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We theoretically investigate the propagation of bright spatial solitary waves in highly nonlocal
media possessing radial symmetry in a three-dimensional cylindrical geometry. Focusing on a ther-
mal nonlinearity, modeled by a Poisson equation, we show how the profile of the light-induced
waveguide strongly depends on the extension of the nonlinear medium in the propagation direction
as compared to the beam width. We demonstrate that self-trapped beams undergo oscillations in
size, either periodically or aperiodically, depending on the input waist and power. The —usually
neglected— role of the longitudinal nonlocality, as well as the detrimental effect of absorptive losses,
are addressed.

I. INTRODUCTION

Light beam self-localization in nonlinear nonlocal ma-
terials, that is, in the presence of a nonlinearly induced
refractive index well extending beyond the beam pro-
file, has been widely investigated in the last few years,
both experimentally and theoretically. A nonlocal re-
sponse allows for the stabilization of bright (2+1)D spa-
tial solitons, at variance with the collapse observed in
local Kerr media (Townes soliton) [1–3]. In fact, self-
localization of light and, specifically, the soliton profile
and its stability, all strongly depend on the degree of
nonlocality [4]. Nonlocality also entails the observation
of phase-insensitive long-range interactions between soli-
tons [5, 6], stable propagation of higher order solitons [7–
11], thresholdless surface solitons [12], power-dependent
steering due to interaction with boundaries [13–15], and
so on. Moreover, modeling spatial solitons in the highly
nonlocal limit leads to the concept of accessible solitons
[16], a useful approximation in various instances [17–19].
Nonlocality in optics also plays an important role in pho-
ton condensation [20], dispersive shock waves [21–23],
distributed coupling to guided-waves [24, 25], gradient
catastrophe [26] and Anderson localization [27].
Several optical materials exhibit a highly nonlocal non-

linearity, often related to diffusive processes. Accessi-
ble solitons were first reported in nematic liquid crystals
[17], with self-focusing provided by molecular reorienta-
tion [28] and nonlocality stemming from intermolecular
forces [29]. High nonlocality in soliton propagation has
also been exploited in thermo-optic media (heat diffusion
ruled by a Poisson equation) [7, 30, 31], atomic vapors
(molecular diffusion) [32], photorefractive crystals [33],
semiconductors [34] (carrier diffusion), nanoparticle sus-
pensions (thermophoresis) [35], silica nanowebs (optome-
chanics) [36] and colloidal suspensions (optical gradient
forces) [37].
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From a theoretical viewpoint, most highly nonlocal
materials can be modeled by a diffusion-like equation de-
scribing the light-induced refractive index distribution.
With a few exceptions in reorientational liquid crystals
[38–40], however, longitudinal nonlocal effects are usu-
ally neglected, that is, the Laplacian operator lacks the
partial derivative along the propagation direction. This
is appropriate only for shape-preserving beams and/or
in the absence of power dissipation; even without losses,
in fact, the family of self-confined waves includes breath-
ing solitons subject to bounded periodic oscillations of
their width and peak intensity [16, 17, 41–43]. In such
cases the refractive index gradient along the direction of
propagation affects the self-trapped wavepacket. Addi-
tionally, when losses are included, a longitudinal gradient
arises even when a shape-preserving soliton is launched at
the input [21, 44]: appreciable effects are expected when
the attenuation distance is comparable with the Rayleigh
length of the input beam.

In this Paper we study light propagation in a highly
nonlocal, nonlinear medium in a 3D cylindrical geom-
etry with circular symmetry. The nonlinear, nonlocal
refractive index well is accounted for by a Poisson equa-
tion, which applies to actual highly nonlocal materials
and systems [19, 45]. We first show that the nonlinear
lens induced by a light beam strongly depends on the
ratio between the input radius and the available prop-
agation length. We then discuss how the light-induced
refractive index well affects light propagation, with par-
ticular attention to the beam width. We also address the
roles of the longitudinal nonlocality and of the unavoid-
able absorptive losses, two important aspects usually ig-
nored in literature. The paper is organized as follows.
In Section II we introduce the mathematical model and
its range of applicability. In Section III we compute the
nonlinear perturbation, keeping fixed the optical excita-
tion and using a Green’s function formalism. In Section
IV we employ Beam Propagation Method (BPM) simula-
tions to account for the effect of the nonlinear refractive
index well on beam propagation. Finally, in Section V
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we summarize the results and pinpoint further develop-
ments.

II. MODEL

Let us consider a thermo-optic medium with heat
transfer dominated by conduction. We take a homo-
geneous cylinder of circular cross-section, diameter 2a
and length l in z, with a radially symmetric input beam
launched in z = 0 and centered in r = 0 (r is the radial
coordinate). Light propagation in the paraxial, slowly
varying envelope approximation and for small nonlinear
index changes is governed by
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where A is the beam envelope (normalized so that
I = |A|2 is the intensity), k0 is the vacuum wavenum-
ber, n0 is the linear refractive index, α > 0 is the ab-
sorption coefficient, φ = n(r, z, P ) − n0 is the nonlin-
ear (i.e., power-dependent) refractive index well, with
P (z) = 2π

∫

|A|2rdr the beam power at each section z.
The constant γ “turns on (off)” the longitudinal nonlo-
cality when set equal to 1 (0). Equation (2) is solved
together with the boundary conditions φ(r = a, z) =
φ(r, z = 0) = φ(r, z = l) = 0, valid irrespective of the
power P . Without loss of generality, in writing Eq. (2) we
assumed that the thermal conductivity and capacity are
both equal to 1; moreover, we assumed that the thermo-
optic coefficient is unitary as well, i.e., φ = ∆T = T −T0,
with T the local temperature and T0 the environment
(background) temperature. In the general case the ther-
mal conductivity of the medium, providing the propor-
tionality factor between heat flux and temperature gra-
dient, would multiply the whole LHS of Eq. (2); in a
similar way, the RHS of Eq. (2) should be multiplied by
the thermal capacity of the material. We note that the
model consisting of Eqs. (1)–(2) is quite general, as it can
also describe, e.g., particle diffusion and weak all-optical
reorientation in liquid crystals [39]. Finally, this set of
equations can be normalized by scaling all the spatial
dimensions (including the wavelength λ and the absorp-
tion distance 1/α) with the medium extension l along z,
provided the beam power P is multiplied by l.

III. NONLINEAR WELL FOR A GIVEN

INTENSITY PROFILE

We first discuss how the nonlinear refractive index well
∆n (corresponding to φ in our formalism) changes for
a fixed excitation I. For the sake of simplicity, in the

following we assume an infinitely extended cylinder, that
is, a → ∞.

A. Green’s function

Writing φ in terms of its own Hankel transform, Eq.
(2) for γ = 1 becomes the ordinary differential equation

∂2φ̃

∂z2
− k2r φ̃+ αĨ = 0, (3)

with φ̃(kr, z) =
∫

∞

0 rφ(r, z)J0(krr)dr the Hankel trans-
form of φ. A general description (magnitude, longitudi-
nal and transverse width) of the solutions of Eq. (2), in
particular their dependence on the boundary conditions
across z, can be obtained using a Green’s function. Set-
ting I = δ(r − r′)δ(z − z′)/(2πr) [(r′, z′) is the location
of the impulsive ring-like excitation], the corresponding
distribution of the index of refraction reads

φring(r, r
′, z, z′) = −α [Gring(r, r

′, z, z′) +Gring(r
′, r, z′, z)] ,

(4)
having defined the auxiliary function

Gring(r, r
′, z, z′) = u0(z

′ − z)u0(l − z′)×
∫

∞

0

J0(krr)J0(krr
′)

sinh (krl)
sinh [kr (z

′ − l)] sinh (krz)dkr. (5)

with u0 the Heaviside step function. For
l → ∞ Eq. (5) gives Gring = −u0(z

′ −
z)

∫

∞

0 J0(krr)J0(krr
′)e−krz

′

sinh (krz) dkr.
The overall nonlinear perturbation of the refractive in-

dex is given by the convolution of the intensity profile
I with the Green’s function (4): profile and size (that
is, nonlocal response [39]) can be determined from the
spatial behavior of φring . The function φring is plot-
ted in Fig. 1 for the case r′ = 0, i.e., a ring-like exci-
tation degenerating to a point-source. At r = r′ the
azimuthally-averaged impulsive response φring is singu-
lar, in agreement with the general properties of the Pois-
son’s equation. Clearly φring has a finite extent related
to the nonlocal response along z, with size approximately
equal to 0.1l. Due to this finite size along z, the system
response depends on z′ and gets smaller and strongly
asymmetric near the boundaries [Fig. 1(a)]. The spatial
size of the response along r is comparable with the non-
locality along z: the longitudinal boundary conditions fix
the transverse nonlocality as well, as l ≪ a in this case
(see Ref. [46] for a similar case in a rectangular 2D ge-
ometry). Finally, Fig. 1(b) graphs the system response
in the limit l → ∞: φring tends to the free space solution
for z′ > 1/2 due to the absence of the output interface.

B. Gaussian excitation

The influence of nonlocality on light propagation is
maximum in the highly nonlocal case: solitons acquire
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FIG. 1. (Color online) (a) Function φring versus z/l and in
r = 0 for excitations placed on the symmetry axis (i.e., r′ =
0); the curves from left to right correspond to z′ = 0.01l,
0.05l, 0.1l, 0.2l, 0.5l and 0.99l, respectively. (b) Same as in
(a), but for an infinite propagation length l. In the plot we
set l = 1 for a direct comparison with panel (a).

nearly Gaussian profiles [16, 19], with a varying width w
along z due to breathing and/or power losses. Thus we
write

I =
2P0

πw2(z)
e
−

2r2

w2(z) e−αz = I0(z)e
−αze

−
2r2

w2(z) , (6)

with P0 the initial power at z = 0. Then we substitute
the ansatz (6) into (2) in order to find the perturbation φ

corresponding to a given intensity distribution I. Using
the Green function φring we find that

φ(r, z) =

∫

∞

0

r′dr′
∫ l

0

I(r′, z′)φring(r, r
′, z, z′)dz′. (7)

In Eq. (7) φ is computed [with Eq. (5)] by evaluating
a triple integral. The integration along r′, expressed as
F (kr, w) =

∫

∞

0
r′I(r′, z′)J0(krr

′)dr′, can be performed
first: F is the Hankel transform of I and contains infor-
mation on the spatial extension of the beam (in fact, all
terms depending on the beam size w(z) are included in
it). When I is radially Gaussian as in Eq. (6), we obtain
F (kr, z, w) = (w2/4)I0(z) exp (−αz) exp

(

−k2rw
2/8

)

.

1. Constant width

The simplest case is when the beam size w(z) is con-
stant along z. The solution of Eq. (2) is

φ(r, z) = −α

∫

∞

0

J0(krr)

sinh (krl)
H(kr, z)F (kr, z, w)dkr, (8)

where

H =

[
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2(kr − α)
− ekrl

e−(kr+α)z − e−(kr+α)l

2(kr + α)

]

sinh (krz)+

[

e(kr−α)z − 1

2(kr − α)
− 1− e−(kr+α)z

2(kr + α)

]

sinh [kr(z − l)].

(9)

FIG. 2. (Color online) Plot of φ computed from Eq. (8) nor-
malized to the absorption α versus r/l and z/l for w/l = 0.1
(a)–(c) and w/l = 0.01 (d)–(f); normalized absorption coeffi-
cients αl are 1×10−15 (a,d), 1 (b,e) and 10 (c,f). Input power
P0 is the same regardless of the beam spot.

The correctness of Eqs. (8)–(9) was verified by a di-
rect comparison with the numerical solutions of Eq. (2)
obtained via standard relaxation algorithms. We note
that, for large kr, it is H/ sinh(krl) ≈ − exp (−αz)/kr,
thus ensuring the convergence of the integral (8) for finite
w.

Figure 2 shows a few examples of the nonlinear re-
fractive index well φ computed from Eq. (8). The most
striking difference from the local case γ = 0 is the role of
input and output interfaces on φ, with the formation of
a transition region between the boundary and the bulk;
in fact, in the approximation γ = 0 it is implicitly as-
sumed that light propagates in bulk, that is, without ef-
fects from the end-faces along the propagation direction
z. For small absorption α the light-induced perturbation
is almost symmetric with respect to the transformation
z → z − l, whereas increased losses lead to a marked
asymmetry between input and output, as is physically
apparent. As expected, φ also depends on the beam
width w. For narrow beams the transition between the
interfaces and the bulk region is much steeper than for
wide beams: in fact, for small w the derivative along r is
dominant with respect to z, thus the longitudinal effects
can be neglected over a wider region.

The role of the transverse I profile on φ (i.e., on
the beam width w if we consider a Gaussian input)
can be addressed by looking at Eq. (8) or at Fig. 3,
where H/ sinh(klr) is graphed. The auxiliary function
Haux = H(kr, z/l)/ sinh(krl) vanishes on line kr = 0,
reaching a peak for a finite kr and then monotonically
decreases (Fig. 3). In z the function Haux has a sine-like
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behavior for small absorption, but shows a strong peak
close to the input interface for large losses [Fig. 3(a)–(c)],
in full analogy with the behavior of φ in Fig. 2. Note-
worthy, the width of Haux on the kr axis becomes larger
as α increases. The net effect on φ can be understood
by examining Figs. 3(d)–(e). For wide beams the Hankel
transform F tends to a Dirac delta, so that the integral
is sampled in kr = 0: this implies a smaller perturbation
φ (compare the two rows in Fig. 2) and an effective cut-
off for high spatial frequencies kr, thus inhibiting rapid
variations of φ. Conversely, for narrow beams the Han-
kel transform F acts as a weight function with a width
inversely proportional to w. Thus, the narrower the ex-
citation I the larger the cut-off frequency in kr is: φ can
vary on short spatial lengths, in agreement with Fig. 2.

FIG. 3. (Color online) Haux in the plane (kr, z/l) for αl =
1 × 10−15 (a), 1 (b) and 10 (c). Sections of |Haux| versus kr
for αl = 1 (d) and αl = 10 (e); the z−coordinates are 0.11
(black solid lines, correspoding to the widest curves) and 0.5
(magenta solid lines, corresponding to the narrowest curves).
Dashed lines in (d,e) are the Hankel trasform F (kr, w) of I
for w/l = 0.01 (blue dashes) 0.1 (green dashes) and 1 (red
dashes), from the widest to the narrowest, respectively.

The advantage of an integral solution like Eq. (8) with
respect to a direct numerical solution of Eq. (2) is the pos-
sibility of computing the perturbation φ and its derivative
in a given portion of space (in our case the line r = 0)
without the need for a complete knowledge of φ. In fact,
in the limit of high nonlocality the two quantities re-
quired to compute soliton propagation are the pertur-
bation peak φ0(z) = φ(r = 0, z) and the Taylor series
coefficient φ2(z) = ∂2φ/∂r2(r = 0, z), the latter giving
the strength of the nonlinear refractive index well [16].

Having calculated the longitudinally nonlocal case γ =
1, the next step is to obtain the nonlinear perturbation
φ when γ = 0, i.e., for a longitudinally local nonlinearity.
In this case, we need to fix a finite a to ensure a finite
φ; we take a = Nw. Integrating Eq. (2) twice yields

φ0 = αP0

2π T (N)e−αz, with T (N) =
∫ N

0 dt
(

1− e−2t2
)/

t:

the peak of the perturbation depends on the boundary
condition via the parameter N , tending to infinity for N
arbitrarily large. Furthermore, using the Taylor expan-
sion around r = 0 we find [18]

φ2 = − αP0

2πw2
e−αz. (10)

Figure 4(a) shows the numerically computed φ along
z = 0 for γ = 0: as anticipated, the peak of the nonlinear
perturbation φ0 is roughly proportional to logN . The in-
set compares the full profile and the approximation with
a parabolic nonlinear index well: the accuracy worsens
for r ≈ w, in agreement with Ref. [45]. We then compare
the approximate solution for γ = 0 with the exact profile
for γ = 1 above. The effect of the longitudinal nonlo-
cality on φ reduces as the width w/l becomes smaller:
in this regime, in fact, the transverse derivative along r
is dominant [Fig. 4(b)–(c)]. Importantly, the differences
between the local and the nonlocal cases are bigger for
the amplitude perturbation φ0 than for φ2. In agree-
ment with the Green’s function in Fig. 1, the case γ = 0
cannot describe the effects of input and output facets on
the overall distribution of φ, whereas it faithfully repro-
duces the decay in z due to a non-zero α. Finally, Fig.
4(d) shows the behavior of the normalized maximum non-
linear perturbation φ versus normalized absorption: the
smaller w, the stronger the normalized nonlinear pertur-
bation is, unlike the original model proposed by Snyder
and Mitchell which assumes a nonlinear refractive index
well depending on the beam power only [16].
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FIG. 4. (Color online) (a) Normalized nonlinear perturbation
φ versus r/w in the local case γ = 0 and z = 0; each curve
corresponds to a different N , uniquely identified by the point
where φ vanishes. Plots of the normalized (b) φ0 and (c) φ2

versus z/l for γ = 1 when w/l = 0.01 (blue solid lines) and
when w/l = 0.1 (green dashed lines); absorption coefficient αl
is 1× 10−15 (circles), 1 (triangles) and 10 (diamonds). Black
lines with squares refer to the local case for the same set of
αl. (d) Maximum normalized φ0 versus αl for w/l = 0.01, 0.1
, 0.3 and 1 for γ = 1, from top to bottom curves, respectively.

2. Sinusoidal breathing

Next we consider the case of a breathing soliton, that
is, with width w varying along z. We assume for the
width a sinusoidal behavior of the form
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w = wm +∆w sin

(

2π

Λ
z

)

, (11)

where wm is the mean beam width, ∆w and Λ are the
breathing oscillation amplitude and period, respectively.
The peak of the perturbation φ0 versus z characterizes
the nonlinear refractive index well written by a breathing
soliton obeying Eq. (11). In order to quantify the effects
due to width modulation, we define ∆φ0 as the relative
change in φ0 with respect to the case ∆w = 0 (lack of
breathing):

∆φ0(z, wm,∆w,Λ) =
φ0(z, wm,∆w,Λ)

maxz [φ0(z, wm,∆w = 0,Λ)]
,

(12)
where maxz indicates the maximum computed along the
z axis.
In the local case γ = 0, both φ0 and φ2 retain the

same form as in the case of a z−independent beam, as
the nonlinear perturbations φ computed in different sec-
tions are independent from each other: in other words,
the nonlinear perturbation follows the beam width oscil-
lation, despite how large the amplitude ∆w or how short
the period Λ are.
Figure 5 shows φ0 versus z, computed from Eq. (7)

after setting r = 0: generally, ∆φ0 mimicks the sinu-
soidal behavior of the beam width w, with a non-zero
mean value owing to the nonlinear relationship between
w and I. Clearly, the perturbation of φ depends on how
w varies with z: a faster modulation of w along z yields a
slightly smaller perturbation ∆φ0 due to the smoothing
action of φring (compare first and second rows in Fig. 5).
Moreover, the relative modulation of ∆φ0 is proportional
to ∆w/wm with good accuracy (compare first and third
rows in Fig. 5): in fact, the intensity I is proportional to
w−2, thus |∆I|/I ∝ |∆w|/wm.
The quantity φ0 has a minor role in beam self-

confinement: it produces a power-dependent modulation
of the effective propagation constant of the self-trapped
beam, the latter having relevance only when the solitary
wave interferes with a reference beam [47]. The parame-
ter ruling the beam width is φ2, quantifying the strength
of the self-induced index well. If the field intensity is
given by Eq. (6), Eqs. (5) and (7) yield

φ2(z) =
αP0

4π

∫

∞

0

k2rdkr
sinh (krl)

∫ l

0

g(z, z′)e−αz′

e−
k
2
r
w

2

8 dz′,

(13)
where we set

g(z, z′) = sinh(krz) sinh [kr(z
′ − l)]u0(z

′ − z)

+ sinh(krz
′) sinh [kr(z − l)]u0(z − z′). (14)

The results computed from Eq. (13) are presented in
Fig. 6. First, due to the linearity of Eq. (2), the parame-
ter φ2 is inversely proportional to w2

m. Nonetheless, the
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FIG. 5. (Color online) ∆φ0 versus z/l for an averaged waist
wm/l = 0.01 (a)–(d) and wm/l = 0.1 (e)–(f); the breathing
period is Λ/l = 0.05 (a,b,e,f) and Λ/l = 0.1 (c,d). On the
left (a,c,e) and right (b,d,f) column the normalized losses αl
are 1× 10−15 and 1, respectively. The normalized oscillation
amplitude ∆w/wm is 0.1 (blue solid lines), 0.2 (green dashes)
and 0.5 (red dash-dotted lines), respectively.
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FIG. 6. (Color online) φ2w
2

m/(αP0) versus z/l for ∆w/wm =
0.1 (a)–(b), 0.2 (c)–(d) and 0.5 (e)–(f); left (a,c,e) and right
(b,d,f) columns correspond to Λ/l = 0.05 and 0.2, respec-
tively. The mean waist wm/l is 0.01 (blue solid lines), 0.1
(green dashes) and 0.5 (red dash-dotted lines). Black lines
with symbols refer to the local case given by Eq. (10). Here
we set αl = 1× 10−15.

shape of φ along z strongly depends on the ratio wm/l.
For small wm/l the periodic modulation of the nonlinear
well is retained, approaching the local limit γ = 0 (black
curves with symbols in Fig. 6) as wm/l reduces; con-
versely, for large wm/l the oscillations in z are smoothed
out. The size of φ2 increases with ∆w/wm, similar to
φ0; moreover, the spatial filtering of the longitudinal os-
cillations of φ2 changes slightly with ∆w/wm, with an
appreciable difference between the local case [Eq. (10)]
and the case wm/l = 0.01, arising only for ∆w/wm > 0.2.
Finally, a direct comparison between the first and second
columns in Fig. 6 shows that φ2 is nearly independent of
the oscillation period Λ.
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IV. NONLINEAR LIGHT PROPAGATION

Up to now we have calculated the nonlinear refractive
index well determining the intensity distribution I: next
we numerically solve Eq. (1) together with the consti-
tutive equation (2). The numerical algorithm to com-
pute the wavepacket evolution is based on a Finite Dif-
ference Beam Propagation Method. In the longitudinal
case γ = 1, we firstly find the beam evolution for a given
distribution of the refractive index φ, then we substitute
the corresponding intensity I into Eq. (2); this proce-
dure is iterated until we achieve convergence. For γ = 0
the algorithm is slightly different: the beam intensity in
a plane z = constant is used to find the corresponding
nonlinear refractive index well through Eq. (2); the latter
well is then used to calculate the new field profile in the
following section.

A. Profile-invariant solitons

The first goal consists in determining the steady soli-
tary wave solution which preserves its profile while prop-
agating in the z direction. Since losses prevent the prop-
agation of truly invariant wavepackets, we initially set
α = 0 in Eq. (1) to calculate the shape-preserving soli-
tary waves and, then, we include attenuation and com-
pute (numerically) their evolution in the absorbing sam-
ple. Setting φ = v(r) and A = u(r)eiβz (u can be taken
real without loss of generality) Eqs. (1)–(2) yield

βu =
1

2k0n0

1

r

∂

∂r

(

r
∂u

∂r

)

+ k0vu, (15)

αu2 = −1

r

∂

∂r

(

r
∂v

∂r

)

, (16)

as the equations for a steady solitary wave.

Fundamental (single-humped) solitary wave solutions
of Eqs. (1)–(2) are plotted in Fig. 7. The solutions can be
normalized by introducing the scaled radial coordinate
R = k0r, the scaled propagation constant Neff = β/k0
and the scaled power P = αP . The solutions of the
system (1)–(2) strongly depend on the chosen radius r0
for the integration domain: here we take r0 = 50/k0
and limit our considerations to normalized soliton widths
W = wk0 of a few units, so that the finite boundaries do
not affect the results [see Fig. 4(a)]. The soliton profiles

across r are nearly Gaussian, but their width is
√
2 larger

than that steming from the Snyder-Mitchell model [19],
the latter providing the condition αPw2k20 = 8π for the
existence of shape preserving solitary waves [16]: this dis-
crepancy is due to the singularity (at the origin) of the
response function used here, whereas the Snyder-Mitchell
model assumes it is continuous and differentiable every-
where in space [19, 45]. In summary, the width ws of the
Gaussian best-fit to the soliton profile is expressed by
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FIG. 7. (Color online) Soliton profile |u|2 normalized to its
own peak versus normalized radial distance rk0 for (a) αP = 3
and (b) αP = 30, respectively; (c) normalized soliton width
wk0 and (d) peak of the nonlinear perturbation φ0 versus
normalized power αP . In all panels red solid lines and black
dashes correspond to exact numerical solutions and predic-
tions of the original Snyder-Mitchell model, respectively (see
Ref. [19] for a deeper insight).

FIG. 8. (Color online) z Evolution of width (top) and am-
plitude (bottom) of the nonlinear potential φ for absorp-
tion coefficients αl as marked. The solid lines refer to the
longitudinally-local case γ = 0, whereas the dotted lines rep-
resent the full 3D nonlocal case. Here αP0 = 1.5 is kept
constant and λ/l = 0.02.

ws(P ) =

√

16π

k20αP
. (17)

Next we address the effect of absorption losses when
solitary waves are launched at the input z = 0. We ex-
pect that shape variations, linked to the power decay
along z, become more relevant as α increases. Figure 8
shows the width and amplitude of the nonlinear poten-
tial as obtained from BPM simulations. The beam profile
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remains almost unaltered for a longitudinally local non-
linearity (γ = 0) when αl is much less than unity (negligi-
ble losses), with an associated nonlinear potential which
is uniform along the sample (solid lines). As αl becomes
comparable to 1, self-trapping fades out, allowing light
diffraction and exponential decay along z. The results in
the longitudinally nonlocal case γ = 1 (dashed lines) are
more intriguing: due to the boundary condition at the
input facet, the beam amplitude undergoes appreciable
oscillations along z even for small αl. In fact, the bound-
aries at z = 0 and z = l break the longitudinal symmetry
and inhibit the existence of shape preserving solitons, no
matter how small the losses are. The deviation from
the longitudinally invariant solution is more appreciable
when the perturbed interface region is longer than the
Rayleigh distance of the input beam with a solitary wave
profile, so that oscillations are expected to increase with
input power.

B. Breathing solitons

The most general self-localized waves are breathing
solitons, that is, spatially localized beams undergoing
transverse shape changes in propagation due to the inter-
play between diffractive spreading and self-focusing [16].
In this subsection we will discuss their features.

1. Ehrenfest’s theorem for beam width

Using a straightforward generalization of Ehrenfest’s
theorem a simple ordinary differential equation is found
to govern the beam width evolution due to the com-
petition between diffraction and self-focusing. For a
parabolic index well the beam width obeys [48]

n0

2

d4w2

dz4
− 2φ2

d2w2

dz2
− 3

dφ2

dz

dw2

dz
− d2φ2

dz2
w2 = 0, (18)

where φ2 generally depends on z due to losses (α 6= 0) or
breathing.
When the changes in beam width are negligible and

αl ≪ 1, according to Eq. (10) the variation of φ2 with z is
negligible: in this limit Eq. (18) is linear in the unknown
variable w2 and its solution is

w2

w2
0

= 1 +
w4

s − w4
0

2w4
0



1− cos





√

4|φ2(P0)|
n0

z







 , (19)

with φ2 computed for the soliton case, thus depend-
ing only on the input power P0. In deriving Eq. (19)
we set w(z = 0) = w0 and assumed dw2/dz = 0
at z = 0 (i.e., a flat phase profile at the input). In
this limit φ2 is fixed by the input power and takes
the form φ2(P ) = −αP/(2πw2

s) = −k20 (αP )
2
/(32π2)

[see Eqs. (10) and (17)]. The breathing period is then
Λ = 4

√
2n0π

2/(k0αP ).
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FIG. 9. (Color online) Beam width vs z/l for powers P0 dif-
fering from the soliton power P ⋆

0 for (a) the local case [P0/P
⋆
0

equals 0.56 (blue line), 0.72 (cyan line), 1.21 (red line), 1.69
(yellow line), 4 (green line) and 9 (black line)] and (d) the
nonlocal case [P0/P

⋆
0 is 0.56 (blue line), 0.72 (cyan line), 1.21

(red line), 1.69 (yellow line), 2.25 (green line) and 2.56 (black
line)]; beam focusing increases with P0 (top to bottom). (b)
Corresponding oscillation period and (c) oscillation amplitude
for varying P0; symbols correspond to the excitations in (a)–
(d). Solid lines with � refer to the local case and dashed lines
with △ to the nonlocal one. At high powers, in the local case
the sinusoidal behavior is lost whereas in the nonlocal case the
solutions do not converge (not shown). Here αl = 1× 10−15,
P0 = 1.23× 109 and λ/l = 0.02.

When φ2 changes slowly with z due to losses, Eq. (19)
predicts adiabatic variations in both breathing amplitude
(determined by the ratio between w0 and ws, thus gener-
ally non-monotonic with z) and period Λ (monotonically
increasing with z).

When the derivatives of φ2 with respect to z cannot
be neglected (w0 appreciably differing from ws), we can
substitute Eq. (10)— valid away from the interfaces for
narrow beams with γ = 1 (see Fig. 6)— into Eq. (18),
yielding

n0

2

d4w2

dz4
+

αP0e
−αz

2πw2

d2w2

dz2
− αP0e

−αz

2πw4

(

dw2

dz

)2

= 0.

(20)

Equation (20) is highly nonlinear, in general with ape-
riodic solutions. To this extent and for the sake of sim-
plicity, we neglect the last term in Eq. (20), i.e. we leave
out very narrow solitons. Therefore, Eq. (20) becomes
harmonic (with respect to the unknown d2w2/dz2), but
with an oscillation period proportional to the width w.
Changes in beam width imply variations in periodicity,
in turn leading to a rather aperiodic breathing.
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FIG. 10. (Color online) Beam evolution in r = 0 vs z/l at
various steps of the iteration for the nonlocal case discussed in
Fig. 9. Relaxation is achieved at low input powers (see results
for P0/P

⋆
0 = 2.25), whereas the code does not converge for

high P0 (see results for P0/P
⋆
0 = 3.24, 9).

2. Numerical simulations

Hereby we validate our predictions on breathing by us-
ing the BPM. To verify how width oscillations depend on
the soliton radius we assume negligibly small losses, i.e.,
αl ≪ 1. The input beam shape corresponds to a solitary
wave for a given power P ⋆

0 , numerically computed from
Eqs. (15)–(16) and shown in Fig. 7. In order to study the
width oscillations, the input power P0 is set different to
the value P ⋆

0 corresponding to a shape preserving solitary
wave. Unless otherwise stated, we set w0 = ws(P

⋆
0 ) and

let ws(P0) vary freely.

The dynamics obtained for γ = 0 and for γ = 1 is sum-
marized in Fig. 9. For input powers below P ⋆

0 the beam
radius oscillates quasi-periodically around a mean larger
than w0 as ws > w0. As P0 approaches P ⋆

0 the breathing
is nearly sinusoidal, in agreement with Eq. (19). If the
power is further increased, the breathing becomes ape-
riodic, consistent with Eq. (20). As expected, the com-
puted breathing period Λ decreases with P−1

0 ; similarly,
the oscillation amplitude AOSC (difference between max-
imum and minimum width values) tends to zero when
the power approaches P ⋆

0 , but increases above and below
P ⋆
0 . Note that the curve is not symmetric with respect

to the soliton state as, for large powers, the beam cannot
shrink indefinitely due to diffraction, the latter assuming
a dominant role for wavelength or sub-wavelength beam
sizes.

For input powers above 3P ⋆
0 , the BPM for γ = 0 yields

a strongly aperiodic breathing in agreement with Eq.
(20). Noteworthy, the BPM solution is stable when in-
put noise is added. In the nonlocal case (γ = 1), for
large powers (P0 > 2.56P ⋆

0 ) the code, based on an iter-
ative scheme (and thus introducing different numerical
noise at each step), does not converge, see Fig. 10. This
can be ascribed to the highly nonlinear character of Eq.
(20) for small beam widths w, leading to chaotic dynam-
ics. Chaotic dynamics can occur in periodically modu-
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FIG. 11. (Color online) Beam width vs z for a Gaussian input;
each panel corresponds to a different input waist, as marked.
The curves correspond to αP0 = 0.01 (αl = 1 × 10−15),
αP0 = 0.03 (αl = 1) and αP0 = 0.12 (αl = 10), respectively
(higher αP0 correspond to stronger focusing). Blue solid and
red dash-dotted lines refer to nonlocal and local cases, respec-
tively. Gray dashed lines represent linearly diffracting beams.
Here λ/l = 1× 10−3.

lated waveguides, even in the linear regime [49], but in
our case the longitudinal modulation is due to nonlin-
ear effects. This interpretation is corroborated by the
appearance of dips in the intensity profiles at r = 0, pin-
pointing the simultaneous excitations of several modes of
the self-induced guide.

Next we focus on a more realistic excitation, a funda-
mental Gaussian beam launched in z = 0 with a planar
phase front, varying both its initial waist w and power
P0. Figure 11 graphs the beam width versus z for var-
ious absorption coefficients and a fixed P0. For small
losses, the self-trapped beam is quasi-periodic, in agree-
ment with Ref. [16, 18] and Fig. 9. When the normalized
loss reaches αl = 1, the beam widens in z due to its
power dropping. For αl = 10 the beam focuses near the
entrance facet due to the stronger self-focusing associ-
ated with larger absorption. The position of the focus
markedly depends on the input waist, moving away from
the interface as the beams get wider. At the same time,
the power decays rapidly and the nonlinear effects vanish
at z/l ≈ 0.2. At the output facet the beam is wider than
in the linear limit due to the initial self-focusing. In Fig.
11 the differences between the local (γ = 0) and nonlocal
(γ = 1) cases are negligible due to the smallness of w/l,
in agreement with Section III.

We now turn to small losses (αl = 1 × 10−15) in the
limit w/l ≪ 1 where, according to Fig. 6, the solutions
for γ = 0 and γ = 1 should be similar. To this extent
we simulate the evolution of a Gaussian beam of width
w/l = 0.005 with or without longitudinal nonlocality.
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FIG. 12. (Color online) Beam evolution and corresponding index of refraction distribution for Gaussian inputs of width
w/l = 0.005 in local (first three columns) and nonlocal regimes (last three columns), respectively, for various powers P0. Here
αl = 1× 10−15 and λ/l = 0.02.

Figure 12 shows the computed intensity profiles and the
corresponding index of refraction distributions. As pre-
dicted by the Green’s function approach, the longitudinal
nonlocality does not appreciably affect the propagation
in the bulk of the sample. Nonetheless, as predicted in
Fig. 4, the longitudinally local case does not correctly re-
produce the nonlinear refractive index well near the input
and output boundaries. Thus, for instance, if long-range
soliton interaction is under investigation, the local model
γ = 0 is expected to overestimate the mutual attraction
between solitons [6, 50].
The beam evolution is illustrated in Fig. 13. Similar to

the results in Fig. 9, the oscillation period gets smaller as
the power increases, whereas the oscillation amplitude is
proportional to the mismatch between the input width w
and the soliton width ws(P0) for a given power P0. We
also note that the beam initially shrinks when w > ws

(self-focusing overtaking diffraction), whereas the oppo-
site occurs when w < ws (diffraction dominant on the
nonlinear lens) [16, 18].

V. CONCLUSIONS

We investigated the full 3D evolution of highly nonlo-
cal solitons possessing radial symmetry based on a non-
linearity governed by a Poisson equation. We addressed
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FIG. 13. (Color online) (a) Width evolution with breathing
and (b) index of refraction distribution at the maximum beam
amplitude for a Gaussian input and αP0 = 0.01, 0.012, 0.023
and 0.036 [from top to bottom in (a), in the reversed order in
(b)], respectively. Solid lines correspond to the longitudinally-
nonlocal case and dashed-dotted lines to the local one, respec-
tively. Dashed gray line in (a) corresponds to linear diffrac-
tion. Here αl = 1× 10−15 and λ/l = 1× 10−3.

in detail the role played by the longitudinally nonlocal
response, usually neglected in literature, and the de-
pendence of the nonlinear perturbation on the cell ex-
tension in the propagation direction. We detailed the
role of longitudinal (nonlocality and attenuation) effects
on the beam profile and evolution, including periodic
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and aperiodic solitary-wave breathing and power atten-
uation. At variance with the simple case of accessible
solitons [16] which oscillate sinusoidally in width and am-
plitude, non-exact solitary beams launched at the input
tend to breathe aperiodically for input parameters away
from soliton existence curve [18]. Such behavior can be
qualitatively explained using Ehrenfest’s theorem and a
quadratic nonlinear index well.

We showed that when the nonlinearity is of thermal
origin, a trade-off between the magnitude of the refrac-
tive index well and the power decay versus propagation
has to be met in order to maximize beam self-trapping.
Moreover, the boundary conditions break the longitudi-
nal symmetry of the system and prevent truly shape pre-
serving self-trapped waves from existing, even without
losses.
Our model, accounting for losses and 3D nonlocality in
any nonlinear regime, is a new promising workbench for
studying nonlinear dynamics and the interplay of self-
localization, losses and nonlocality. In its numerical im-

plementation it is an ideal tool for the assessment of ex-
perimental results when investigating spatial optical soli-
tons in (self-focusing) highly nonlocal media (including
e.g. thermal, reorientational and liquid crystalline mate-
rials), including higher order solitons [51, 52].
Our findings can also find application in the use of Z-scan
techniques [53] applied to thermal media, in the study of
thermal effects in active media [54] and in the design of
light-written waveguides [29], as well as for graded-index
lenses in soft matter and nonlocal dielectrics.
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