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Generating and characterising randomness is fundamentally important in both classical and quan-
tum information science. Here we report the experimental demonstration of ensembles of pseudoran-
dom optical processes comprising what are known as t-designs. We show that in practical scenarios,
certain finite ensembles of two-mode transformations – 1- and 2-designs – are indistinguishable from
truly random operations for 1- and 2-photon quantum interference, but they fail to mimic random-
ness for 2- and 3-photon cases, respectively. We make use of the fact that t-photon behaviour is
governed by degree-2t polynomials, (in the parameters of the optical process), to experimentally
verify the ensembles’ behaviour for complete bases of polynomials, ensuring that average outputs
will be uniform for arbitrary configurations. It is in this sense that a t-design is deemed to be a
potentially useful pseudorandom resource.

Introduction – Randomness is a workhorse in science
and technology, from simulating complex systems and
modelling error to probabilistic computation and infor-
mation security. In quantum mechanics, randomness is a
fundamental feature, but additional (classical) random-
ness can be a powerful resource when purposely intro-
duced into quantum protocols; examples include quan-
tum communication [1], quantum algorithms [2], quan-
tum data hiding [3], benchmarking unknown quantum
processes [4–8], and verifying the boson sampling con-
jecture [9]. However, truly random quantum operations
are inefficiently realisable both in principle and in prac-
tice. Here we report the realisation and complete char-
acterisation of pseudorandom photonic quantum opera-
tor ensembles: so-called t-designs that simulate statis-
tical properties of truly random operators using fewer
resources [10, 11]. We make use of the fact that t-photon
behaviour is governed by degree-2t polynomials, (in the
optical process parameters), to perform complete exper-
imental verification of the ensembles’ behaviour. We re-
alise a 1-design and a 2-design, and show that 1- and 2-
photon quantum interference [12, 13] is sufficient for their
complete verification. Furthermore, we show that 2- and
3-photon interference, respectively, can be used to test
the limits of their pseudorandom properties. We apply
these ideas to distinguish, with a fixed measurement set-
ting, pseudorandom 1-design polarisation rotations from
Haar random unitaries in a situation where process to-
mography using single photon states would fail.

Unitary processes transform one pure quantum state to
another. Realising fair and unbiased random unitary op-
erations requires sampling uniformly from a continuously
infinite group. This group is equipped with a unique in-
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variant (Haar) measure, which defines how one samples
uniformly, without bias, over the whole set. However,
“true” randomness is inefficiently realisable in practice,
due to poor scaling of the number of random parame-
ters with the size of the system. Fortunately, sampling
uniformly from a restricted subensemble of unitary oper-
ators can be done efficiently and still exhibits some of the
desired statistical properties of truly random processes.
Such pseudorandom operations are therefore sought after
for applications in quantum protocols. Randomly sam-
pled unitaries have been implemented experimentally, for
example in NMR [4, 5], trapped ion [7], solid state [8] and
photonic [14] qubits.

This notion of pseudorandomness is captured well by
unitary t-designs. These are subensembles of quantum
operations that, given t copies of a system, are statisti-
cally indistinguishable from a uniformly distributed su-
perensemble. Equivalently, they are subensembles that
have the same t-th order moments as the uniform Haar
ensemble, and thus they can be used to simulate statisti-
cal properties of truly random quantum operations with
fewer resources. These statistical moments are given by
polynomials in the parameters of the quantum operators
in question, (see below). The work presented here is the
first to directly characterise such pseudorandom opera-
tors experimentally.
Optical t-designs – Here we are concerned with the su-

perensemble of all unitary polarisation rotations of an
optical channel. Ignoring global phase, these are param-
eterised by real variables {x1, y1, x2, y2} with the con-
straint x21 + y21 + x22 + y22 = 1, and expressed as

U =

(
x1 + iy1 x2 + iy2
−x2 + iy2 x1 − iy1

)
. (1)

Probability distributions that govern the outcomes of any
multiphoton interference experiment are polynomials in
these variables, whose degree is dictated by the number
of photons. In general, t-photon interference is modelled
by a degree-2t polynomial in the matrix elements of the
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FIG. 1: (a) t-photon interference is described by degree-2t polyno-
mials. (b) Our setup samples complete sets of independent degree-
2 [degree-4] polynomials in the matrix elements of U using inter-
ference of 1-photon [2-photon] states, generated from spontaneous
parametric downconversion (SPDC) in type-1 BiBO. Polarized pho-
ton pairs generated in paths a and b are combined onto d in the
photon-number state |1〉H |1〉V , using a half-wave plate (HWP)
and a polarising beam splitter (PBS). Degree-6 polynomials were
sampled with the 3-photon state |2〉H |1〉V in path d, observed by
post-selecting from the four-photon term of pulsed SPDC state: 3-
photons detected across single photon avalanche diodes (SPADs)
1 - 15 and one photon heralded at SPAPD 16 (see Supplemental
Material for further details). The quantum process T = QoutUQin

was implemented using wave plates (QWP, HWP, dashed boxes).
Photon-number-resolving detection [15] uses spatially multiplexed
(SMUX) SPADs (1-15), used in conjunction with a commercial 16-
channel time-correlated single photon counting system (TCSPC).

unitary process [16] (Fig. 1(a)). For example, the transi-
tion probability of one photon from input 2 to output 2 is
the degree-2 polynomial |U2,2|2 = x21 +y21 , (note that this
exactly agrees with how the intensity of classically mod-
elled light is distributed as it passes through U). Degree-
4 polynomials describe two-photon non-classical interfer-
ence, including the probability to detect one photon in
each output of U in a Hong-Ou-Mandel experiment [12],
given by [13] |U1,1U2,2 + U1,2U2,1|2.

A unitary t-design [11] is defined in terms of such poly-
nomials. Explicitly, a finite set Dt containing K unitary
operators, viewed as an ensemble with uniform distribu-
tion 1/K, is defined to be a t-design if every degree-2t
polynomial [25] in the matrix elements of U , f2t(U), has
the same average over Dt as it does when averaged over
the uniform ensemble of all unitaries;

EDt
[f2t]=

∑
U∈Dt

1

K
f2t(U) =

∫
dU f2t (U)=EHaar[f2t]. (2)

Uniformity in the continuous case is defined by the nor-
malised unitary Haar measure dU , and there are meth-
ods for computing the integral over the unitary group,
(e.g. Ref. 19). Note that a t-design is by definition also a
(t−1)-design, hence experiments with t or fewer photons
sampled over a t-design are statistically indistinguishable
from the same experiments with operations sampled from
the Haar distribution. Multiphoton interference, being
governed by such polynomials, can therefore be used to
verify the realisation of a t-design, and (>t)-photon in-
terference can also be used to test pseudorandomness as
an alternative to standard process tomography.

The unitary operators we use to realise a 1-design are
drawn from the uniformly distributed Pauli ensemble [26]

D1 = {I, iX,−iY, iZ} . (3)

Evidence that D1 is a 1-design follows from the fact
that single photons sequentially input into mode 1 will
be distributed equally between output 1 (due to I and
Z) and output 2 (due to X and Y ), which agrees with
the full Haar distributed random ensemble of SU(2) ro-
tations: EHaar[|U1,1|2] = EHaar[|U1,2|2] = 1/2. A proof
that D1 is a 1-design can be obtained by showing the
equality in Eq. (2) holds for each element of a complete
basis of independent, degree-2 monomials in the real vari-
ables x1, y1, x2, y2; assuming unitarity there are nine, we
choose:

f2 ∈
{
x21, x1x2, x

2
2, x1y1, x1y2, x2y1, x2y2, y

2
1 , y1y2

}
. (4)

It is intuitive from a quantum optics perspective to see
that D1 is not a 2-design. Consider a Hong-Ou-Mandel
experiment where we estimate the probability for two in-
distinguishable photons input into ports 1 and 2 to anti-
bunch at the two outputs [12]. When U corresponds
to a 50:50 beamsplitter then there is ideally zero prob-
ability to detect one photon at each output. Therefore,
when sampling over the entire Haar ensemble, the aver-
age probability for the photons to anti-bunch must be
strictly less than 1. Averaging over D1, however, will
always yield an anti-bunching probability of exactly 1,
hence Eq. (2) will not hold for all degree-4 polynomials.

The uniform ensemble of twelve operators listed in Ta-
ble I is a 2-design, D2. This is confirmed by showing
Eq. (2) is satisfied with respect to the complete basis of
(again, assuming unitarity) 25 degree-4 monomials:

f4 ∈ {x41, x31x2, x21x22, x1x32, x42, x31y1, x21x2y1, x1x22y1, x32y1,
x31y2, x

2
1x2y2, x1x

2
2y2, x

3
2y2, x

2
1y

2
1 , x1x2y

2
1 , x

2
2y

2
1 , x

2
1y1y2,

x1x2y1y2, x
2
2y1y2, x1y

3
1 , x1y

2
1y2, x2y

3
1 , x2y

2
1y2, y

4
1 , y

3
1y2}.

(5)

Experiment— We implement each element of D2 (and
D1) using a combination of two quarter-wave plates and
one half-wave plate, as shown in the box labeled U in
Fig. 1 (b), with the settings θi given in Table I.

To verify experimentally that an ensemble Dt of uni-
taries is a t-design, we must have access to a complete ba-
sis of polynomials; this requires some added control over
the optical transformation. We achieve this by adding the
reconfigurable polarisation transformations (Qin, Qout),
yielding the total unitary T := QoutUQin, shown in
Fig. 1. For each choice of configuration, the transition
probability from a fixed input to a fixed output is a poly-
nomial in the elements of U ; thus we can now choose
polynomials. The wave plate settings for (Qin, Qout) cor-
responding to our choice are given in Table II, labelled ac-
cording to Fig. 1(b). We find these settings give complete
bases of linearly independent [27] degree-2 and degree-4
polynomials as follows; nine 1-photon output probabil-
ities corresponding to |T1,1|2, which we label p1, ..., p9



3

U ∈ D2 θ1 θ2 θ3

I 0 90 0
iX 0 -45 0
−iY 45 90 -45
iZ -45 90 -45

(I + iX − iY + iZ)/2 0 90 -45
(I + iX + iY + iZ)/2 -45 90 0
(I − iX − iY + iZ)/2 45 90 0
(I − iX + iY + iZ)/2 0 90 45
(I + iX − iY − iZ)/2 45 -45 0
(I + iX + iY − iZ)/2 0 -45 45
(I − iX − iY − iZ)/2 0 45 -45
(I − iX + iY − iZ)/2 -45 45 0

TABLE I: The wave plate settings for θi in degrees, as labeled
in Fig. 1.(b), to realise the elements of D2 ⊃ D1. We adopt
the convention that rotation angles are from the vertical.

pi ω1 ω2 ω3 ω4 pi ω1 ω2 ω3 ω4

p1 0 0 0 0 p6 0 22.5 0 22.5
p2 0 0 0 22.5 p7 0 22.5 22.5 0
p3 0 0 0 45 p8 0 45 0 0
p4 0 0 22.5 0 p9 0 45 0 22.5
p5 0 22.5 0 0

qi ω1 ω2 ω3 ω4 qi ω1 ω2 ω3 ω4

q1 0 0 0 0 q14 0 45 0 60
q2 0 0 0 22.5 q15 0 45 22.5 0
q3 0 0 0 60 q16 0 45 22.5 22.5
q4 0 0 22.5 0 q17 0 60 0 0
q5 0 0 22.5 22.5 q18 0 60 0 22.5
q6 0 0 45 22.5 q19 0 60 0 60
q7 0 22.5 0 0 q20 0 60 22.5 0
q8 0 22.5 0 22.5 q21 0 60 22.5 22.5
q9 0 22.5 0 60 q22 0 120 0 0
q10 0 22.5 22.5 0 q23 0 120 0 22.5
q11 0 22.5 22.5 22.5 q24 0 120 0 60
q12 0 45 0 0 q25 0 120 22.5 0
q13 0 45 0 22.5

TABLE II: Wave plate settings ωi in degrees for Qin, Qout, as
labeled in Fig. 1.(b), for accessing polynomials pi (1-photon
experiments) and qi (2-photon experiments).

(e.g. p1 = x21 + y1
2), and a set of 25 2-photon probabil-

ities |T1,1T2,2 + T1,2T2,1|2, which we label q1, ..., q25 (e.g.
q1 = x41 − 2x21x

2
2 + 2x21y

2
1 + x42 − 2x22y

2
1 + y41). We then

average each probability over U ∈ Dt, implemented as
given in Table I, and thus arrive at an estimate for the
LHS of Eq. (2) that we can use to verify uniformity.

Results — Figure 2 shows normalised 1-photon inten-
sities |T1,1|2 extracted from the experiment, taken for
p1, .., p9 and averaged uniformly over the ensembles D1

(Fig. 2 (a)) and D2 (Fig. 2 (b)). Both agree with the uni-
form Haar average over all unitaries. Since p1, .., p9 are
a complete basis, this agreement directly verifies the two
ensembles D1 and D2 are both at least unitary 1-designs.

The difference in the behaviour of D1 and D2 is clear
when observing 2-photon interference. Fig. 3 shows ex-
pected and measured 2-photon correlations |T1,1T2,2 +
T1,2T2,1|2 taken for q1, .., q25 and averaged uniformly over
the ensembles D1 (Fig. 3 (a)) and D2 (Fig. 3 (b)). The
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FIG. 2: Polynomials p1, ...p9 extracted from the measured nor-
malised single photon intensity |T1,1|2, averaged over settings cor-
responding to (a) D1, and (b) D2. Measured distributions (solid
colour) are plotted with ideal theoretical values (empty boxes).
Dashed lines represents the ideal Haar value PH = 1/2, which is
always uniform for normalised probability distributions.
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FIG. 3: Polynomials q1, ..., q25 extracted from experiment by
measuring the 2-photon correlation |T1,1T2,2 + T1,2T2,1|2 and av-
eraging over settings that correspond to realising (a) D1, (b) D2,
and for comparison (c) twelve unitary operators chosen randomly
from the Haar distribution that do not form a 2-design. Photon
distinguishability alters the realised polynomials from their ideal
values and the average they would converge to when sampling U
over a Haar distribution (green line). This is characterised in the
experiment and the ideal theoretical polynomials (empty boxes)
and the Haar average (dashed line) are corrected accordingly (see
Supplemental Material for details). The average statistical fidelity,∑

i
√
piqi, between the probability distributions extracted from our

experiment and the ideal distributions is 99.26± 0.02% for the 600
2-photon experiments used to generate these plots.

average of degree-4 polynomials over D1 shows behaviour
clearly distinct from the uniform behaviour that would
be observed from averaging over the Haar measure (black
dashed lines). Together with the results of Fig. 2 (a), this
agreement directly verifies the ensemble D1 is a 1-design
only. In contrast, the uniformity of the degree-4 polyno-
mials averaged over D2 (Fig. 2 (b)) agrees closely with
the average over the Haar measure. Since q1, ..., q25 is
a complete set of degree-4 polynomials, this verifies the
ensemble D2 is at least a 2-design. For completeness,
Fig. 3 (c) shows 2-photon interference statistics averaged
over a set of 12 matrices chosen from the Haar distribu-
tion [20]. The data illustrate that in general an ensemble
of twelve operations—the size of D2—is not sufficient to
simulate the Haar average, though of course a larger en-
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FIG. 4: Detection outcomes for 3-photon polynomials ri, av-
eraged over D2. Solid colour represents measured data, empty
boxes represent theory and error bars are computed from assuming
Poisson-distributed detection noise. Haar averages for perfect inter-
ference and characterised photon-distinguishability are marked by
the black dashed and green lines respectively. The average statisti-
cal fidelity between measured probability distributions and theory
is 97.55± 0.03% for the 72 3-photon experiments.

semble eventually will (see Refs 21, 22 for convergence
results). As t increases, it will be harder to distinguish
between t- and (t+ 1)-designs due to experimental noise.

To complete the characterisation of D2, we use 3-
photon interference for a set of five arbitrarily chosen
degree-6 polynomial settings (labeled r1, ..., r5, with wave
plate settings given in Table III). The data are shown in
Fig. 4, verifying that D2 is not a 3-design due to the
existence of polynomials whose average over D2 differs
from the Haar value. Note that a single degree-6 polyno-
mial that deviates from the Haar average is sufficient to
demonstrate failure to simulate the Haar distribution.

pi ω1 ω2 ω3 ω4 pi ω1 ω2 ω3 ω4

r1 94.0 117.3 64.9 24.5 r4 179.7 11.36 24.6 108.1
r2 129.5 67.1 118.3 6.8 r5 1.9 114.0 162.5 160.7
r3 112.8 67.9 159.2 3.6

TABLE III: Wave plate settings ωi in degrees to access a
selection degree-6 polynomials using 3-photons.
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FIG. 5: Uniformity of each data set, plotted in terms of (a)
the variance over the set of polynomials measured and (b)
the maximum deviation of the average probability, as a per-
centage, from the expected Haar average (black dashed line
in Fig. 2 and green solid lines in Figs. 3 and 4).

Analysis of uniformity – How accurately the finite en-
sembles we realise mimic Haar distributed unitary ma-
trices can be quantified by the uniformity of the average
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FIG. 6: Left-hand axis: Running average of Pest = |T1,1T2,2 +
T1,2T2,1|2 estimated from each of sixty-four independent 2-photon
experiments (overlaid orange points) as U implements uniformly at
random elements of D1 for polynomial q19. The blue line marks
the value that Pset should ideally converge to, taking into account
characterised indistinguishability of photon pairs (see Supplemen-
tal Material). Green and black dashed lines mark the values that
Pest would converge to when sampling uniformly from the Haar
measure, for perfect and characterised indistinguishability respec-
tively. Right-hand axis, purple line: The number of standard devia-
tions that Pest differs from the Haar average PH = 1/3, quantifying
confidence of directly discriminating a non-Haar ensemble.

probabilities over the different polynomial settings, and
how much they deviate from the expected Haar average
in each case. We quantify the uniformity of the ensem-
ble behaviour in Fig. 5; note that while theory predicts
that t-photon interference over a t-design should yield
perfectly uniform results, experimental imperfections in
realising design elements can give rise to non-uniformity.
Figure 5 indicates that variance in particular is an excel-
lent discriminator for t-designs.

Example application – If a random optical channel is
fluctuating slowly, then the ensemble could be broken
down into its constituent elements and each interrogated
by full process tomography [23], enabling x1, y1, x2, y2 to
be reliably estimated and condition Eq. 2 tested math-
ematically. When probing individual elements of an en-
semble is limited, it may be convenient to use multi-
photon states with a fixed measurement to directly dis-
tinguish an ensemble from the Haar ensemble. Fig. 6
shows the real-time failure of a photonic 1-design to be-
have Haar-randomly in the low photon rate regime. The
wave plate configurations U were set to realise uniformly
at random one of the four D1 operations, and Qin and
Qout were fixed to realise the polynomial q19. For each
implementation of U , we estimate the probability distri-
bution of each 2-photon detection outcome using O(10)
correlated detection events, which yields a noisy estimate
of the distribution that is insufficient to perform reliable
process tomography; this could be performed with on av-
erage a single photon-pair for each U by further attenua-
tion. As we increase the number of samples of D1 from 1
to 500, we compute a running average for the estimate of
Pest = |T1,1T2,2 +T1,2T2,1|2 which converges to a value of
0.603±0.001. For characterised photon indistinguishabil-
ity, Pest should converge to 0.594 (blue line). Confidence
that we are not sampling U according to the Haar mea-
sure is quantified by the number of standard deviations
Pest is from PH = 1/3—for example, for 11 trials (∼ 220
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photon pairs) is more than 6 standard deviations.
Conclusion – We have realised unitary 1- and 2-designs

in two dimensions, using multiphoton interference for a
complete verification of their pseudorandom properties.
To do so, we have made use of the fact that multipho-
ton transition probabilities are polynomials in the matrix
elements of optical unitaries. In general, (t + 1)-photon
interference can be used to distinguish a t-design from a
truly random ensemble of unitary operations. Although
this can be mimicked with a reduced visibility of interfer-

ence features using intensity correlation measurements of
several input light fields [17], reaching the same visibility
requires an overhead in measurement and data analy-
sis [18],[28]. Furthermore, we have demonstrated a sce-
nario where standard process tomography would be in-
capable of inferring the ‘degree’ of randomness (as given
by a value of t). Interestingly, it has been suggested that
such ensembles will likely be required to demonstrate
conjectured extra-classical capabilities of linear quantum
optics [24].
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