Ωp = ∏
p
l=1 gl. Here, gl = exp (iπ

4
Ql) for

some Hermitian operator Qq ∈ Gn, where Gn is the Pauli
group acting on n qubits. For simplicity, when we talk
about a “circuit” in the rest of paper, we means the cir-
cuit of this type. We divide the information processing
time [t0, tp] into p small steps and represent the qth time
segment as [tq−1, tq]. Now, set the unitary operator

Uq(t, tq−1) = exp (ifq(t)Qq), (27)

for t ∈ [tq−1, tq] and let fq ∶ [tq−1, tq] → [0, π/4] be a
monotonic smooth function with boundary conditions
fq(tq−1) = 0 and fq(tq) = π/4. For each time segment
[tq−1, tq], we adiabatically deform the Hamiltonian:

H(t, tq−1) = Uq(t, tq−1)H(tq−1)U
†
q (t, tq−1), t ∈ [tq−1, tq]

(28)
and assume [Qq,H(tq−1)] ≠ 0 so that Eq. (25) is satisfied.
A state in the ground space will evolve as described by
the following lemma:

Lemma 1. (State Evolution) Consider a circuit com-
posed of gates {gq} and an initial state ∣ψ(t0)⟩ ∈ C(t0),
with H(t0) = −∑j JSj. We apply a sequence of Hamil-
tonian deformations as in Eq. (28), for 1 ≤ q ≤ p. Then,

under the adiabatic approximation, the final state will be:

∣ψ(tp)⟩ = e
−iε0(tp−t0) (

p

∏
l=1

gl) ∣ψ(t0)⟩

= e−iε0(tp−t0)Ωp∣ψ(t0)⟩.

(29)

Proof. See Appendix B 1.

In the case of a many-body system like the surface
code, it is difficult to follow the change of the state in
code space since it is hard to represent the state. One
normally uses the stabilizer formalism (Heisenberg pic-
ture) to track the change of the logical ZL and XL op-
erators during the process. The following theorem is a
direct consequence of Lemma 1:

Theorem 1. Suppose the initial state ∣ψ(t0)⟩ is in the
code space of a stabilizer code with generators {Sj} and
logical operators {Xi

L, Z
i
L}, and that H(t0) = −∑j JSj.

Under the adiabatic Hamiltonian deformation described
in Eq. (28) for 1 ≤ q ≤ p, the logical operators will map to
Xi
L → ΩpX

i
LΩ†

p, Z
i
L → ΩpZ

i
LΩ†

p, and the system Hamilto-

nian will become H(tp) = −∑j JS
′
j = −∑j JΩpSjΩ

†
p.

If the process is cyclic for the ground space, which
means ΩpP0(t0)Ω

†
p = P0(t0), then Ωp can be viewed as

an encoded gate operation, and we have following con-
clusion:

Corollary 1. If Ωp ∈ N(S)/S, where N(S) is the nor-
malizer of S in U(N), then Ωp is a closed-loop holonomic
operation under the adiabatic process.

Remark 1. These results build a relationship between
the special kind of circuits G we are interested in and
the corresponding adiabatic process. If we can find a cir-
cuit in G giving a particular unitary, then we can trans-
late it to an adiabatic process. However, in general, the
weight of the Hamiltonian terms changes with time, and
it is quite possible that during the adiabatic process, the
Hamiltonian terms will become both nonlocal and high
weight. Fortunately, as we will see, in the case of surface
codes this can be avoided.

B. Error propagation

Although in the process described by Eq. (21), the
ground space is protected by a constant energy gap 2J ,
the lifetime is about e2cβJ in the presence of a ther-
mal bath. This lifetime doesn’t grow with the lattice
size L, so the the thermal gap does not guarantee fault-
tolerance. We still need to do active error correction to
make the computation time arbitrarily long. We must
analyze how an error caused by thermal excitation will
propagate during the adiabatic process to choose the
proper circuit from G and design the subsequent error
correction procedure.

Without loss of generality, we assume that an error Etq
happens at time tq (q ≤ l). Since any error operator Etq
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on an n-qubit system can be decomposed into a sum of
Pauli operators Etq = ∑α cαFα, it is sufficient to analyze
Pauli errors. We have following lemma:

Lemma 2. (Error Propagation) If an error Etq =

∑α cαF
q
α (F qα ∈ Gn) happens at time tq in the procedure

described by Eq. (28), and there is an odd number of sta-
bilizer generators Sj(tr) such that [Qr, Sj(tr−1)] ≠ 0 for
all times 1 ≤ r ≤ p, then

∣ψ(tp)⟩ =∑
α

cαe
−iεsα(tp−tq)F pqα (

p

∏
l=1

gl) ∣ψ(t0)⟩ (30)

where F pqα = U pqF qα (U pq)
†

with U pq =∏
p
l=q+1 gl.

Proof. See Appendix B 2.

Lemma 2 gives the condition that the error will just
propagate to some other error under the expected uni-
tary evolution. The condition that at each step r the
number of Sj(tr−1) such that [Qr, Sj(tr−1)] ≠ 0 should
be odd is crucial. In general, an error will excite the
ground space to another eigenspace Psα , which will usu-
ally share the same energy with some other eigenspaces,
so that the adiabatic condition will not hold. This con-
dition guarantees that even when this is the case, the
degenerate eigenspaces will still satisfy the adiabatic con-
dition Eq. (26) and adiabatic evolution will not fail.

Also, note that if Ωp is a logical gate operator, although
for the ground space P0 the process is a cyclic evolution,
e.g, ΩpP0(t0)Ω

†
p = P0(t0), this is not true for the other

eigenspaces. In general, ΩpPs(t0)Ω
†
p ≠ Ps(t0) for s ≠ 0.

This means that after an error excites the ground space
P0 to Ps, the adiabatic process becomes open loop for
Ps.

C. Parallelism of adiabatic operation

The method described in the previous sections is ba-
sically a serial operation, meaning that we need to adia-
batically deform the Hamiltonian according to the gates
in the circuit G step by step. However, for a large scale
QC on a lattice (not only the surface code), we expect
that many operations can be done in parallel, so that
operations which commute with each other can be done
simultaneously. Here we give the condition for those op-
erations to parallelize.

Lemma 3. (Parallelism) Suppose that at time tq, ∣ψ(tq)⟩
is in the ground space C(tq). Define CQr = {j ∣ 1 ≤ j ≤ n−
k,{Sj(tq),Qr} = 0}. Suppose the set of operators Pq =

{Qr ∣q + 1 ≤ r ≤ q +M} satisfies the following conditions:

1. [Qr,Qm] = 0, for any Qr,Qm ∈ Pq,

2. CQr ⋂CQm = ∅ for any Qr,Qm ∈ Pq,

3. ∣CQr ∣ is odd for all Qr ∈ Pq.

and set Uq+1(t, tq) = ∏
q+M
r=q+1 exp (if(t)Qr) with

f(t) = fq+1(t) for t ∈ [tq, tq+1]. Assume the
Hamiltonian changes adiabatically as H(t) =

Uq+1(t, tq)H(tq)U
†
q+1(t, tq). Then we have:

1. The state at time tq+1 will be:

∣ψ(tq+1)⟩ = e
−iε0(tq+1−tq) ⎛

⎝

q+M

∏
l=q+1

gl
⎞

⎠
∣ψ(tq)⟩. (31)

2. If an error Etq = ∑α cαF
q
α (F qα ∈ Gn) occurs at time

tq, then the state at time tq+1 will be:

∣ψ(tq+1)⟩ =∑
α

cαe
−iεsα(tq+1−tq)F q+1,q

α

⎛

⎝

q+M

∏
l=q+1

gl
⎞

⎠
∣ψ(tq)⟩,

(32)

where F q+1,q
α = U q+1,qF qα (U q+1,q)

†
with U q+1,q =

∏
q+M
r=q+1 gr.

Proof. See Appendix B 3.

Lemma 3 suggests that it is possible to do M steps
of the adiabatic transformation described in Lemma 1 in
one step, and gives the conditions for the adiabatic evolu-
tion to still be valid when errors occur. This property is
extremely important. Since we need to apply our scheme
to surface codes of large size, operations applied simul-
taneously on different parts of the surface can greatly
improve the efficiency of computation.

IV. HQC IN SURFACE CODES

We are ready to show how to do QC fault-tolerantly by
adiabatically deforming the stabilizer Hamiltonian of the
surface code. As mentioned in the previous section, our
goal is that all the procedures, including state prepara-
tion, ancilla preparation, logical gate operations and log-
ical state measurements, be implemented fault-tolerantly
with constant energy gap protection. In the next few sub-
sections, we discuss how to construct these procedures,
and discuss error propagation and error detection in de-
tail.

State measurement is a special case worth more dis-
cussion here. At the end in the computation, when we
want to read all of the data in the logical qubits, we can
just turn off the Hamiltonian and measure everything.
However, during the computation, when the stabilizer
Hamiltonian exists, we still may need to measure logical
qubits from time to time, so that actions conditioned on
those classical measurement outcomes of logical qubit can
be applied. We must put some restrictions on the kinds
of measurements we can do that are compatible with the
existence of the stabilizer Hamiltonian. The first require-
ment is that the observable O we want to measure should
commute with the Hamiltonian:

[H,O] = 0. (33)



9

This requirement guarantees that if a state encoding
quantum information is in one of the eigenspaces Ps be-
fore the measurement, then after the projective mea-
surement, the state will still be in Ps. If Eq. (33) is
not satisfied, the measurement will lead to excitations
out of the eigenspace. The second requirement is that
the observable should be geometrically local, so that the
measurement procedure will not introduce non-local in-
teractions. Note that when the Hamiltonian is turned
on, we do not do Xs or Zp stabilizer measurements even
though they commute with the system Hamiltonian and
are local. The reason for this is that to projectively mea-
sure these many-body observables, we would need to in-
troduce CNOT gates and syndrome qubits, which are
not compatible with the system Hamiltonian. So in our
scheme, syndrome measurements are always done when
the system Hamiltonian is turned off. However, as stated
in requirement 6 in the previous section, we do allow sin-
gle physical qubit measurements as long as they commute
with the system Hamiltonian.

Errors can happen during the single qubit measure-
ment process. There are two kinds of measurement er-
rors. The first kind is that, instead of an ideal measure-
ment, some quantum process occurs during the measure-
ment process which is equivalent to one of the following
circuits:

∣ψ⟩ σx MZ ∣ψ⟩ σz MX

for σz measurement and σx measurement, respectively.
The second kind of error can be regarded as a software
error: even though the measurement is perfect, some clas-
sical noise corrupts the measurement result and we get
the wrong outcome. This can be modeled by the circuits

∣ψ⟩ MZ X ∣ψ⟩ MX X

In this paper, we assume we can completely overcome
errors of the second kind, and focus only on the first
kind of errors.

Finally, note that in the process of computation, we are
frequently required to do logical XL and logical ZL gates.
We do not necessarily implement these gates physically;
rather, we can simply keep a record of it, and apply XL

and ZL to that logical qubit in “software”, as described
in Secs. IX and XVI.A of Ref. [40].

A. Creation of ∣+⟩ (∣0⟩) state for X (Z)-cut double
qubit

Before computation begins, we assume the system is al-
ready prepared with the eigenvalues of all stabilizer gen-
erators equal to +1. This can be done by several methods.
One of them is preparing all qubits in the ∣0⟩ state and
then measuring all Xs stabilizer generators and resetting

their eigenvalues to +1. After that, we turn on the sta-
bilizer Hamiltonian:

H(t0) = −J∑
i

Xsi − J∑
j

Zpj . (34)

(b)(a)

Xs2

Xs1

FIG. 4. (Color online) Creation of ∣+⟩ for X-cut double
qubit. System Hamiltonians before and after are shown in
(a) and (b) respectively. Colored squares indicate that the
corresponding Xs (yellow) and Zp (cyan) stabilizer generators
are turned on.

There are two types of initialization procedures. The
first is the creation of a ∣+⟩ (∣0⟩) state for a X (Z)-cut
and second is the creation a ∣+⟩ (∣0⟩) state for Z (X)-cut
qubit. Here, we give an example of preparing a ∣+⟩ state
for X-cut double logical qubit; the Z-cut case is similar.
We will see that if we can do the first type of prepa-
ration fault-tolerantly, we can do the second type fault-
tolerantly as well, as will be shown in Sec. IV D. Suppose
initially the state of the system is shown in panel (a)
of Fig. 4 with a fully stabilized array, and the stabilizer
Hamiltonian terms in this area are all turned on. Turning
off the Xs1 and Xs2 terms and makes the Hamiltonian:

H(t1) = −J∑
i≠1,2

Xsi − J∑
j

Zpj . (35)

This will make the state ∣+XDL⟩ = ∣+XSL⟩1∣+
X
SL⟩2. This pro-

cess can be done either adiabatically or instantaneously.
If errors occur, they will leave nonzero syndromes for fu-
ture correction, and no errors will be propagated when
the Xs1 and Xs2 terms are turned off.

We can see that the distance for σx errors is restricted
by 4, no matter how far the pair of holes are separated.
To increase the error protection ability of σx errors, we
need to enlarge the size of the holes. We will describe in
detail the adiabatic procedure to enlarge the holes with
gap protection in Sec. IV B.

Also note that all state preparations of this type are
done right after the initialization of the whole surface,
such that Xs1 and Xs2 are known to be +1 for certain.
During the computation, Xs1 and Xs2 can be flipped to
−1 before they are turned off, and we have no way to
know their values except by doing syndrome measure-
ment, which we try to avoid. So all qubits needed in the
computation are prepared at the beginning.
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B. Enlarging the hole

After holes are created, we need to enlarge the size of
the hole to improve the ability to correct σz (σx) errors
for Z (X)-cut double qubits. In this section, we will
show how to enlarge the hole adiabatically with gap pro-
tection. First, we will assume that no error occurs on
any qubits during the process. Then we will analyze how
errors propagate, and the fault-tolerance of the process.
Since this is the first example where we apply the results
of Sec. III, we will follow the state transformations based
on stabilizer formalism in detail.

1. Scheme

(a) (b)

(c)

1
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FIG. 5. (Color online) Enlarging a hole of an X-cut logical
double qubit adiabatically. Colored squares indicate that the
corresponding Xs (yellow) and Zp (cyan) stabilizer generators
are turned on. The yellow qubits in (b) and (c) indicate that
σx for that qubit is turned on in the Hamiltonian. Adiabatic
evolution between (a) and (b) maps XL to X ′L and ZL to Z′L.
Similarly, adiabatic evolution between (b) and (c) maps X ′L
to X ′′L and Z′L to Z′′L.

Consider the case of a Z-cut qubit, the situation for X-
cut qubits is similar. Right after the creation of the pair
of holes, we first expand one of the two holes vertically
down and then horizontally right, as shown in Fig. 5.
Following the spirit of Sec. III, consider a circuit G com-
posed of three gates of the form gl = exp (iπ

4
Ql), where

L1(t0) Zs1

L2(t0) XL

S1(t0) Zs2

S2(t0) Zs3

S3(t0) Zs4

g1
⇒

L1(t1) Zs1Zs2

L2(t0) XL

S1(t1) σx1

S2(t1) Zs3

S3(t1) Zs4

g2
⇒

L1(t2) Zs1Zs2Zs3

L2(t0) XL

S1(t2) σx1

S2(t2) σx2

S3(t2) Zs4

g3
⇒

L1(t3) Zs1Zs2Zs3Zs4

L2(t0) XL

S1(t3) σx1

S2(t3) σx2

S3(t3) σx3

TABLE I. The related transformation of stabilizer generators
{Si} and logical operators {Li} of a Z-cut qubit in Fig. 5 is
shown under gate operation {gi}.

Ql are defined as:

Q1 =σy1σz2σz5σz6 ,

Q2 =σy2σz3σz7σz8 ,

Q3 =σy4σz3σz9σz10 .

(36)

In this case , the state is stabilized by Zs2 , Zs3 , Zs4 (and
other stabilizer generators) with logical operatorsXL and
Zs1 . The transformation of the stabilizer generators and
logical operators under G is listed in Table. I. We can
see that the circuit G maps logical operator XL and ZL
to X ′′

L and Z ′′
L in panel (c) of Fig. 5, and also maps the

system Hamiltonian in panel (a) to the ones shown in
panel (c).

Now we transform this procedure to an adiabatic one
that gives the same state evolution following Theorem
1. Set Ul(t, tl−1) = exp (iπ/4fl(t)Ql) for time segment t ∈
[tl−1, tl], and adiabatically deform the Hamiltonian as in
Eq. (28). Note that Q1 only anticommutes with the Zp2
term in the system Hamiltonian, which guarantees that
even if errors occur, the adiabatic evolution is still valid
(Lemma 2). The situation is the same for Q2 and Q3.
We first consider the adiabatic transformation generated
by U1(t, t0):

H(t) = − J cos [f1(t)]Zp2 − J sin [f1(t)]σx1

− J ∑
j≠1,2

Zpj − J∑
i

Xsi ,
(37)

for t ∈ [t0, t1], with

H(t1) = −Jσx1 − J ∑
j≠1,2

Zpj − J∑
i

Xsi . (38)

At this time, qubit 1 is in the state ∣+⟩. For U2 and
U3, we see that Q2 commutes with Q3, while Q2 only
anticommutes with Zp3 , and Q3 only anticommutes with
Zp4 . According to Lemma 3, the adiabatic procedures
generated by U2 and U3 can be done simultaneously with
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the same state transformation as if done serially. The
corresponding Hamiltonian deformation is

H(t) = − Jσx1 − J cos [f2(t)]Zp3 − J sin [f2(t)]σx2

− J cos [f2(t)]Zp4 − J sin [f2(t)]σx4

− J ∑
j≠1,2,3,4

Zpj − J∑
i

Xsi

(39)

for t ∈ [t1, t2], with

H(t2) = −Jσx1 − Jσx2 − Jσx4 − J ∑
j≠1,2,3,4

Zpj − J∑
i

Xsi ,

(40)
with qubits 1, 2, 3, and 4 all in the state ∣+⟩, while they
are all protected from σz errors by the energy gap.

This procedure can be generalized to obtain arbitrarily
large square hole with distance equal to the perimeter d
(assuming d is a multiple of 4). We first adiabatically
expand d/4 times vertically down to form a long strip
like that in panel (b) of Fig. 5, and then adiabatically
expanding horizontally right parallel d/4 times as in panel
(c). In all, we need about d/2 time steps of adiabatic
evolution.

2. Error propagation

Even though the ground space is protected by an en-
ergy gap, there is still a nonzero probability that thermal
excitations will occur at finite temperature. In this sec-
tion, we apply the the result of Lemma 2 to study the
propagation of these errors. If errors occur outside the
hole or inside the hole, they will not be affected by the
adiabatic process at all. However, if errors occur on the
boundary of the hole before the adiabatic process, they
may potentially propagate during the adiabatic proce-
dure and cause uncorrectable logical errors. Consider the
case in Fig. 6. Before expanding the hole vertically down,
assume a σz error occurs on qubit 1. Then according to
Lemma 2, the σz error will propagate to σx1σz2σz5σz6 ,
as shown in panel (b). The effective errors are σz2σz5σz6 ,
since σx1 has no effect because state of qubit 1 is ∣+⟩.
However, if another σz error occurs on qubit 4, as shown
in panel (c), then after expanding horizontally rightward,
we get effective errors σz5σz6σz7σz8σz9σz10 , which occupy
majority of the qubits around the hole. If the minimum-
weight error correction is taken, it will close the path by
applying σz11σz12 and cause a logical Z error. So in gen-
eral, this procedure is not fault-tolerant by the meaning
of Def. 1. However, we can get around this problem by
the following observation: if before the hole expansion,
the system is prepared in the ∣0ZDL⟩, then a logical Z error
has no effect on the state. The situation is the same for
the ∣+XDL⟩ state for anX-cut double qubit. Fortunately,
as we will see later, in this scheme we only need to expand
a Z-cut hole after creation a ∣0ZDL⟩ state and X-cut hole

1

2

3
4

5 6 7

8

9

10

( a ) ( b )

( c ) ( d )

11

12

FIG. 6. (Color online) Error propagation during an adiabatic
process to enlarge a hole of an X-cut logical qubit. Colored
squares indicate that the corresponding Xs, σx (yellow) and
Zp, σz (cyan) operators are turned on. The purple circle
around a qubit indicates a σz error occurs on that qubit. (a)
A σz error occurs on qubit 1. (b) Effective errors after the
adiabatic process. (c) An additional σz error occurs on qubit
4. (d) Effective errors after the adiabatic procedure to enlarge
the hole will cause a logical error after decoding.

after creation a ∣+XDL⟩ state, so the non fault-tolerance of
this procedure can be overcome.

C. Moving logical qubits

We now turn to the realization of logical gate opera-
tions in surface codes, like logical CNOT, S, Hadamard
and T gates. An element way to do these logical gates is
by adiabatically moving the holes around each other on a
single 2D lattice. In this section, we focus on the details
of hole movement by adiabatically deforming the system
Hamiltonian. We start with a scheme free of errors at
first and then discuss the corresponding error propaga-
tion and fault-tolerance.

1. Scheme

We focus on the Z-cut qubit in this section, the method
for the X-cut is similar. Consider a Z-cut qubit hole as
shown in Fig. 7. Initially, the system Hamiltonian is

H(t0) = −J
8

∑
i=5

σxi − J
14

∑
i=12

σxi − J
4

∑
j=1

Zpj +Hrest, (41)

whereHrest represents terms which are not altered in this
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FIG. 7. (Color online) Adiabatic process for moving a Z-cut
logical qubit hole horizontally right. Colored squares indicate
that the corresponding Xs, σx (yellow) and Zp, σz (cyan)
operator are turned on. Logical operators of the qubit are
XL and ZL in (a). An adiabatic process between (a) and (b)
maps XL to X ′L and ZL to Z′L. Similarly, an adiabatic process
between (c) and (d) maps X ′L to X ′′L and Z′L to Z′′L.

process but are shown in Fig. 7. We start with a circuit
G composed of gates {gl} generated by {Ql}. For illus-
tration purposes, we divide them into two groups. We
first expand the hole horizontally right as shown from
panel (a) to panel (b), and then we shrink the hole right-
ward, as shown from panel (c) to panel (d). Consider the
expansion procedure generated by:

Ql = iσxlZpl , 1 ≤ l ≤ 4, (42)

and the corresponding unitary transformations of the
Hamiltonian Ul = exp (ifl(t)Ql), for l from 1 to 4. We
can see that each Ql anticommutes only with Zpl , so we
can apply the adiabatic procedures generated by Q1, Q2,
Q3, Q4 simultaneously

H(t) = − J
4

∑
j=1

{ cos[f1(t)]Zpj + sin[f1(t)]σxj}

− J
8

∑
i=5

σxi − J
14

∑
i=12

σxi +Hrest,

(43)

for t ∈ [t0, t1], and obtain

H(t1) = −J
4

∑
i=1

σxi − J
8

∑
i=5

σxi − J
14

∑
i=12

σxi +Hrest (44)

at time t1 as shown in panel (b). At this time, all qubits
inside the hole are set to the ∣+⟩ state. To contract the

hole, rightward, we follow the circuit generated by Ql,

Ql = iZplσxl , 5 ≤ l ≤ 8, (45)

and the corresponding unitary transformation of the
Hamiltonian Ul = exp (ifl(t)Ql). We need to be a little
careful here, since Ql here anticommutes with two terms
in the Hamiltonian. For example, iσx5Zp5 anticommutes
with both σx5 and σx12 . To get around this, we turn off
the terms −Jσx12 , −Jσx13 , −Jσx14 in the above equation,
and turn on −Jσx9 , −Jσx10 , −Jσx11 instead. We can see
that this procedure doesn’t change the state of the system
and can be done either adiabatically or instantaneously,
making the Hamiltonian to be:

H ′
(t1) = −J

11

∑
i=1

σxi +Hrest. (46)

Ql now anticommutes with just one stabilizer generator
(which is σxl). Like the expansion process, we can adia-
batically deform the Hamiltonian:

H(t) = − J
8

∑
j=5

{ cos[f2(t)]σxj + sin[f2(t)]Zpj}

− J
4

∑
i=1

σxi − J
11

∑
i=9

σxi +Hrest,

(47)

for t ∈ [t1, t2], and obtain

H(t) = −J
8

∑
j=5

Zpj − J
4

∑
i=1

σxi − J
11

∑
i=9

σxi +Hrest, (48)

which completes a full cycle of hole movement and leaves
us ready for the next cycle of Hamiltonian deformation.
The original ground space will be mapped to the one with
a hole sitting one unit rightward of the original one (see
panel (d)), and XL and ZL will be mapped to X ′′

L and
Z ′′
L following Theorem. 1.

Remark 2. Note that the two steps of the adiabatic
expansion and contraction of the hole can be combined
into one step, if we turn off −σx12 , −σx13 , −σx14 while
turning on −σx9 , −σx10 and −σx11 at the beginning. So
we need just one time step to adiabatically deform the
system Hamiltonian to move a hole by one unit.

2. Error propagation and fault tolerance

Like the case of hole enlargement, there’s chance that
thermal errors will cause an excitation. Errors outside
or inside the holes will not be propagated by the pro-
cess. However, if errors occur on the boundary of the
hole before moving, they may potentially propagate to
uncorrectable logical errors. Consider the case in Fig. 8
for a 2 units movement rightward. Before expanding the
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FIG. 8. (Color online) Error propagation during adiabatic
process to move a hole of an X-cut logical double qubit hor-
izontally right. Colored squares and qubits indicate that the
corresponding Xs, σx (yellow) and Zp, σz (cyan) operators
are turned on. The purple circle around qubit indicates a σz

error occurs on that qubit and a red one indicates a σx error
occurs. (a) σz errors occur on qubit 1 and 2. (b) Effective
errors caused by σz1 and σz2 after adiabatic process. (c) σx

errors occur on qubit 1 and 2. (d) Effective errors caused by
σx1 and σx2 after adiabatic process.

hole horizontally right, assume σz errors occurs on qubit
1 and qubit 2, as shown in panel (a). They will be prop-
agated to:

σz1σz2 ↦ σz3σz4σz5σz6σz7σz8σz9σz10σz11σz12 , (49)

by the subsequent adiabatic operation, as shown in panel
(b). If we keep expanding the hole rightward, the errors
will occupy more than half of the qubits on the perimeter
of the hole, and cause a logical Z error after later decod-
ing. Similarly, if σx errors occur on qubit 1 and qubit 2,
the effective errors after the adiabatic procedure will be

σx1σx2 ↦ σz1σz2σz3σz4σz5σz6σz7σz8σz9σz10σz11σz12 ,
(50)

as shown in panel (d). In general, the adiabatic procedure
to move the hole on its own is not fault-tolerant, since
the circuit G we follow to build the adiabatic procedure
is not a fault-tolerant one, and the results from Ref. [24]
cannot be used here directly.

Fortunately, we can still make this process fault-
tolerant. Errors that occur on the boundary of the hole,
like qubit 1 and qubit 2 in this example, can be detected

after each step of hole movement by measuring the qubits
inside the hole after the expansion, since they are corre-
lated, as shown in Fig. 8. In this case, we will do σx
measurement on qubit 3, 4, 8, 9, 13 and 14, when we are
in panel (b). If any of these measurements give −1, it
indicates that errors (which could be σx or σz) occurred
on the boundary’s right side before the hole expansion,
and we need to turn off the system Hamiltonian and do a
full cycle of syndrome measurement and error correction
before they become uncorrectable. A σz error happens
on the boundary with probability about exp (−4cβJ) per
time step, while σx happens on the boundary with proba-
bility about exp(−2cβJ), so the probability that we must
do a full cycle of error correction during hole movement
is low.

In practice, measurements themselves involve errors
whose effect was discussed earlier in this section. Here,
we need to check the probability that the measurement
outcomes cause us to make a wrong decision about er-
ror correction. As an example, if a σz error occurs on
qubit 1 in panel (a), qubit 3 and 4 in panel (b) will not
be protected by an energy gap, and we assume that the
probability of a wrong measurement outcome in these
cases is p each time step. Meanwhile, if a σx error occurs
on qubit 1 in panel (c), qubit 3 and 4 in panel (d) are pro-
tected by an energy gap 4J . Fortunately, we can make

d/4 3d/8

d/4

(a) (b)

Measure these 
        qubits

...

FIG. 9. (Color online) Scheme to fault-tolerantly detect
errors occurring on the boundary. (a) Before the movement,
an error occurs on the boundary. (b) After expanding the hole
d/8 units rightward, the error propagates to a strip of errors.
We measure all qubits in the dashed box and determine if the
corresponding error happened on the boundary based on the
majority vote of the measurement outcomes of each row of
qubits.

the uncorrectable error rate arbitrarily small by growing
the lattice size and hole size, using majority vote. Con-
sider a square hole with perimeter d as shown in panel
(a) of Fig. 9. Now we expand the hole d/8 units right-
ward and measure σx in the dashed area of panel (b).
The number d/8 is chosen so that error detection can
be applied before an error can propagate to an uncor-
rectable error. If an error occurs on the boundary of
the hole before moving, it will corrupt an entire row of
qubits in the dashed area of panel (b) in Fig. 9. So, for
each row of qubits, we do a majority vote based on the
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measurement outcomes to determine whether an error
happened on the boundary. For any row, if more than
half of the measurement outcomes are −1, we infer that
an corresponding error occurred at the boundary of the
hole before moving, and therefore error correction must
be applied. Let E be the event that errors happened on
the boundary before movement, and let D be the event
that we decide to do decoding and error correction based
on the majority vote. Then the probability that such
errors occurred on the boundary and is not detected is
roughly

PL = P (D̄,E) = P (D̄∣E)P (E) ∼ O (
d

4
p⌊

d
16 ⌋+1e−4cβJ

) .

(51)
Here d/4 indicates that misidentification can occur on any
of d/4 rows. This gives a rough bound on the probability
of logical errors during the d/8 unit hole movement.

On the other hand, the probability that no error oc-
curred on the boundary, but we do an unnecessary de-
coding can be estimated as

PU = P (D, Ē) = P (D∣Ē)P (Ē) ∼ O (
d

4
p⌊

d
16 ⌋e−4cβJ

) .

(52)
We can see that both PL and PU can be made arbitrarily
small with the growth of hole size, and thus the adiabatic
movement process can be rendered fault-tolerant.

Remark 3. We only analyzed the error propagation for
the case of hole expansion. It is worth noting that for
the procedure to adiabatically contract the hole, errors
occurring on the boundary of the hole will not accumu-
late to uncorrectable logical errors, and thus can be left
for future error correction.

D. Creation of ∣0⟩ (∣+⟩) state for X (Z)-cut double
qubit

The second type of logical state initialization is to pre-
pare the ∣0⟩ state for an X-cut qubit or ∣+⟩ state for a
Z-cut qubit. We show an example for an X-cut qubit in
detail. For a Z-cut qubit, the procedure is similar.

This can be done using a logical Hadamard after ini-
tializing the ∣+⟩ state for X-cut qubit. However, we have
not shown how to perform a logical Hadamard yet, and it
is also extremely useful to directly initialize the ∣0⟩ state
for an X-cut qubit, as we will see in next few sections.

Suppose we have created a ∣+⟩ state for an X-cut qubit
with two holes attached to each other, as shown in panel
(a) of Fig. 10. The logical Z operator in this case can
be σz1 , σz2 or σz3 , and they all commute with the sys-
tem Hamiltonian. If we measure any one of them, we
can prepare the logical state ∣0⟩ or ∣1⟩. Either one is
useful as long as we know which state it is for certain.
If any σz errors occur on these qubits, it will have no
effect, and any single σx errors on these qubits suffers

XL2

XL1

1 2 3

XL2

XL1

1 2 3

(a) (b)

ZL

FIG. 10. (Color online) Creation of ∣0⟩ state for X-cut
double qubit. (a) Create a ∣+XDL⟩ with two holes attached to
each other. Measure σz1 , σz2 and σz3 and do majority vote to
determine whether ∣0X

DL⟩ or ∣1X
DL⟩ is prepared. (b) Move two

holes apart to increase error correction ability of σz errors of
the logical qubit. Note that both σz and σx errors on qubits
between two holes during the adiabatic movement have no
uncorrectable effect on logical state ∣0X

DL⟩ or ∣1X
DL⟩ and can

be left for future error correction.

an energy penalty of 4J and leaves Zp operators nearby
flipped and correctable by a future error correction pro-
cedure. However, when a σx happens on these qubits,
it will give an incorrect measurement outcome, and will
affect any future operations conditioned on whether the
state is ∣0⟩ or ∣1⟩. This can also be resolved by measur-
ing σz on all three qubits and taking the majority vote
to determine the measurement outcome. This procedure
can be extended to the square hole with perimeter d,
where there are d/4 qubits shared by two holes. Note
that the first measurement error is suppressed by the en-
ergy penalty, and occurs with probability exp(−4cβJ),
while the subsequent measurement errors may not suffer
an energy penalty. We assume that the probability to ob-
tain a wrong measurement result is p each time step. The
probability that we prepare a ∣0XDL⟩ (∣1XDL⟩) state with an
erroneous measurement −1 (+1) can be estimated to be:

PL ∼ O(p⌊
d
8 ⌋+1e−4cβJ

), (53)

which decreases rapidly with the growth of the hole size,
and can be made arbitrarily small. After the measure-
ment, we separate the two holes by distance d, as il-
lustrated in panel (b) of Fig. 10 for a single time step
of movement. It takes about d/2 time steps in total to
move the pairs of holes apart by distance d if the two holes
move simultaneously. Any σx and σz errors on qubit 1,
2, 3 will not propagate to uncorrectable errors during
the movement. The hole movement process can be done
adiabatically and fault-tolerantly with gap protection, as
described in the previous section. Thus, the whole state
preparation process can be made fault-tolerant.
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E. Logical Z (X) measurement for X (Z)-cut
double qubit

Like the case of initialization, there are two types of
measurement procedures. The first is measuring in the
Z (X) basis for an X (Z)-cut qubit while the second is
measuring in the Z (X) basis for a Z (X)-cut qubit.

The first type of measurement is essentially the reverse
process of creating the state ∣0⟩ (∣+⟩) for an X (Z)-cut
qubit. For an X-cut qubit shown in Fig. 10, we first
move two holes that are initially d units apart together
to contact each other, and then measure σz on all qubits
shared by the two holes and take a majority vote of the
outcomes. After that, we separate the two holes back
to their original positions. Note that unlike traditional
measurement-based QC on the surface code, this mea-
surement is non-destructive and we do not annihilate the
holes. The measurement procedure can also be viewed
as a logical state preparation that will be used in the
future computation. The second type of measurement
procedure will be discussed in Sec. IV G.

F. Holonomic Logical CNOT

The logical CNOT gate is one of the most impor-
tant logical operations in the surface code HQC scheme.
Based on our results on adiabatic hole movement, we can
realize the logical CNOT gate. In this section, we show
that by adiabatically braiding one hole around a different
type of hole, we can get a closed loop holonomy which
can be recognized as a logical CNOT. Starting from panel
(a) of Figs. 11 and 12, the adiabatic movement proce-
dure is shown in details from panel (b) to panel (f). In
Fig. 11, following the discussion in Sec. IV C and Theo-
rem. 1, XL1 ⊗ IL2 transforms to XL1 ⊗XL2 up to a mul-
tiplication by Xs stabilizer generators inside the dashed
square. We can conclude that XL operators transform in
the following way:

XL1 ⊗ IL2 →XL1 ⊗XL2 ,

IL1 ⊗XL2 → I
L1 ⊗XL2 .

(54)

Similarly, from Fig. 12, we can see that IL1 ⊗ZL2 trans-
forms to ZL1 ⊗ZL2 up to multiplication by Zp stabilizer
generators inside the strip. The ZL operators transform
as:

ZL1 ⊗ IL2 → ZL1 ⊗ IL2 ,

IL1 ⊗ZL2 → ZL1 ⊗ZL2 .
(55)

The closed loop adiabatic evolution can be recognized as
a closed loop holonomy which gives a logical CNOT with
a Z-cut qubit as the control and an X-qubit as the target.

( a ) ( b ) ( c )

( d ) ( e ) ( f )

}XL1 Z-cut

{X-cut

XL2

’
X =L1 X XL1 L2

FIG. 11. (Color online) Adiabatic braiding process of a Z-
cut hole (dark blue) around an X-cut hole (orange) . The
operator XL1 has been stretched to multiply a loop of σx

operators which is equivalent to XL2 up to multiplication by
Xs stabilizer generators (yellow) inside the loop, while XL2

remains the same under the transformation.

( a ) ( b ) ( c )

( d ) ( e ) ( f )

}
ZL1

Z-cut

{X-cut ZL2

ZL1

’
Z =Z Z  L2 L1 L2

FIG. 12. (Color online) Adiabatic braiding process of a Z-cut
hole (dark blue) around an X-cut hole (orange). The oper-
ator ZL2 has been stretched to form a strip of σz operators,
which is equivalent to ZL1 up to multiplication by Zp stabi-
lizer generators (cyan) inside the strip, while ZL1 remains the
same under the transformation.
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It also reflects the topological property of braiding on 2D
lattice since local deformation of movement path does not
have effects on the state. Note that the fault-tolerance
of this operation is guaranteed by the fault-tolerance of
adiabatic hole movement.

CNOTs from Z-cut qubits to X-cut qubits are not
enough. We need to extend to CNOTs between logical
qubits of the same type. For Z-cut qubits, we have the
following circuit:

Z-cut control in ● Z-cut control out

∣0XDL⟩ MZ

∣+ZDL⟩ ● Z-cut target out

Z-cut target in ● MX

which is equivalent to Z
(1−MX)/2
L on the target qubit fol-

lowed by a CNOT, then followed by X
(1−MZ)/2
L on the

target qubit. Similarly, the CNOT between two X-cut
logical qubits can be built from following circuit:

∣0XDL⟩ X-cut control out

X-cut control in MZ

∣+ZDL⟩ ● ● ● MX

X-cut target in X-cut target out

up to a correction of logical Xs and Zs. The last kind of
CNOT, with an X-cut qubit as control and a Z-cut as
target, can be obtained from the circuit realizing CNOT
between Z-cut qubits:

∣0XDL⟩ X-cut control out

X-cut control in MZ

∣+ZDL⟩ ● ● ● MX

Z-cut target in Z-cut target out

Note that for all four different logical CNOTs, the build-
ing block is the CNOT from Z-cut to X-cut. In addition,
we also need to prepare ancillas in logical ∣0XDL⟩ and ∣+ZDL⟩

(which is shown in Sec. IV D), and to do Z measurements
of X-cut qubits and X measurements of Z-cut qubit (as
discussed in Sec. IV E). All of these procedures can be
done fault-tolerantly, and thus make all kinds of logical
CNOT fault-tolerant.

G. Measurement of Z (X) basis for Z (X)-cut
double qubit

This type of measurement is necessary when doing
state distillation (discussed later). Naively, this process
can be done by contracting the size of the hole and doing
stabilizer measurements. However, stabilizer measure-
ment is not compatible with the system Hamiltonian.

What is worse, we close the hole after the measurement
to destroy the logical qubit, and we cannot reuse it later.
To avoid these problems, we can use the following circuits
for Z and X measurement of Z-cut and X-cut qubits, re-
spectively:

∣ψZDL⟩ ● ∣ψXDL⟩

∣0XDL⟩ MZ ∣+ZDL⟩ ● MX

These circuits take an ancilla state ∣0XDL⟩ or ∣+ZDL⟩, and
a logical CNOT with a Z-cut qubit as the control and
an X-cut qubit as the target, which can both be realized
fault-tolerantly. Thus, this type of measurement proce-
dure is fault-tolerant. Note that, like the measurement
of the first type in Sec. IV E, this measurement proce-
dure doesn’t annihilate the hole after measurement. The
ancilla qubits after measurement are effectively prepared
to ∣0XDL⟩ (or ∣1XDL⟩) fault-tolerantly, which can be used
again as ancillas for future computation.

H. Ancilla recycling

As we have seen so far, to implement different types of
CNOTs, we need to frequently create and measure log-
ical qubits. Moreover, state distillation procedures also
need large number of fresh ancilla qubits and logical state
measurements. We have discussed two different types of
state creation—∣0⟩ (∣+⟩) for X (Z)-cut and ∣0⟩ (∣+⟩) for
Z (X)-cut—and two different types of measurement—
X (Z) measurement for Z (X)-cut qubit and Z (X)

measurement for Z (X)-cut qubit. All can be done
fault-tolerantly with constant gap protection, and both
kinds of logical state measurement can be made non-
destructive, so states after measurement can be reused
as ancillas to avoid having to create a new logical qubits.
This is particularly important, as we have seen that to
create a logical state we need to turn off some Xs or Zp
operators, whose eigenvalues are uncertain when stabi-
lizer Hamiltonian is turned on. With this ancilla recy-
cling process, we can prepare all logical qubits, data or
ancilla, right after we turn on the system Hamiltonian at
the very beginning of the computation and never create
new logical qubits during the computation.

I. State injection

As will be seen in Sec. IV K and IV L, to get the log-
ical S, T and Hadamard gates, we need to create par-
ticular logical ancilla states ∣YDL⟩ =

1√
2
(∣0DL⟩ + i∣1DL⟩)

and ∣ADL⟩ = 1√
2
(∣0DL⟩ + e

iπ/4∣1DL⟩). However, there’s

no obvious way to perform arbitrary rotation of logical
qubit with large distance and local Hamiltonians trans-
formation. To deal with this problem, we need to create
a logical qubit in which the logical Z operator is just one
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FIG. 13. (Color online) State injection for a X-cut qubit.
Colored squares indicate that the corresponding Xs (yellow)
and Zp (cyan) operator is turned on.

σz on single qubit, with the stabilizer Hamiltonian turned
on. We focus on X-cut double qubits. We first put an
existing X-cut qubit into the state ∣+XDL⟩ with the two
holes attached to each other, as in panel (a) of Fig. 13.
This can be done by doing a logical X measurement on
an existing X-cut qubit (Sec. IV G) and moving the two
holes together. Without loss of generality, assume the
state after measurement to be ∣+XDL⟩. Note that ZL = σz5
is equivalent to ZL1ZL2 up to multiplication by Zp oper-
ators, as shown in panel (a), which gives:

σz5 = Zp1Zp2Zp3ZL1ZL2 . (56)

For the ∣±XDL⟩ state, the effect of σz5 is

σz5 ∣±
X
DL⟩ = σz5 ∣±

X
SL⟩1∣±

X
SL⟩2

= ZL1ZL2 ∣±
X
SL⟩1∣±

X
SL⟩2

= ∣∓
X
SL⟩1∣∓

X
SL⟩2.

(57)

Applying a pulse Vc = gσz5 for a short time τ , with Hamil-
tonian

H =Hstab + Vc, (58)

we can see that [Vc,Hstab] = 0, where Hstab is the sta-
bilizer Hamiltonian shown in panel (a). The pulse will
not cause a transition from the ground space to another
eigenspace of Hstab. If τ is chosen such that gτ = θ/2, we
have the state evolution:

exp(−i
θ

2
σz5) ∣+

X
SL⟩1∣+

X
SL⟩2

=
e−i

θ
2

√
2

(
∣+XSL⟩1∣+

X
SL⟩2 + ∣−XSL⟩1∣−

X
SL⟩2√

2

+ei
θ
2
∣+XSL⟩1∣+

X
SL⟩2 − ∣−XSL⟩1∣−

X
SL⟩2√

2
)

=
e−i

θ
2

√
2

(∣0XDL⟩ + e
iθ
∣1XDL⟩) ,

(59)

which gives the desired state we want to inject. Note that
if a σx5 error occurs, it will suffer from the energy penalty,

and cause the Zps adjacent to it to be flipped, leaving
the syndrome for future error correction. On the other
hand, the imprecise control of the pulse Vc can affect
the state injected and cannot be detected. However, as
long as rate of σz5 error is lower than a threshold, logical
states ∣YDL⟩ and ∣ADL⟩ can be obtained with sufficient
precision by state distillation [48]. Then two holes can
be adiabatically separated to distance d to better protect
against errors, as illustrated in panel (b) of Fig. 13.

The process of state injection for a Z-cut qubit is
slightly more complicated. We first inject state the
∣ψ⟩ = ∣Y ⟩ or ∣A⟩ for an X-cut qubit and prepare a Z-
cut qubit in state ∣+⟩ and then we swap the state of these
two logical qubits using following circuit:

∣ψXDL⟩ ● ∣+XDL⟩

∣+ZDL⟩ ● ● ∣ψZDL⟩

Note that the ∣+XDL⟩ is ready to be reused for state in-
jection, and all process included here can be done fault-
tolerantly.

J. State Distillation

The logical ancilla states, ∣Y ⟩ = ∣0⟩ + i∣1⟩ and ∣A⟩ =

∣0⟩+eiπ/4∣1⟩ after injection are not good enough in general
for the purpose of fault-tolerant QC. Fortunately, they
can be distilled to much higher fidelity [49]. The reversed
encoding circuit for 7-qubit Steane code can be used to
distill the ∣Y ⟩ state, with seven input logical states ap-
proximately equal to ∣Y ⟩ [39] as shown in Fig. 14. The
output ∣ψ⟩ will be closer to the logical ∣Y ⟩ state. Repeat-

FIG. 14. Circuits for logical ∣Y ⟩ distillation from imperfect

∣Ỹ ⟩ states.

ing this process multiple times, arbitrarily high fidelity
∣Y ⟩ states can be obtained exponentially quickly if the
original fidelity of the input states is higher than some
threshold [48]. A similar distillation circuit exists for the
∣A⟩ state, as shown in Fig. 15, which is the reverse of the
encoding circuit for the [[15,1,3]] truncated Reed-Muller
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FIG. 15. Circuits for logical ∣A⟩ distillation from imperfect

∣Ã⟩ states.

code [39, 50]. As before, given a good enough input ∣A⟩

state, the convergence is rapid.

Note that these distillation circuits use CNOTs be-
tween the same type of qubits, and both types of logical
state measurements described in Sec. IV E and IV G.
If the input states are X-cut qubits, then the logical X
measurements are of the second kind, and the states af-
ter measurement are ∣+XDL⟩ or ∣−XDL⟩, which are ready to
be reused to inject ∣Y ⟩ or ∣A⟩ for future state distilla-
tion. The logical Z measurements are of the first type,
and will prepare logical states ∣0XDL⟩ or ∣1XDL⟩. To recycle
these logical qubits to inject new ∣Y ⟩ or ∣A⟩, we need to
reset them to ∣+XDL⟩ or ∣−XDL⟩, which can be done by a
subsequent logical X measurement:

∣ψXDL⟩ MZ ∣+XDL⟩ or ∣−XDL⟩

∣+ZDL⟩ ● MX

Note that the ancilla states ∣+ZDL⟩ or ∣−ZDL⟩ introduced
here after logical X-measurement can also be reused di-
rectly as ancilla for another logical X-measurement. The
recycling process for Z-cut qubit inputs is similar.

K. Logical Phase and T Gates

Given the distilled ∣Y ⟩ state, we can implement
high quality logical S gates and logical RXL (π/2) =

exp (−iπ
4
XL) gates using the following circuits [39]:

∣YDL⟩ ● ZLXL SL∣ψDL⟩

∣ψDL⟩ MZ ●

∣YDL⟩ ZLXL RXL (π/2)∣ψDL⟩

∣ψDL⟩ ● MX ●

If the measurement outcome is +1, nothing needs to be
done; otherwise, do a ZX gate. Note that this ZX gate
can be done in “software” rather than physically.

The non-Clifford gates play a central role in quantum
speedup [3], and are necessary to obtain a universal gate
set. For the surface code, the logical T gate is imple-
mented with high quality distilled logical ∣A⟩ states using
this circuit [40]:

∣ADL⟩ ● ZLXLSL TL∣ψDL⟩

∣ψDL⟩ MZ ●

If the logical Z measurement yields a +1 outcome, the
output state is the desired one. If the measurement yields

a −1 outcome, the output is XLT
†
L∣ψDL⟩ and ZLXLSL

needs to be applied to get TL. Again, the logical X and
Z gate can be done in classical “software” rather than
physically. Details of commuting XL, ZL through SL
and TL for classical software control were discussed in
Sec.XVI.A of Ref. [40]. As usual, the states after the
measurements in these circuits can all be recycled and
used as ancillas for logical CNOT gates, state injection
and state distillation in future computational steps.

L. Hadamard

In the existing, measurement-based QC on the surface
code, a logical Hadamard is realized by first digging a
“moat” around the double logical qubits by measuring
single qubits around the double hole to create a logical
qubit island. On the “island”, a logical Hadamard gate is
then realized by a sequence of code deformations through
single qubit and stabilizer measurements, and then the
“moat” at last is repaired [40]. This version of logical
Hadamard is easy and efficient enough in measurement-
based QC, but difficult to implement in our system when
the stabilizer Hamiltonian is turned on. Instead, the log-
ical Hadamard gate can be done directly:

Had = S ⋅RX(π/2) ⋅ S. (60)

Both logical S and RX(π/2) are fault-tolerant but heav-
ily rely on the state distillation of logical ∣Y ⟩ state.
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There is a more efficient way to do a logical Hadamard,
as illustrated in Ref. [51], by introducing a nontrivial do-
main wall on the lattice and moving the holes across the
wall. The wall can be created by shifting the geometry of
the lattice along a line, as shown in Fig. 16. The five body
interaction terms terminating the dislocation are called
twists [51]. One can see that the insertion of two twists
changes the degeneracy of ground space. This can form
an additional logical qubit, which we call gauge qubit F .
The corresponding logical operators of this qubit are also
shown in Fig. 16.
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FIG. 16. (Color online) A dislocation in the geometry of
the Hamiltonian produced by shifting the stabilizer generators
along a line between two twists. The stabilizer generators cor-
responding to two different parallelograms (yellow/cyan and
cyan/yellow) and a pentagon (dark gray) are shown on the
right side. A pair of anticommuting strings of Pauli operators
L1 (solid red) and L2 (dashed blue) that commute with all
stabilizer generators forms the logical operators of the extra
qubit F attached to the pair of twists.

If a single Z (X)-cut hole is adiabatically dragged
across the wall, it will change to a X (Z)-cut hole, as
shown in Fig. 17. However, note that this process can
also change the state of F , since it will change logical
operators L1 and L2. This effect in general will yield ad-
ditional entanglement between data qubit and F . How-
ever, if we drag the second hole of the logical data qubit
across the wall, it will reverse the change caused by the
first hole and leave the state of F unchanged. In sum-
mary, adiabatically moving two holes of a logical qubit
across the wall will give a state transformation on the
data qubit:

∣ψZDL⟩→ Had ∣ψXDL⟩, ∣ψXDL⟩→ Had ∣ψZDL⟩, (61)

for Z-cut qubits and X-cut qubits. Another problem of
this method is that it will change of the type of qubits
we are working on. However, we can use an ancilla to
swap the data qubit back by the circuit

( a ) ( b ) ( c )
twists

FIG. 17. (Color online) Adiabatically moving a pairs of holes
of a Z-cut qubit (dark blue holes) across a twist on the surface
to get a logical Hadamard gate. This process will transform
a Z-cut qubit to an X-cut qubit (orange holes).

∣ψZDL⟩ ● ● ∣0ZDL⟩ or ∣+ZDL⟩

∣0XDL⟩ or ∣+XDL⟩ ● ∣ψXDL⟩

for a Z-cut qubit, and

∣ψXDL⟩ ● ∣0XDL⟩ or ∣+XDL⟩

∣0ZDL⟩ or ∣+ZDL⟩ ● ● ∣ψZDL⟩

for an X-cut qubit. The position of the twists can be
fixed on the lattice so that they can be used repeatedly
for Hadamard gates.

V. FAULT-TOLERANCE OF THE SCHEME

We have described a way to fault-tolerantly implement
QC in surface codes with a constant energy gap to sup-
press errors in a thermal environment. Table. II lists a
summary of each procedure. Note that although adia-
batic hole enlargement and state injection are not them-
selves fault-tolerant, they do not affect the fault-tolerance
of the whole QC scheme. In addition to gap protection
during the computation, fault-tolerance is guaranteed by
performing single qubit and syndrome measurements be-
fore errors can propagate to become uncorrectable. We
discuss the interval betweens syndrome measurements in
Sec. V A.

So far, the error models we considered are induced
by weak coupling to a thermal bath. We also need to
consider other decoherence channels, which may affects
qubits collectively or directly act on logical qubits. In
this section, we will discuss two of them: local perturba-
tions and adiabatic errors. In the following sections we
show that they can both be exponentially bounded.

A. Error correction

A proper time period to turn off the system Hamil-
tonian and do error correction, in the case that there
are no errors detected during the adiabatic hole move-
ment process, is crucially important. We assume that
syndrome measurement is done every m time steps, and
m exp(−2cβJ) can be regarded as the error rate on each
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Process Gap protection Fault-tolerance Dynamics Number of time steps

Creation ∣0⟩ (∣+⟩) for Z (X)-cut qubit Yes Yes Adiabatic ∼ d/2

Creation ∣0⟩ (∣+⟩) for X (Z)-cut qubit Yes Yes Adiabatic+Measurement ∼ d

Z (X) measurement for X (Z)-cut qubit Yes Yes Adiabatic+Measurement ∼ d

Z (X) measurement for Z (X)-cut qubit Yes Yes Adiabatic+Measurement O(d)

Hole enlargement Yes No Adiabatic ∼ d/2

Hole movement Yes Yes Adiabatic N/A

Logical CNOT Yes Yes Adiabatic+Measurement O(d)

State injection Yes No Adiabatic+ Pulse control ∼ d

State distillation Yes Yes Adiabatic+Measurement N/A

Logical S, T , Hadamard Yes Yes Adiabatic+Measurement N/A

TABLE II. Summary.

qubit for every m time steps (m exp(−2cβJ) ≪ 1), since
all processes necessary for universal QC are protected
by a gap of at least 2J . Besides thermal errors accu-
mulating on each qubit, the following types of physical
errors can occur in a single syndrome measurement cycle
in Sec. II A [40]:

1. σx error occurs when a syndrome qubit is initialized
to ∣0⟩, with probability p.

2. The Hardamard gate on syndrome qubit is not per-
fect. There is extra σx, σy or σz error following the
gate, each with probability p/3.

3. Error occurs when a syndrome qubit is measured,
with probability p.

4. CNOT gate on syndrome qubit-data qubit CNOT
is not perfect, but with following erros: I ⊗ σx,
I ⊗ σy, I ⊗ σz, σx ⊗ I, σx ⊗ σx, σx ⊗ σy, σx ⊗ σz,
σy ⊗ I, σy ⊗ σx, σy ⊗ σy, σy ⊗ σz, σz ⊗ I, σz ⊗ σx,
σz ⊗ σy or σz ⊗ σz, each with probability p/15.

Note that one needs several cycles of syndrome measure-
ments to establish values of syndrome before actual de-
coding. Then, the logical error rate of surface code for
m time steps with active error correction can be roughly
estimated as [40]

PmL ≈ d
d!

(de − 1)!de!
(me−2cβJ

+ 7p)
de
, (62)

where de = (d + 1)/2. A plot of this estimate is shown
in Fig. 18, for various values of cβJ , p and m. We
can use these scaling relations to estimate the number of
qubits needed to obtain a desired error rate after error
correction. Our goal is that the error rate after the whole
computer procedure is bounded by some particular value
δ ≪ 1. Denoted by M the product of number of logical
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FIG. 18. (Color online) Logical error rate per m time steps
for various values of m and d. The dashed lines are for cβJ = 8
and solid lines for cβJ = 12. The blue (top), green (second
top), red (third) and yellow (bottom) lines are for d = 7, d =
11, d = 15 and d = 19, respectively.

operation and the number of logical qubits used in an
algorithm. We need to have:

PmL ≲
mδ

dM
, (63)

since each logical operation needs about d time steps in
our scheme. For a particular computation like Shor’s
algorithm implemented on surface codes, M is of the or-
der larger than 1014 [34]. We can choose p = 0.001 and
cβJ = 12, which may be achievable in current experi-
ments. Also, set δ = 0.1, d = 11 and m = 108, then we
have PmL ≈ 10−8, which satisfies the condition of Eq. (63).
This requires a number of data and measurement qubits
ntot = (2d − 1)2 ≈ 450 to protect a logical qubit, and per-
form Shor’s algorithm with reasonable success probabil-
ity. We can see that if large cβJ is not achievable, one can
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always choose a code with larger distance and more fre-
quent error correction to compensate for the small cβJ .
However, if the cβJ can increase to 15, we can even re-
duce d to 7 and nq to about 170, with m = 1010 and same
value of δ, making it more efficient to build a scalable
QC in the near future.

B. Local perturbation

Perturbations will split the degeneracy of the ground
space and cause stochastic phase errors between differ-
ent logical states. This is one of the main obstacles to
realizing non-Abelian holonomic quantum gates on sys-
tem with a small number of qubits. However, for sur-
face codes, the splitting of the ground space (and any
other error space) caused by local perturbations will de-
cay exponentially with the distance of the surface code,
as shown by Kitaev in Ref. [10]. Actually, any system
with quantum topological order is in general stable un-
der local perturbations [31]. This might suggest that
holonomic QC is more naturally suitable with systems
with topological order than systems with small number
of qubits. Consider a local perturbation of the general
form:

Vlocal = −∑
j

hj σ⃗j −∑
j<p

Jjp(σ⃗j , σ⃗p), (64)

which includes all one-qubit and two-qubit interactions.
The effect of Vlocal only occurs in the d/2−th order of
perturbation theory, and the energy splitting vanishes as

∆split ∼ O (Je−vd/2) , (65)

where v = minij{ln(J/∣hi∣), ln(J/∥Jij∥1)}, which de-
creases quickly with growth of the code distance. Con-
sider the case when d = 11, J = 1. To achieve an error rate
of order 10−15, we must to control the values of ∣hi∣/J and
∥Jij∥1/J so that they are less than 10−3, which is practi-
cally achievable for current or near future technology.

C. Adiabatic error

Another type of error corresponds to imperfect adi-
abatic evolution. We now discuss adiabatic theorem
briefly and their application to bound the corresponding
error. The traditional version of the adiabatic theorem
stated in [47] says that the adiabatic approximation is
satisfied with precision δ ≤ ε2 during adiabatic evolution
if the condition

supt∈[0,T ] ∥ Psα(t)
∂
∂t
H(t)Psβ(t) ∥1

inft∈[0,T ]K (εsα(t) − εsβ(t))
2

≤ ε, for any α ≠ β,

(66)

is satisfied (K is the dimension of the code space). In the
case of our adiabatic process, this is equivalent to

sup
q,t∈[tq−1,tq]

π∣∂tfq(t)∣

4
≤ ε (67)

for the qth time segment. However, it is known that
this statement is neither sufficient nor necessary, and
we can obtain better results [52, 53]. Here we apply
the result in [53] to our piecewise adiabatic evolution,
serial or parallel, as described in Sec. III, for the qth
time segment. We can set Tq = tq − tq−1, for a Hamil-
tonian H(ϑ)(ϑ = t/Tq) that is analytic near the region
[0,1] in the complex plane, with the absolute value of
the imaginary part of the nearest pole being γ, and the
first N ≥ 1 derivatives at boundaries equal to zero, i.e.,
H(l)(0) =H(l)(1) = 0 for l ≤ N . If we set

Tq =
e

γ
N

ξ2
q

∆3
min

, (68)

with ξq = supϑ∈[0,1] ∥ dH/dϑ ∥∞ (where the ∥ ⋅ ∥∞ is

standard operator norm, and ∆min = 2J), then the adia-
batic approximation error satisfies

δad ≤ (N + 1)γ+1e−N , (69)

or equivalently,

δad ≲ (cqTq + 1)γ+1e−cqTq , (70)

with cq =
γ∆3

min

eξ2q
. In other words, we can decrease the

adiabatic error exponentially with evolution time Tq, if it
is carefully set to be proportional toN and fq(t) is chosen
such that a) the boundary condition mentioned above is
satisfied, and b) H(ϑ) is analytic near region [0,1] on the
complex plane. The adiabatic error for typical processes
listed in Table. II can then be bounded by

δad ∼ O (d ⋅ sup
q

(cqTq + 1)γ+1e−cqTq) . (71)

So in principle, we can make adiabatic process arbitrarily
small with careful chosen {Tq} and {fq}. Note that the
thermal error rate decreases exponentially with J , while
the during of each adiabatic time segment decreases as
the cube of J at fixed temperature, so the processing
time overhead of an adiabatic process can be small if J
is large.

Remark 4. We’ve analyzed that it is possible to use on
the order of 102 physical qubits to protect a single logical
qubit in practical quantum computation with protection
by a constant gap enabling fault-tolerant QC in surface
codes. This is quite efficient compared to the existing
QC scheme in surface codes [40]. However, the assump-
tion here is that the thermal error model is local, and the
stabilizer Hamiltonian is fundamental, given by Nature.
Such 4-body Xs and Zp interactions are hard to build
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directly, and usually needs certain techniques, like quan-
tum gadgets [54, 55], digital quantum simulator [56, 57] ,
the low energy approximation from Kitaev’s honey-comb
model [58] or to be generated dynamically [59]. If the
Hamiltonian is effective, rather than being fundamental,
it may dramatically change the local thermal error model
we have assumed, and cause nonlocal errors. This possi-
bility calls for future investigation.

VI. SUMMARY AND CONCLUSION

We have outlined a scheme for fault-tolerant universal
HQC based on surface codes, with stabilizer Hamiltonian
to protect quantum information encoded in the degener-
ate ground space, from both thermal errors and small
perturbations. We explicitly constructed all necessary
processes with energy gap protection and parallel oper-
ations. These processes include logical state creation, a
logical universal gate set, and logical state measurement.
Logical state initialization and measurement are realized
by open-loop adiabatic evolution and measurements on
single qubits compatible with system Hamiltonian, while
the logical CNOT is implemented by a closed-loop holo-
nomic operation. All other logical gates can be imple-
mented using the logical CNOT, logical state prepara-
tion, and logical state measurement. It is worth men-
tioning that if a twist is allowed to exist on the surface,
the logical Hadamard can be done much more efficiently.
Conditions for active error correction are also discussed.
The number of physical qubits needed to protect a log-
ical qubit for fault-tolerant QC can reduce to the order
of 102, if large coupling constant J and low temperature
are achievable in experiment.

Theoretical and experimental progress in non-Abelian
HQC for single-qubit operations has been made recently,
through both adiabatic [60] and non-adiabatic evolu-
tion [61–64] on various of physical systems. Applying our
scheme to an actual physical system needs local 4-body
interactions. Several theoretical proposals have been pro-
posed to build such interactions effectively, which include
low energy perturbations [54, 55, 58] of systems with
strong two body interactions, and dynamic simulation
[56, 57, 59]. As argued in Sec. V, the effect of such effec-
tive interaction on local error models needs further study.
It is important to find out under what conditions these
effective Hamiltonians behave like the ideal ones in open
quantum systems.

We concentrated on surface codes in this paper, but we
hope the methods can be extended to fault-tolerant QC
schemes with constant gap protection on other topologi-
cal codes, including color codes [35, 65] and Turaev-Viro
codes [30].

Another interesting question is, could it be possible to
do QC fault-tolerantly on an arbitrarily large scale with-
out any active error correction? It has been shown that it
is possible to do so with 6D topological color codes [66].

In our scheme on a 2D lattice, if J is very large and
the temperature is sufficiently low (which is certainly a
challenging engineering problem), then for practical algo-
rithm, it may not be necessary to do active error correc-
tion. It has also been shown that a self-correcting quan-
tum memory to store quantum information for a poly-
nomially (or even exponentially) long time in the lattice
size exists, if long range interactions between anyons is
allowed [67–71]. Theoretical work to realize such a long
range interaction was also proposed in [59, 72]. Long
range interaction can freeze the density of excited anyons
on the lattice for such a long time that logical errors are
quite unlikely to happen. One may ask whether such in-
teractions can be allowed when we adiabatically deform
the stabilizer Hamiltonian in our scheme. One difficulty
here is that, when enlarging or moving the holes, it is
hard to define the concept of anyons on the boundaries
of the holes. How to introduce similar long range in-
teractions during hole movement and enlargement is an
interesting problem, and if it is possible, one may be able
to implement self-correcting QC on a 2D lattice.

Addendum: When writing this manuscript, we note that
Cesare, Landahl, Bacon, Flammia and Neels have pub-
lished a manuscript [73] with the idea of implementing
adiabatic TQC. There is a similarity of underlying spirit
for both schemes: protecting quantum information with
a constant energy gap during the process of quantum
computation on topological codes. However, they differ
a great deal in how they implement logical state prepa-
ration, measurement, state injection and uses of logical
ancilla states. Also, we don’t restrict ourselves to adia-
batic process. Finally, we analyze the errors carefully to
establish the fault-tolerance of our scheme.
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Appendix A: Geometric Formulation of HQC

In this section, we introduce a more abstract geometric
setting of holonomic problem which is useful to prove
the results in Sec. III. We focus on the ground space for
simplicity, however, the formalism is general and can be
applied to any eigenspace of system Hamiltonian.

Suppose we have a family of Hamiltonians acting on
the Hilbert space CN , and the ground state of each
Hamiltonian is K-fold degenerate (K < N). The natural
mathematical setting to describe this system is the prin-
cipal bundle (SN,K(C),GN,K(C), π,U(K)), which con-
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sists of the Stiefel manifold SN,K(C), the Grassmann
manifold GN,K(C), the projection map π ∶ SN,K(C) →

GN,K(C), and the unitary structure group U(K). We
will explain the meaning of these mathematical objects
in details below.

The Stiefel manifold is defined as:

SN,K(C) = {V ∈M(N,K;C)∣V †V = IK}, (A.1)

where M(N,K;C) is the set of N ×K complex matrices
and IK is the K−dimensional unit matrix. Physically,
each column of V ∈ SN,K(C) can be regarded as a nor-
malized state in CN , and V can be viewed as an orthonor-
mal set of K basis of the ground space of Hamiltonian:

V = {∣ϕ1⟩, ∣ϕ2⟩, . . . , ∣ϕK⟩}. (A.2)

Note that we have freedom to transfer from one orth-
normal basis of to another through unitary transforma-
tion, we can define a unitary group U(K) that acts on
SN,K(C) from the right:

SN,K(C) ×U(K)→ SN,K(C), (V,h)↦ V h, (A.3)

by the matrix product of V and h. V and V h can be re-
garded as two different orthonormal basis corresponding
to the same ground space.

During the adiabatic evolution, the ground space of
the Hamiltonian will change. The ground space can be
represented as a K-dimensional hyperplane in CN . So
we introduce the Grassmann manifold in CN :

GN,K(C) = {P ∈M(N,N ;C)∣P 2
= P,P †

= P,TrP =K},
(A.4)

where P is a projection operator onto the hyperplane
in CN , and the condition TrP = K indicates that the
dimension of the hyperplane is K. In our scenario, P ∈

GN,K(C) can be regarded as the projector onto the K-
dimensional ground space of the Hamiltonian.

The relationship between the orthonormal basis V and
ground space P can be seen as follows. We define the
projection map π ∶ SN,K(C)→ GN,K(C) as

π ∶ V ↦ P ∶= V V †. (A.5)

The corresponding ground space projector can be ob-
tained when the orthonormal basis is given. We can see
that the basis V and basis V h with h ∈ U(K) belong to
the same ground space, since

π(V h) = (V h)(V h)†
= V hh†V †

= V V †
= π(V ). (A.6)

For the purpose of the paper, we want to transform
the ground space adiabatically during the procedure. To
formulate such a process, we need also define the left
action of the unitary group U(N) on both SN,K(C) and
GN,K(C) by the matrix product:

U(N) × SN,K(C)→ SN,K(C), (g, V )↦ gV, (A.7)

and

U(N) ×GN,K(C)→ GN,K(C), (g,P )↦ gPg†. (A.8)

It is easy to check that π(gV ) = gπ(V )g†. This action is
transitive: there is a g ∈ U(N) for any V,V ′ ∈ SN,K(C)

such that V ′ = gV . There is also a g ∈ U(N) for any
P,P ′ ∈ GN,K(C) such that P ′ = gPg†. So this action is
sufficient to describe any ground space transformation.
This is why we choose to use the form of Hamiltonian
deformation in Eq. (21).

We can further study the topological structure of
SN,K(C) and GN,K(C) for completeness. For each point
V in SN,K(C), we can define an isotropy group:

IS(V ) = {g ∈ U(N)∣gV = V }, (A.9)

which is isomorphic to U(N −K) for all V ∈ SN,K(C).
Similarly, we can define an isotropy group for each P ∈

GN,K(C):

IG(P ) = {g ∈ U(N)∣gPg†
= P}, (A.10)

which is isomorphic to U(K) × U(N − K) for all P ∈

GN,K(C). Thus, SN,K(C) ≅ U(N)/U(N − K) and

GN,K(C) ≅ U(N)/(U(K) ×U(N −K)) [74].
The canonical connection form on SN,K(C) is defined

as a u(K)-valued one-form on GN,K(C):

A = V (P )
†dV (P ), (A.11)

which is a generalization of the WZ connection in
Eq. (15). This is the unique connection that is invari-
ant under the transformation in Eq. (A.3):

Ã =h†V (P )
†d (V (P )h)

=h†Ah + h†dh.
(A.12)

We apply this formalism to the system dynamic of
HQC. The state vector ∣ψ(t)⟩ ∈ CN evolves according
to the Schrödinger equation:

i
d

dt
∣ψ(t)⟩ =H(t)∣ψ(t)⟩. (A.13)

The Hamiltonian has a spectral decomposition,

H(t) =
L

∑
l=0

εl(t)Pl(t), (A.14)

with projection operators Pl(t). Therefore, the set of
energy eigenvalues (ε0(t), . . . , εL(t)) and orthogonal pro-
jectors (P0(t), . . . , Pl(t)) encodes the information of the
control parameters of the system. For the ground space,
we write P0(t) as P (t) for simplicity. Suppose the degen-
eracy K = Tr{P (t)} is constant. For all t, there exists
V (t) ∈ SN,K(C) such that P (t) = V (t)V †(t). By the adi-
abatic approximation, we can substitute for ∣ψ(t)⟩ ∈ CN
a reduced state vector φ(t) ∈ CK :

∣ψ(t)⟩ = V (t)φ(t). (A.15)
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Since H(t)∣ψ(t)⟩ = ε0(t)∣ψ(t)⟩, the Schrödinger equation
(A.13) becomes

dφ

dt
+ V † dV

dt
φ(t) = ε0(t)V (t)φ(t), (A.16)

and the solution can be represented formally as

φ(t) = e−i ∫
t
0 ε0(τ)dτP exp(−∫ V †dV )φ(0). (A.17)

Therefore, ψ(t) can be written

∣ψ(t)⟩ = e−i ∫
t
0 ε0(τ)dτV (t)P exp(−∫ V †dV )V †

(0)∣ψ(0)⟩.

(A.18)
In particular, if the system comes back to its initial point,
as P (T ) = P (0), the holonomy Γ ∈ U(K) is defined as

Γ = V †
(0)V (T )P exp(−∫ V †dV ) , (A.19)

and the final state is

∣ψ(T )⟩ = e−i ∫
t
0 ε0(τ)dτV (0)Γφ(0). (A.20)

According to the formula above, an operation Γ ∈ U(K)

is applied to the ground space.
If the condition

V †
⋅
dV

dt
= 0, (A.21)

is satisfied for all t, the curve V (t) in SN,K(C) is
called a horizontal lift of the curve P (t) = π(V (t)) in
GN,K(C).Then the holonomy (A.19) is greatly simpli-
fied to

Γ = V †
(0) ⋅ V (T ) ∈ U(K). (A.22)

For closed-loop HQC, given a desired unitary operation
Uop ∈ U(K) and a fixed initial point P (0) ∈ GN,K(C),
we want to find a loop P (t) ∈ GN,K(C) with base points
P (0) = P (T ) whose horizontal lift V (t) ∈ SN,K(C) pro-
duces holonomy Γ = Uop according to Eq. (A.22). For
open-loop adiabatic code deformation, Eq. (A.18) is gen-
eral to obtain the state evolution when the adiabatic con-
dition is satisfied.

Without loss of generality, we can always restrict our-
selves to the case such that P (t) has the form:

P (t) = U(t,0)P (0)U †
(t,0) = U(t,0)v0v

†
0U

†
(t,0),

(A.23)
for some smooth U(t,0) ∈ U(N) according to Eq. (A.8).
Note here, U(t,0) should be chosen such that in general,
at any time t,

U(t + τ, t)P (t)U †
(t + τ, t) ≠ P (t), (A.24)

for some neighborhood of t. In other word, U(t) must
not be in the isotropy group of P (t). This condition can
also stated as

[
∂

∂τ
U(t + τ, t)∣τ=0, P (t)] ≠ 0. (A.25)

The case where Eq. (A.25) equals 0 is allowed only at a
finite number of points in [0, T ]. The horizontal curve
should satisfy the following set of equations:

V †
⋅
dV

dt
= 0,

P (t) = V (t)V †
(t) = U(t,0)v0v

†
0U

†
(t,0).

(A.26)

The general solution to these equations can be written
as:

V (t) = U(t,0)v0h(t,0) (A.27)

for some h(t,0) ∈ U(K). Substituting Eq. (A.27) into
Eq. (A.26) we get:

ḣ(t,0) = −v†
0U

†
(t,0)U̇(t,0)v0h(t,0), (A.28)

which completely determines the h(t), horizontal lift, and
state evolution for a given adiabatic process.

Appendix B: Proof of Lemma 1, 2, 3

We first prove a lemma which will be used to prove
other lemmas:

Lemma 4. ∀gq ∈ G is in the normalizer of Gn.

Proof. For any M ∈ Gn, either [M,Qq] = 0 or {M,Qq} =
0. In the second case, we have [Qq,M] = 2QqM = 2M ′,
with M ′ ∈ Gn.

gqMg†
q = exp(i

π

4
Qq)M exp(−i

π

4
Qq)

=M + i
π

4
[Qq,M] −

π2

16 ⋅ 2!
[Qq, [Qq,M]] . . .

= cos(π/2)M + i sin(π/2)M ′

=iM ′.

(B.1)

Further, if M , Qq are Hermitian, M ′ is anti-Hermitian

and gqMg†
q is Hermitian.

1. Lemma 1

The deformation of the Hamiltonian is isospec-
tral, so the number of logical qubits encoded in
the ground space is constant, say k. The horizon-
tal lift V0(t) for P0(t) in general can be written as
V0(t) = Uq(t, tq−1)V0(tq−1)h(t, tq−1). From Eq. (A.28),

U †
q (t, tq−1)∂tU(t, tq−1) = i∂tfq(t)Qq,

∂h

∂t
= iV †

0 (tq−1)∂tfq(t)QqV0(tq−1) (B.2)
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for t ∈ [tq−1, tq], and

V0(tq−1)∂th(t,0)V
†
0 (tq−1) = iP0(tq−1)∂tfq(t)QqP0(tq−1).

(B.3)
Since Sj(t0) ∈ Gn for all j, gl ∈ Gn, for all l.

P0(tq−1) = (

q−1

∏
l=1

gq)P (0)(
q−1

∏
l=1

gl)

†

= (

q−1

∏
l=1

gq)
n−k
∏
j=0

I + Sj(0)

2
(

q−1

∏
l=1

gq)

†

=
n−k
∏
j=1

I + Sj(tq−1)

2
,

(B.4)

where Sj(tq−1) = (∏
q−1
l=1 gl)Sj(t0) (∏

q−1
l=1 gl)

†
is in Gn be-

cause {gq} are all in the normalizer of Gn (Lemma. 4).
Since [Qq,H(tq−1)] ≠ 0, so there exists at least one
Sj(tq−1) such that {Qq, Sj(tq−1)} = 0. According to

Eq. (B.3), V0(tq−1)∂th(t,0)V
†
0 (tq−1) = 0 and h(t, tq) =

I. Thus V0(t) = Uq(t, tq−1)V0(tq−1) and V0(t) =

Uq(t, tq−1) (∏
q−1
l=1 gl)V0(t0). From Eq. (A.18).

∣ψ(t)⟩ = e−iε0(t−tq−1)Uq(t, tq−1)(

q−1

∏
l=1

gl) ∣ψ(t0)⟩. (B.5)

Setting q = p and t = tp, we get

∣ψ(tp)⟩ = e
−iε0(tp−tq−1)Ωp∣ψ(t0)⟩. (B.6)

2. Lemma 2

First, we show that for any α ≠ β, the adiabatic condi-
tion for Psα and Psβ is satisfied. We have Sj(tl) ∈ Gn
according to Lemma. 4 for 1 ≤ l ≤ q. Consider the
time segment [tq, tq+1] first. Define the index set I =

{1,2, . . . , n− k} to be the number of terms in the Hamil-
tonian H(tq) with sets Aα = {j ∈ I ∣{Sj(tq), Fα} = 0},
Bα = I /Aα, CQl = {j ∈ I ∣{Sj(tq),Ql} = 0} and
DQl = I /CQl . Since Fα ∈ Gn,

F qαP0(tq) (F
q
α)

†

=∏
j∈Aα

I + Sj(tq)

2
∏
j′∈Bα

I − S′j(tq)

2

= ∏
m∈CQq+1

I + sαmSm(tq)

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
PC

sα

⋅ ∏
m′∈DQq+1

I + sαm′
Sm′(tq)

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
PD

sα

=Psα(tq).

(B.7)

Here, PC
sα and PD

sα are short for P
CQq+1
sα and P

DQq+1
sα . For

any β ≠ α,

Psα(t)
∂H(t)

∂t
Psβ(t) =

− i(∂tfq(t))Uq+1(t, tq)[Psα(tq)Qq+1H(tq)Psβ(tq)−

Psα(tq)H(tq)Qq+1Psβ(tq)]U
†
q+1(t, tq),

(B.8)

where Uq+1(t, tq) = exp (ifq+1(t)Qq+1). We examine the
two terms in the square brackets:

Psα(tq)Qq+1H(tq)Psβ(tq)

=εsβ(tq)Qq+1 ∏
m∈CQq+1

I − sαmSm(tq)

2
PD
sα(tq)P

C
sβ

(tq)P
D
sβ

(tq),

(B.9)

and

Psα(tq)H(tq)Qq+1Psβ(tq)

=εsα(tq)P
C
sα(tq)P

D
sα(tq)P

D
sβ

(tq) ∏
m∈CQq+1

I − sβmSm(tq)

2
Qq+1.

(B.10)

For those sβ such that sαm ≠ sβm for any m ∈ DQq+1 ,
Eq. (B.8) will be zero, and the adiabatic condition will
be satisfied automatically. For those sβ such that sαm =

sβm for all m ∈ DQq+1 , it’s easy to check the above two
expression are not equal to zero only if sβm = −sαm for
all m ∈ CQq+1 . Therefore, there is only one β such that

Psα(t)∂t(H(t))Psβ(t) ≠ 0 and hence that needs further
checking. For that specific β, we have a simple relation:

Qq+1Psα(tq)Q
†
q+1 = Psβ(tq), (B.11)

and

∥Psα(t)
∂H(t)

∂t
Psβ(tq)∥1

=∂tfq+1(t)∣εsα(tq) − εsβ(tq)∣ ⋅ ∥Psα(tq)Qq+1∥1

=K∂tfq+1(t)∣εsα(tq) − εsβ(tq)∣.

(B.12)

The left hand side of Eq. (26) reduces to

∣∂tfq+1(t)∣

∣εsα(tq) − εsβ(tq)∣
, (B.13)

since ∣CQq+1 ∣ is odd. We have

∣εsα(tq) − εsβ(tq)∣ = ∣ ∑
m∈CQq+1

2sαm ∣ ≥ 2. (B.14)

If ∂tfq+1(t) ≪ 1 is satisfied (which is always possible
by setting appropriate controls), then Psα(t) satisfies
the adiabatic condition for time segment t ∈ [tq, tq+1].
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The same argument can be applied to the time segments
l > q to show that the adiabatic condition can be satis-
fied between Psβ(t) and Psα(t) for any β. According to
Eq. (A.18),

∣ψ(tp)⟩∝ Vsα(tp) (F
q
αV0(tq))

†
F qαV0(tq)V

†
0 (0)∣ψ(0)⟩

= Vsα(tp)V
†
0 (tq)V0(tq)V

†
0 (0)∣ψ(0)⟩

= Vsα(tp)V
†
0 (0)∣ψ(0)⟩,

(B.15)

where Vsα(t) is defined as

Vsα(t) = U(t, tq)F
q
αV0(tq)h(t, tq), t > tq, (B.16)

and is the horizontal lift of Psα(t) given the initial con-
dition FαV0(tq). From the same argument in the proof
of Lemma 1, we get

∣ψ(tp)⟩ =∑
α

cαe
−iεsα(tp−tq) ⎛

⎝

p

∏
l=q+1

gl
⎞

⎠
F qα∣ψ(tq)⟩

=∑
α

cαe
−iεsα(tp−tq)F pqα (

p

∏
l=1

gl) ∣ψ(t0)⟩.

(B.17)

3. Lemma 3

For part 1, according to condition 1,

Uq+1(t, tq) = exp
⎛

⎝
i
q+M
∑
r=q+1

f(t)Qr
⎞

⎠
, (B.18)

for t ∈ [tq, tq+1]. From the procedure in the proof of
Lemma 1,

∂h

∂t
=if(t)V †

sα(tq)Psα(tq)
⎛

⎝
∑

Qr∈Pq

Qr
⎞

⎠
Psα(tq)Vsα(tq)

=0,

(B.19)

according to Qr ∈ Gn and

∣ψ(t)⟩ = e−iε0(t−tq−1)Uq+1(t, tq)∣ψ(tq)⟩. (B.20)

When t = tq+1, when f(tq+1) = π/4, and

∣ψ(tq+1)⟩ = e
−iε0(tq+1−tq) ⎛

⎝

q+M

∏
l=q+1

gl
⎞

⎠
∣ψ(tq)⟩, (B.21)

under the adiabatic approximation.
For part 2, suppose F qα takes the system from the

ground space to Psα . Then for any β ≠ α,

Psα(t)
∂H(t)

∂t
Psβ(t) =

i (∂tf(t))Uq+1(t, tq) ∑
Qr∈Pq

[Psα(tq)QrH(tq)Psβ(tq)−

Psα(tq)H(tq)QrPsβ(tq)]U
†
q+1(t, tq).

(B.22)

By the same argument as in the proof of Lemma 2,
for each Qr, there is only one βr such that
Psα(tq)QrH(tq)Psβr

(tq) and Psα(tq)H(tq)QrPsβr
(tq)

do not equal 0. Since CQr ⋂CQm = ∅ for any Qr,Qm ∈

Pq, βr ≠ βm when r ≠m. Then, for any such βr,

∥Psα(t)
∂H(t)

∂t
Psβr

(t)∥
1
=K∂tf(t) ∣ εsα(tq) − εsβr (tq)∣.

(B.23)
Since ∣CQr ∣ is odd, then ∣εsα(tq) − εsβr (tq)∣ ≥ 2, the adi-
abatic condition Eq. (26) holds for arbitrary β, and we
get

∣ψ(tq+1)⟩ =∑
α

cαe
−iεsα(tq+1−tq)F q+1,q

α

⎛

⎝

q+M

∏
l=q+1

gl
⎞

⎠
∣ψ(tq)⟩.

(B.24)
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[68] S. Chesi, B. Röthlisberger, and D. Loss, Phy. Rev. A 82,
022305 (2010).

[69] F. L. Pedrocchi, S. Chesi, and D. Loss, Phys. Rev. B 83,
115415 (2011).

[70] A. Hutter, J. R. Wootton, B. Röthlisberger, and D. Loss,
Phy. Rev. A 86, 052340 (2012).

[71] J. R. Wootton, Phys. Rev. A 88, 062312 (2013).
[72] F. L. Pedrocchi, A. Hutter, J. R. Wootton, and D. Loss,

Phys. Rev. A 88, 062313 (2013).
[73] C. Cesare, A. Landahl, D. Bacon, S. Flammia, and

A. Neels, “Adiabatic topological quantum computing,”
(2014), eprint arXiv:1406.2690.

[74] M. Nakahara, Geometry, Topology and Physics, 2nd ed.
(Institute of Physics Publishing, 2003).


	Fault-tolerant Holonomic Quantum Computation in Surface Codes
	Abstract
	Introduction
	Preliminary
	Surface Code
	Holonomic Quantum Computation

	Sketch of the Scheme
	Adiabatic processes
	Error propagation
	Parallelism of adiabatic operation

	HQC in Surface Codes
	Creation of |+"5365365   (|0"5365365 ) state for X (Z)-cut double qubit 
	Enlarging the hole
	Scheme
	Error propagation

	Moving logical qubits
	Scheme
	Error propagation and fault tolerance

	Creation of |0"5365365   (|+"5365365 ) state for X  (Z)-cut double qubit
	Logical Z (X) measurement for X (Z)-cut double qubit
	Holonomic Logical CNOT
	Measurement of Z (X) basis for Z (X)-cut double qubit
	Ancilla recycling
	State injection
	State Distillation
	Logical Phase and T Gates
	Hadamard

	Fault-tolerance of the scheme
	Error correction
	Local perturbation
	Adiabatic error

	Summary and conclusion
	ACKNOWLDEGEMENT
	Geometric Formulation of HQC
	Proof of Lemma 1,  2,  3
	Lemma 1
	Lemma 2
	Lemma 3

	References


