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Kerr lens-mode-locked Ti:Sapphire lasers are known to display three coexistent modes of operation: continuous wave (CW), 
transform limited pulses (P1) and positive chirped pulses (P2). Extreme events (sometimes also called optical rogue waves), in the 
form of pulses of high energy appearing much often than in a Gaussian distribution, are observed in the chaotic regime of the mode 
P2, but not of P1. The extreme events in P2 appear unpredictably, but their separation (measured in number of round trips) is a 
simple combination of the numbers 11 and 12 (which were named “magic numbers”). The existence of extreme events in P2 and not 
in P1, and also of the magic numbers, have been successfully reproduced by numerical simulations based on a five-variables iterative 
map, but the intuitive insight on the physical causes has been limited. In this paper, we present evidence that the extreme events in 
this laser appear if the amount of self-phase modulation on the pulses is above a certain threshold. Also, that the mode P1 becomes 
unstable before crossing that threshold. This explains why the extreme events are observed in P2, and not in P1. Remarkably, even 
though the values of self-phase modulation on all the pulses (in the chaotic regime) are widely spread, the values inside the set of 
extreme events are relatively well-defined. Finally, the magic numbers are found to be the residuals of the periodical orbits of the 
“cold” laser cavity when they are perturbed by the opposite effects of a dissipative term, due to the presence of transversal apertures, 
and an expansive term, due to the self-focusing.  
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1. Introduction. 

 
Waves of extremely high amplitude, appearing 

outside the Gaussian distribution, are important 
phenomena in deep ocean waters, and received the 
name of “freak”, or “rogue”, waves [1]. In the last 
decade, scientific interest increased on analogous rare 
or extreme events (EE) of large amplitude observed in 
areas other than Oceanography. In this sense, “optical 
rogue waves” were first observed in the light intensity 
fluctuations at the edge of the spectrum produced by 
ultrashort pulse pumped, micro-structured optical 
fibers, in the threshold of super-continuum generation 
[2,3]. Conditions for their formation were determined 
in experiments using optical fibers [4]. Optical EE 
were observed in a VCSEL with an injected signal [5], 
in mode-locked fibre lasers [6-9], in all-solid state 
lasers with a (slow) saturable absorber [10] and, what 
is of our interest here, in the Kerr-lens mode locked 
(KLM) Ti:Sapphire laser [11] (fast saturable absorber). 
A review on optical rogue waves has been recently 
published [12].  

The quantitative definition of an EE usually is: a) 
amplitude higher than twice the “significant wave 
height” or “significant intensity” I1/3 [7,8,13], which is 
the average calculated among the set of the 1/3 highest 
events in the series [14]. An event is then considered 
“extreme” if its abnormality index AI ≡ Ievent/I1/3 is 
larger than 2. Alternatively: b) amplitude higher than 
four times the standard deviation. These two 
definitions can be coincident or not, depending on the 
form of the distribution. The optical community has 

often employed the additional criterion of a long tailed 
or L-shaped distribution. In previous contributions, we 
have also used the value of the kurtosis as an additional 
quantitative measure of a non-Gaussian feature. A 
value of the kurtosis larger than 3 means a distribution 
with a tail longer and higher than that of a Gaussian 
distribution. It provides an additional numerical 
criterion to classify a given dynamical regime as one 
with EE.  

The KLM Ti:Sapphire laser is the most widely 
used source of femtosecond (fs) light pulses nowadays. 
Its dynamics is intrinsically complex, because it is 
ruled by a balance of several spatial and temporal 
effects. In the temporal domain the group velocity 
dispersion (GVD) in all the optical components, and 
the intensity-dependent self-phase modulation (SPM), 
mostly in the laser rod, are balanced by the negative 
dispersion produced by an intracavity pair of prisms. In 
the spatial domain, the relevant effects are due to the 
cavity’s geometrical configuration, and the intensity-
dependent self-focusing (SF). The amplification in the 
active medium is an additional source of nonlinearity 
through gain saturation. The pulse energy, the beam 
size and the pulse duration are coupled by both the 
SPM and the SF effects. Three coexistent dynamical 
modes of operation are observed in the laser output if 
the total GVD is negative: continuous wave (CW), 
transform limited pulses (P1), and positive chirped 
pulses (P2). The laser spontaneously evolves from one 
mode to the other even in the absence of noise [15], 
and it is possible to induce a transition from one to the 
other by mechanical perturbations (say, by gently 



tapping a mirror mount). As the GVD of the laser 
cavity is adjusted close to zero from the negative side, 
the pulsed modes evolve towards chaos following a 
different route: P1 through quasiperiodicity, P2 
through intermittency [16]. Be aware that what we call 
“mode” here means a dynamical characteristic of 
operation, not a spatial cavity mode (say, a Gauss-
Laguerre mode). The laser is observed to oscillate in a 
single transversal spatial cavity mode. 

Regarding the EE observed in this laser, two 
phenomena appear especially intriguing: 
i) EE are observed, and numerically predicted to occur, 
in the chaotic regime of P2, but not of P1. 
ii) Even though the appearance of a single EE seems to 
be unpredictable, preferred numbers (measured in 
cavity round trips, or intermediate non-EE pulses) are 
observed in the distance between successive EE. We 
named them “magic numbers” [17]. 

Both phenomena are accurately reproduced by a 
numerical simulation based on a five-variables iterative 
map. Yet, it provides limited insight on the physical 
causes. In this paper, we present evidence that the EE 
in this laser appear if the average SPM crosses a certain 
threshold value. This result is in compliance with the 
report of different types of instabilities in fiber lasers 
[18]. We find that EE are not observed in the P1 mode 
for, at the parameters’ values beyond that threshold, 
this mode is unstable and the system rapidly evolves 
into the P2 mode. Finally, the “magic numbers” are 
due to the residuals of the periodic orbits of the “cold” 
laser cavity (i.e., the optical cavity without gain, losses, 
SF or SPM) when it is perturbed by opposite 
dynamical effects.  

The study of the EE observed in KLM lasers, as a 
subject of dynamical systems, is interesting by itself. 
Besides, it will lead to a deeper understanding of the 
operation of these lasers and, eventually, to an 
improvement of their performance. KLM lasers may 
also provide a convenient test bench to study the 
general features of the phenomenon of EE. For, lasers 
dynamics evolve instantaneously (at the human’s 
timescale) and their control parameters are easy to 
adjust. One of the motivations to study oceanic rogue 
waves is the damage they inflict to ships or platforms. 
In the best of our knowledge, there are no reports on 
damages produced in optical systems by EE in 
Ti:Sapphire lasers. In this sense, it is fortunate that EE 
exist only in the P2 mode, because the P1 mode is the 
preferred one in the practice. It is also possible that 
damages produced by EE in lasers have not been 
recognized as such. 

In the next Section, we review the necessary 
background. We describe the experimental setup where 
EE are observed, and then we review the theoretical 
description with the five variables iterative map. In the 
Section 3, we present evidence that the existence of EE 
in this laser is consistent with the crossing of a 
threshold determined by the average value of the SPM, 
and we also explain why the EE are observed in the 
mode P2 only. In the Section 4, we consider the 
problem of the “magic numbers”. 
 

2. Background. 
2.1 The experiment: setup and main results. 
 

The scheme of our Ti:Sapphire laser is shown in 
the Fig.1. It is an “X” configuration, with a flat HR rear 
mirror (M4) and a 12% output coupler (M1). The total 
cavity length is 1724mm (round trip frequency: 87 
MHz). For 5W CW pump at 532nm, the output power 
is 400 mW in the spectral region around 800nm. 
Typical pulse durations in the uniform mode locking 
regime are 35 fs (mode P1) and 65 fs (mode P2). We 
observe the mode-locking pulse train with a fast 
photodiode (0.2mm diameter, 0.5 ns risetime) and 
record the signal in the memory of a high speed 
sampling oscilloscope. Note that the photodiode is too 
slow to resolve the fs pulse shape, what we observe is 
the instrumental response to a “delta” input, and we 
then analyze the time series [16]. 
 

 
 
Figure 1:  Scheme of the laser. LB: pump focusing lens (f=10cm), 
M2,3 curved mirrors (R=10 cm) MP1,2 plane HR mirrors, P1,2 pair of 
prisms. Distances in mm: M3-R=R-M2=50, M2-MP2=140, MP2-M1= 
465, M3-P1=297, P1-MP1=198, MP1-P2=415, P2-M4=109. The prisms’ 
position is adjusted to get negative total GVD. 
 

In the bistable region of the parameters, the laser 
wanders from one mode to the other in a time scale of 
several minutes. The modes can be distinguished by 
the pulse duration, the chirp, the spectrum and, even by 
the naked eye, as a change in the size of the laser spot. 
The pulses of the mode P1 are transform-limited, and 
about twice shorter than the P2 ones [15]. EE are easily 
observed in the chaotic regime of P2, Fig.2 [11]. Be 
aware that the experimental series is not an 
oscilloscope trace, but that each point represents the 
total energy of a single pulse, as it is obtained from the 
digitized experimental data by following the algorithm 
detailed in [16]. The theoretical series corresponds to 
the pulse energies calculated from the iterative map 
described in the Section 2.2. On the right, a zoom of 
each series shows their detailed structure. The visible 
high intensity peaks are caused by the periodicities of 
the “cold” optical cavity and are at the origin of the 
“magic numbers”, as it is explained in the Section 4. 

Typically, 100 to 200 pulses out of 104 are EE. On 
the other hand, no EE are observed in the chaotic 
regime of the mode P1. This result supports the 
hypothesis of a non-trivial and deterministic nature of 
the observed EE. For, if the EE in P2 were mere noise, 
or caused by self-Q-switching, there is no reason why 
they would not be observed in the coexisting mode P1 
too. The theoretical approach based on the numerical 
running of a five variables iterative map predicts the 



existence of EE for P2 and not for P1, hence agreeing 
with the observations.  

 

  
 

  
 
Figure 2: Chaotic regime of the mode P2. The horizontal dashed line 
indicates the threshold of EE for the full time series according to the 
2×AI criterion. (a) experimental time series, zoom of ≈2000 pulses of 
9978 with a total of 205 EE, kurtosis= 4.91, (b) further zoom of the 
same, (c) theoretical time series obtained from the five-variables 
iterative map, zoom of ≈2000 iterations of 104 with a total of 226 EE, 
kurtosis= 4.98, (d) further zoom of the same. Note the intermittent 
excursions to a regime of pulses of higher energy in both series. Be 
aware that each point in (b) and (d) is not the sample of a digital 
oscilloscope, but the energy of a single pulse in the mode-locking 
train. The periodicities behind the magic numbers (Section 4) are 
clearly visible. Average pulse duration: 80 fs. 

 
The hypothesis of a deterministic origin for these 

EE is strengthened by the observation that, once inside 
the intermittent high-energy region, the EE tend to 
appear at definite distances of each other [17]. The 
Fig.3 shows the histograms of the distances between 
successive EE, measured as the number of cavity round 
trips, for a representative time series. It is immediately 
seen that they are not uniformly distributed, but that 
they take only some preferred (“magic”) numbers: {11, 
12, 23, 35, 46, 58, 94} in the experimentally obtained 
histogram, and {11, 12, 23, 24, 34, 35, 46, 58} in the 
theoretically obtained one. Note the remarkable 
coincidence between the experimental and the 
theoretical distributions. It is possible to predict the 
moment when an EE will not appear, despite the 
dynamics is chaotic. Note also that the magic numbers 
are simple combinations of 11 and 12. There are, 
however, missing combinations, as 22, 57 and 69 in 
both sets. Besides, there is an internal structure: if the 
distance between the n-EE and the (n+1)-EE is 11, 
there is a 93% probability that the distance to the 
(n+2)-EE is 12 (this probability is 77% in the 
theoretical series). In the same way, 23 follows 12 
(with probability 82% both in the experimental and the 
theoretical series), 12 follows 23 (66% experimental 
and 40% theoretical), 23 follows 35 (61% experimental 
and 56% theoretical), and after 58 comes 35 in 100% 
of the cases (both experimental and theoretical). 
Second-step n to n+2 correlations also exist, but they 
are weaker. There is no correlation between the energy 
of an EE and its magic number [17].  

The numerical coincidences between the 
experimental and the theoretical results indicate that 
these preferred numbers have a deep and robust cause, 
and that noise plays a minor role in the dynamics of EE 
in this type of lasers. It is to be noted that no fine 
tuning of the many laser parameters has been 
performed in the numerical simulations. Tabulated and 
directly measured values have been used. Only the 
(negative) GVD has been adjusted, to fit the observed 
average pulse duration (80 fs, in this case). 

 

  
  
Figure 3: Histograms of the number of EE according to the distance 
(in cavity round trips) to the next EE in the chaotic regime of P2; 
left: experimental results; right: theoretical ones.  
 
2.2. The five-variables iterative map. 
 

The description of KLM lasers with iterative 
maps has been developed in several previous 
publications [15-17,19,23]. For completeness, it is 
briefly reviewed in the following lines. The Reader 
familiar with this approach may skip this section. 

The description with maps is alternative to that 
with a differential equation; no information is gained or 
lost. There are, however, some immediate advantages: 
the dimensionality of the problem is reduced in (at 
least) one, the stability of the solutions is easily 
determined, and the numerical simulations run easier 
and faster. Period-doubling bifurcations are trivially 
described.  However, writing the map equation can be 
as difficult as solving the differential equation, unless 
the physical system has some “internal clock” that 
determines the position of the adequate discrete times. 
In the case of KLM lasers, that clock is provided by the 
cavity round trip time [19].  

We suppose a gaussian pulse, the electric field is 
given by: E(t) = E0 exp(-i kr2/2q) exp(-i kt2/2p) where r 
is the transverse distance to the optical axis, k is the 
wavenumber and p, q are the usual beam parameters 
defined by the relationships [19,20]: 

 
 1/q = n/R – 2i/kσ2    (1) 

 
1/p = Q/k – 2i/kτ 2   (2) 

 
where σ is the spot radius, R the beam curvature radius, 
τ  the pulse duration and Q the chirp (n is the index of 
refraction of the medium). This approximation is found 
valid for pulses longer than 20 fs [19]. As the pulse 
passes through an optical component (or propagates a 
distance), q changes according to: 
 

qout = (A.qin + B)/(C.qin + D)   (3) 
  



where {A...D} are the elements of the usual 2x2 matrix 
of that component [20]. An analogous relationship 
holds for p [21]. The matrix describing the effect of the 
beam and pulse propagation through several optical 
components is obtained as the product of the matrices 
of each component. In standard cavities of KLM lasers, 
the general 4×4 round trip matrix splits into two 2×2 
diagonal blocks, which we call “spatial” [ABCD] and 
“time” [KIJL] matrices [19].  

The {A…L} elements include factors that are 
functions of {σ,τ} and the pulse energy U. The factor 
due to SF is γ= cγ.U/(τσ4) and the one due to SPM is 
β= cβ.U/(τ3σ2). The constants cγ and cβ are proportional 
to the nonlinear index of refraction of the Ti:Sapphire. 
Their precise expression is rather involved [22]. In our 
laser, they take the values cγ= 1.38×10-11 cm3 fs/nJ and 
cβ= 2.18×10-7 cm2 fs/nJ. The values of these factors are 
different if the pulse crosses the Ti:Sapphire rod in one 
direction or the other. We call {γ,β} the factors that 
correspond to the case when the pulse propagates from 
M3 to M2 (see Fig.1), and {γ’,β’} to the case when it 
propagates from M2 to M3. 

 The matrix elements are then written as a series 
expansion: A = A0 + γ Aγ + γ’A’γ +… (the same for B, 
C, and D) being the coefficients of the expansion 
functions of the cavity’s geometry. The time matrix is 
simpler: K = 1+ 2β’δ, I = 2δ, J = 2β’βδ + β + β’, L = 
1+ 2βδ, where 2δ is the total GVD per round trip. Note 
that the {γ,β,γ’,β’} factors vanish in the limit of zero 
energy pulse. This defines the “cold” cavity limit. The 
equation for the pulse energy is obtained as an 
expansion of the condition of gain saturation [19]. 
Defining Sn ≡σn

-2, ρn ≡Rn
-1 and Tn ≡τn

-2, the expressions 
that link the pulse variable values at the n+1 round trip 
with the ones at the n round trip are [15,16]: 
 

 Sn+1 = 
Sn 
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where μ=1.61 is the product of the small signal gain Γ 
and the single passage feedback factor due to passive 
losses, and Ds =1.22 mJ/cm2 is the saturation energy 
multiplied by the cavity round trip. Here and in what 

follows, the asterisks indicate the values of the 
variables at a fixed point. The fixed points can be 
obtained analytically at first order in {γ,β,γ’,β’}. If 
τ→∞ then {γ,β,γ’,β’}→0, what corresponds to the CW 
mode of operation. The condition Qn=Qn+1=0 (i.e., zero 
chirp) leads to β=β’ and corresponds to the P1 mode 
(transform limited pulse) [15]. There is a fixed point 
with positive chirp, for which β>>β’ (P2 mode) and 
one with negative chirp, for which β<<β’ (P3 mode). 
The stability analysis of the fixed points explains why 
the P3 mode is not observed in the practice [16]. 

For simplicity, we use three different forms of the 
map in the numerical simulations. In one of them the 
condition β=β’ is enforced, and hence it describes the 
evolution of the P1 mode only, as if the P2 mode didn’t 
existed. We call it the “P1-map”. In the same way, the 
forced condition β’=0 defines the “P2-map”. A more 
involved numerical simulation, where β and β’ evolve 
freely, is called the “Bistable-map” and is able to 
accurately describe the observed transitions from one 
mode to the other  [23].  

 

 
 

Figure 4: Bifurcation diagrams for the pulse energy of the modes P1 
(left) and P2 (right) as the GVD is varied, as obtained from their own 
five-variables maps. The energy is scaled to U*, the fixed point 
energy value of P1 at GVD= -130fs2.  
 

Each mode follows its own route to chaos. The 
calculated bifurcations’ diagrams in the energy variable 
are displayed in the Fig.4. The period-three stable 
window of P1 at ≈-50 fs2 was observed by Bolton and 
Acton [24]. In the practice, the bistable region spans 
between -60 and -40 fs2. Near -38 fs2 the mode P1 
destabilizes into self-Q-switching, while the P2 does it 
near -20 fs2. The observed self-Q-switching regime 
puts a limit to the validity of the description with this 
iterative map. The large excursions in energy of the 
mode P2 in its chaotic regime correspond to the 
existence of EE (note the different vertical scales). 
 
3. On the cause of the observed extreme events. 
3.1 The SPM instability threshold. 
 

Early observations [11,17] and some results for 
fiber fs lasers [18] suggested that a high value of the 
SPM could be related with the formation of EE in this 
laser. The value of the SPM acting on each pulse in a 
chaotic mode-locked train cannot be reliably measured 
in the practice. Fortunately, we have at hand the five-
variables iterative map which, as it was shown above, 
accurately reproduces the effects of interest here. The 
calculated values of β provide a measure of the amount 
of SPM on each pulse when crossing the laser rod. In 
the Fig.55, the calculated values of β and U (the total 



energy) for each pulse in a train of 105 are plotted, for 
each of the two modes, in the region where both modes 
are chaotic (GVD= -42 fs2). All the parameters 
correspond to the operation values of the real laser.  

The P1(P2)-map is used to calculate the points that 
correspond to the P1(P2) mode. The EE are the dots at 
the right of the vertical dotted line, note that they 
belong to the P2 mode only. Even though the P2 pulses 
are spread over a large area in the diagram, the EE all 
have practically the same value of β. We call this value 
βEE ≈10-6 fs-2. Curiously, βEE is relatively low for the 
mode P2. The pulses of the mode P1, instead, 
accumulate in a small “cloud”, below βEE. It is 
noticeable the spiraling orbit corresponding to a quasi-
periodical excursion, typical of the P1 mode.  

 

 
Figure 5: Calculated values of β (a measure of the SPM) and the 
energy, each point represents one pulse of a chaotic time series of 105 
after removal a transient of 3×104. Note that almost all the pulses of 
the mode P2 (in black) have a larger value of β than even the largest 
ones of the mode P1 (in gray). The total number of EE (the points to 
the right of the vertical dotted line) is 331, they seem to be fewer 
because of the scale of the figure. GVD= -42 fs2. 
 

Excepting for a few pulses of very low energy (on 
the left), the whole population of the P2 mode has a 
larger value of β than the highest of the P1 mode. It 
seems then probable that the P2 mode displays EE 
because it is above an instability threshold related with 
the value of the SPM on the pulses. We speculate that 
the order of magnitude of this threshold, if measured 
with β, is given by βEE. No pulse in the P1 mode is 
above βEE in the Fig.5, but some of them are just at the 
border. A small increase in the pulse energy U should 
allow the P1 mode to cross the threshold too. We 
therefore increase the small signal gain Γ in the P1-
map to increase the pulse energy, and plot histograms 
of the new energy pulse distributions. A 10% increase 
of Γ (Fig.6b) changes the shape of the distribution 
(compare with Fig.6a): a central maximum appears and 
a high energy tail starts to develop. For a 20% increase 
the tail is longer (Fig.6c) and, for a 40% increase, EE 
appear at last.  

As a further check, the values of β,U for P1 are 
plotted in the Fig.7. In comparison with the Fig.5, the 
form of the P1-cloud has changed and most of the 
pulses are above βEE ≈10-6 fs-2 now, as expected. The β 
values of the set of EE are much less spread than for 

the whole set of pulses, as in the Fig.5. Yet, in this case 
they are near the average β value instead that near the 
minimum. 

 

 
 

 
Figure 6: Energy histograms (total 104 pulses) in the chaotic regime 
of the mode P1 for increasing small signal gain Γ, GVD= -42 fs2; (a) 
at the normal operating value of the small signal gain, Γ=Γ*; (b) 
Γ/Γ*=1.1; (c) Γ/Γ*=1.2, (d) Γ/Γ*=1.4, a total of 16 EE are observed, 
kurtosis= 4.55. For (a-c), the value 2×AI is higher than 100 nJ and 
out of the figure, for (d) 2×AI=63 nJ.  
 

 
 
Figure 7: β and the energy as in the Fig.5 but for the P1 mode only, 
and Γ/Γ*=1.4. Note the changes in shape and position of the cloud, 
and the appearance of EE. The total number of EE (the points to the 
right of the vertical dotted line) is 16, they seem to be fewer because 
of the scale of the figure.  
 
3.2 Stability of the P1 mode in the regime with EE.  

The natural conclusion at this point is that EE 
should be observed also in the P1 mode if the small 
signal gain were increased. Nevertheless, this does not 
occur. We operate the laser under many different pump 
focusing and alignment conditions. In no case we 
observe EE in the mode P1, and in all cases we observe 
them easily in the mode P2. A hint to explain this result 
is that the volumes of the basins of attraction and the 
change of the eigenvalues, as the laser parameters are 
varied, indicate that the P1 mode is generally less 
stable than the P2. This numerical result is confirmed 
in the practice of this laser’s operation. 



Therefore, we run a numerical simulation with the 
bistable-map and Γ/Γ*=1.4, and follow the pulse 
evolution. An example is shown in the Fig.8. The 
initial condition (U=19 nJ, σ=39 μm, τ=19 fs, Q=0) is 
very close to the fixed point of the P1 mode. The 
pulses in the P1 mode are the cloud on the left, and the 
ones in the P2 mode are the cloud on the right, note the 
different average values of the pulse variables in each 
cloud. After a few hundred iterations, corresponding to 
some μs of real time, and precisely at the point of a 
large excursion in the energy (the pulse energy reaches 
thrice the fixed point value), the system crosses from 
the P1 region to the P2 region, and remains there 
(where it does display EE, note the vertical spread of 
the dots). After many runs like this, we see that in no 
case the system remains in the P1 mode for a time long 
enough to be observed in the practice. 
 

 
 
Figure 8: Evolution of the pulse starting in the P1 mode (on the left) 
towards the P2 mode (on the right). All the parameters correspond to 
the operation point of the actual laser, excepting Γ/Γ*=1.4. Note that 
a high energy excursion in P1 (an EE?) is followed by a transition to 
P2, where the system remains and displays EE. The transition to P2 
occurs after 218 round trips (≈2.5 μs in real time), total length of the 
run: 104 pulses. The variables are scaled to the fixed point of P1. 
 

As a further check, we plot in the Fig.9 the values 
of β and that of the largest (in modulus) eigenvalue, 
both for P1 and P2, as a function of the small signal 
gain. For P2, β crosses βEE ≈10-6 fs-2 before its largest 
eigenvalue crosses 1, while the opposite occurs for P1. 
We conclude that EE are not observed in the mode P1 
because this mode is unstable, against the coexisting 
mode P2, if the gain is above the instability threshold.  

The SPM-related instability that produces EE in 
this laser is conceivably of a specific nature, still to be 
determined. We just mention a possible link to the 
modulational instability (MI) of the Nonlinear 
Schrödinger equation. In physical terms, the MI arises 
when the (focusing) Kerr nonlinearity overwhelms the 
spread produced by the (negative) GVD scaled with the 
frequency of some harmonic perturbation. Then the 
perturbation grows exponentially, sidebands in the 
spectrum are generated by the nonlinearity and, 
eventually, rogue waves are formed. The net value of 
GVD of our laser is negative, and the Kerr term is self-

focusing, as required. A condition parallel to the MI 
can then be imagined, placing a threshold value to the 
Kerr nonlinearity (here, the SPM). An experimental 
result suggesting that the EE in this laser follow a 
process similar to the MI is that spectral sidebands are 
observed in the mode P2, and not in the P1 [11].  

 

  
 

Figure 9: Variation of β (curve, vertical axis on the left) and of the 
modulus of the largest eigenvalue (broken line, axis on the right) as a 
function of the scaled small signal gain Γ/Γ*, for the modes P2 (left) 
and P1 (right), GVD=-42 fs2. For P2, the SPM crosses βEE ≈ 10-6 fs-2 
at Γ/Γ*<1, while the largest eigenvalue crosses 1 (and the mode 
becomes unstable) at Γ/Γ*≈2.5. Thus, at Γ/Γ*=1 the P2 is stable and 
displays EE, as observed. Instead, for P1 the eigenvalue is >1 at 
Γ/Γ*≈1.1 (and the mode become unstable) and SPM>βEE at 
Γ/Γ*≈1.4. Thus, EE are not observed in P1 because this mode 
becomes unstable before reaching the instability threshold.  
 
4. On the cause of the quasi-periodicities. 
4.1Changes if the threshold value of EE is lowered. 
 

As discussed before, the distance between 
successive EE measured in round trips is observed to 
be a simple combination of the numbers 11 and 12. 
The threshold that defines an EE is rather arbitrary. If 
this threshold is lowered, “new” EE appear 
intermediate of the old ones, always at a distance that 
is a combination of 11 and 12, depopulating the higher 
magic numbers. F.ex., an experimental time series 
generates the histogram of the Fig.3a if the threshold is 
established, following the 2×AI criterion, as 87 
arbitrary units (a.u.). The total number of EE is 237 
and the magic numbers are {11,12,23,35,46,58,94}. If 
the threshold is lowered to 80 a.u., the number of EE 
increases to 328 and the set is now {11,12,23,24,35}. If 
the threshold is further lowered to 75 a.u., the number 
of EE increases to 397, the magic numbers 24 and 35 
disappear and the number “1” appears in the set (i.e, 
there are two successive EE). The same phenomenon 
occurs in the theoretical time series, with a remarkable 
numerical coincidence with the observed ones. It is 
evident that a robust quasi-periodical phenomenon is 
underlying, with a typical period related with 11 and 12 
round trips, regardless of the specific numerical value 
given to the threshold defining an EE. 
 
4.2 Periodicities of the spatial part of the map. 
 

The evolution of the spatial part of the pulse (i.e., 
its beam size and curvature radius) in a cold cavity is 
known to be a periodical phenomenon [20]. It is 
therefore a natural candidate to explain the origin of 
the observed quasi-periodicities of the EE. In order to 
study this possibility, it is convenient to use a simpler 
form of the iterative map, which has been discussed in 



detail in the Refs.25 and 26. We review here the 
essential points. The ABCD cold-cavity round trip 
spatial matrix of the Section 2.2 can be transformed so 
that it has only two independent parameters: A ≡ 
(A0+D0)/2 (with no units) and B0 (units of length). Be 
aware of the differences between A (the element of the 
spatial matrix including SF and SPM), A0 (the same 
but without SF and SPM) and A (just defined). Using 
B0 to scale the beam parameter q in the eq.1, such that 
ψn ≡ B0/q, the eq.3 becomes: 

 
ψn+1 = A – (A+ψn)-1   (5) 

 
The real part of the complex variable ψn is hence 
proportional to the inverse of the beam’s radius of 
curvature, and the imaginary part to the inverse of the 
spot area (both in the n-iteration). The fixed points of 
this map are ± i(1-A2)½; one of them is physically 
meaningful and corresponds to the actual stable mode 
of the cavity. The other one is physically meaningless 
[20]. The expression for the map after n iterations 
starting from an arbitrary initial condition ψ0 is [25]: 
 

ψn = (P1
n + P2

nψ0) / (P2
n + P3

nψ0)  (6) 
  

where the Pj
n are polynomials in A, similar to Legendre 

polynomials. If P3
n=0 then P1

n=0 and P2
n≠0 (see the 

Appendix), and the solution becomes n-periodic for 
any initial condition. It is then sufficient finding the 
zeroes of P3

n to know the periodicities of the cold 
cavity. The P3

n-polynomials and their roots until n=13 
are can be found in the Appendix.  

The two fixed points of the map eq.5 have 
indifferent stability. By taking into account that 
transversal apertures unavoidably exist (due to the 
finite diameter of the mirrors, of the pumped region, 
etc.), the physically meaningful fixed point becomes 
definitely stable, and the unphysical one, unstable [20]. 
The effect of an aperture of radius Rap is taken into 
account in eq.5 by adding a term –ia, where a = 
B0λ/πRap

2. The effect of this term is dissipative: the 
map converges to the physically meaningful fixed 
point as n→∞, for all the initial conditions. 

 The effect of a self-focusing Kerr nonlinearity is 
taken into account with a term –Ks×Sn, where Ks is 
approximated as a constant that includes the pulse 
intensity and the nonlinear index of refraction [26]. 
This means an important limitation in comparison with 
the five-variables map and the actual situation (see the 
Fig.2), where Ks varies. In spite of this limitation, this 
approximation allows a simple understanding of the 
origin of the magic numbers, as it is explained in what 
follows. Recalling that Sn (i.e., the inverse of the spot 
area at the n-iteration) is proportional to the imaginary 
part of ψn, the map including the spatial effects of the 
apertures and the (approximate) SF is, from eq.5: 

 
ψn+1 = A – (A+ψn)-1 - ia - KS×Im(ψn )              (7) 
 
The numerical study of the eq.7 shows that, if 

A>0, the map converges to the physically meaningful 

fixed point [26]. Its basin of attraction covers almost 
the whole complex plane if a=0, and the whole plane if 
a>0. If A<0 instead, at least one of the Lyapunov 
exponents is positive and the iterations of the map 
diverge. Therefore, if A<0 and a,KS>0, there are two 
tendencies in opposition: the effect of the aperture is to 
converge to the fixed point, while the effect of the 
nonlinear term is to diverge from it. Depending on the 
values of {a,KS}the map converges to the fixed point, 
diverges, or converges to periodic orbits of low 
periodicity. The latter can occur only if a,KS.Sn<<1, 
i.e., if the last two terms in eq.7 are small perturbations 
of the cold cavity.  

In the Fig.10a, each dot indicates the set of values 
of {a,A,KS} producing a periodic orbit in eq.7. The set 
of dots accumulate in vertical lines or “fringes” close 
to the values of A that are zeroes of polynomials P3

n of 
low order. The effect is seen more clearly in the 
Fig.10b, where only the perturbed orbits of period 7 are 
plotted. Note that all the orbits are near the zeroes of 
P3

7 (see the Appendix) and that they gently shift as 
{a,KS} increase. In other words: the orbits arising from 
the balance between the opposite tendencies of the 
Kerr effect and the aperture, have a period equal to the 
n of the P3

n(A) of lowest order that has a zero near the 
value of A of the laser cavity. 
 

  
 
Figure 10: (a): values of {a,A,Ks} that produce stable periodical 
orbits (period<100) in the map eq.7. Each dot represents an orbit, the 
“fringed” pattern is due to the accumulation of the orbits near the 
values of A that are zeroes of P3

n of low order; (b): the same as (a) 
but orbits of period 7 are plotted only, note that they are close to the 
zeroes of P3

7: {±0.223, ±0.624, ±0.901} (from Ref.27). 
 

In our opinion, this numerical result is quite 
intuitive. The periodic orbits of the cold cavity survive, 
modified, to the presence of the two opposite 
perturbations. The low periodicity orbits dominate, 
after a sort of Darwinian selection, because their 
iterations are more distant in the complex plane than 
the ones with higher periodicity, and are hence more 
robust against the “blurring” of the trajectories caused 
by the perturbations.  

 
4.3 The numbers of the real laser. 
 

In our laser, the Kerr effect is a small perturbation 
and there are no tight transversal apertures into the 
cavity. Therefore, the condition that the last two terms 
in eq.7 must be small is surely fulfilled. The numerical 
evaluation of the average value of KS using the 
complete five-variables map supports this conclusion. 
The values of the elements of the round-trip matrix for 
the cold cavity are: A0= 4.1381, B0= 2.3048 cm, C0= 



8.3276 cm-1, D0= -4.3965, so that A=-0.1292 (they can 
be calculated from the data in the Fig.1). Hence, the 
condition A<0, KS>0 that defines opposite tendencies 
for the aperture and the Kerr effect is fulfilled too. 
Finally, the lowest P3

n-polynomial having a zero close 
to A=-0.1292 is P3

11 (the zero is -0.142, see the 
Appendix; the next closest zero of low order is -0.174, 
of P3

9). This means that the cold cavity is close to the 
condition of periodicity 11. It is then reasonable to 
expect that the “hot” cavity displays orbits with a 
periodicity near 11, which is precisely what is observed 
both in the lab and in the numerical simulations with 
the complete (i.e., KS not constant) five-variables map. 

 

 
 
Figure 11: Histogram of the number of EE according to the distance 
(in cavity round trips) to the next EE, for the cavity modified such 
that A is a zero of P3

7 and P3
5, the other laser’s parameters are the 

same as in Fig.3. The magic numbers are now simple combinations 
of the numbers 5 and 7, as expected. The total number of pulses in 
this run is 15000 and there are 239 EE.  
 

It remains to explain why there is nearly one 
pulse of higher energy than the average in each orbit. 
The iterations of the cold cavity (i.e., a,Ks =0) lie on a 
circle in the complex plane of ψn, which is defined by 
the initial condition ψ0. This circle passes between the 
fixed point and the origin of the complex plane [25]. 
The iterations are not equally spaced on this circle. 
There is “almost always” (it depends on the initial 
condition ψ0) at least one iteration in the region 
between the fixed point and the origin, that is, a region 
of large spot area. A larger spot means a better overlap 
with the pumped region, and hence a larger value of Un 
(see eq.4e). This means that, almost always, there is at 
least one pulse of higher energy per period. The perfect 
periodical process of the cold cavity is perturbed by the 
opposite effects of the aperture and the SF, but it 
survives in the form of the magic numbers. The 
perturbations also blur (and erase) the critical 
dependence on the initial condition. 

To check this explanation, we modify the values 
of the geometrical parameters of the cavity and see if 
the magic numbers change accordingly. We choose 
A=-0.225, which is a root of both P3

7 and P3
5. This 

leads to new values of the cold cavity parameters: A0 = 
4.1860, B0=-2.3048 cm, C0=8.5058 cm-1, D0 = -4.4444. 
These values are inserted in the five-variables P2-map 
and new numerical simulations are run, all the other 

parameters’ values being the same as before. The 
Fig.11 displays the histograms for a run of 15000 
pulses, with a total of 239 EE. As it is seen, the magic 
numbers are now {5, 7, 12, 17, 22, 23, 24, 26, 27, 121 
(out of the figure)}. Leaving aside 23, with only one 
EE, these new magic numbers are simple combinations 
of 5 and 7, which are the periodicities of the orbits of 
the cold cavity for the value of A chosen. If the 
threshold for EE is lowered, the larger magic numbers 
disappear and the EE are separated by even simpler 
combinations of 5 and 7, in a way analogous to what 
happened in the original cavity. Analogous results are 
obtained for other values of A tested close to other 
zeroes of the P3

n of low order.  
We conclude then that the observed quasi-

periodicities of the EE in this laser are the residuals of 
the stable geometrical orbits of the cold cavity, when 
perturbed by the opposite tendencies of a transversal 
aperture and SF. 
 
5. Summary.  

 
The chaotic regimes of the bistable KLM 

Ti:Sapphire laser display a large variety of interesting 
dynamical behaviors, whose exploration is far from 
being completed here. We have focused in two 
intriguing features: i) why EE appear in the chaotic 
regime of only one of the two pulsed modes of 
operation (the chirped-pulse mode or P2), and ii) the 
cause of the discontinuous distribution of the 
separation between two successive EE (the “magic 
numbers”). 

Regarding (i): evidence is presented that the EE 
appear if the average value of the SPM on the pulses is 
above a certain threshold, which we numerically 
estimate as βEE ≈10-6 fs-2. This result is in general 
accordance with the instabilities reported in fs fiber 
lasers [18], and it may have a link with the MI. The 
crossing of that threshold occurs first for the mode P2 
than for the P1, for the average SPM on the pulses is 
larger for the former. Increasing the small signal gain 
in the P1-map makes the laser to cross that threshold 
and to display, numerically, EE too. Yet, the EE are not 
observed because the mode P1 is unstable at the 
increased value of the gain. In fact, the simulations 
with the bistable map show that, in spite of starting at 
the fixed point of P1, the laser evolves rapidly (in a 
scale of μs in real time) into the mode P2, where it 
remains and does display EE. In other words: no EE in 
the P1 mode is observed, because P1 becomes unstable 
(and the laser evolves into P2) before reaching the EE 
threshold. This result is fortunate for this laser’s users, 
but pulses of very high energy are anyway possible 
during a transient (as in the Fig.8). It is therefore 
advisable in the practice to block the laser cavity if the 
pump power or any other parameter is to be changed, 
even if the laser is running in the P1 mode. 

A curious result is that the EE pulses take values 
of β that are much less spread than those of the whole 
set of pulses. This means that the EE occur inside a 
relatively well defined region in phase space (say, a “β-
constant” manifold). This result gives some hope to 



predicting, and eventually controlling, the formation of 
EE. We foresee further research along this line. 

Regarding (ii): the magic numbers are the 
residuals of the periodic orbits of the cold cavity, 
perturbed by the opposite tendencies of an expansive 
Kerr nonlinearity and dissipative losses. This result is 
easily explained with a simplified theoretical approach 
that reduces the KLM evolution, from the complete 
five-variables map, to an approximate map in the 
complex plane. The fact that the EE in this laser are 
generally unpredictable, but that they can occur at only 
preferred times, is a further confirmation of their 
deterministic (i.e., not-noise driven) nature. Note that it 
is not possible to predict when an EE will occur, but at 
least it is possible to predict when it will not occur. 
This can be considered as a first step towards their 
complete forecast and control. 

In this paper, we have studied the KLM 
Ti:Sapphire laser as an object of dynamical interest. 
Nevertheless, the knowledge obtained from this study 
may prove helpful to improve the performance of this 
most used device and, hopefully, to put some light on 
some general features of the formation of EE. 
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Appendix. 
 

The Pj
n polynomials are linked by the formation 

relationships: P1
n = (A2-1) P3

n and P2
n = AP3

n – P3
n-1, so 

that all of them can be calculated knowing the P3
n. The 

general form of the P3
n is detailed in [25]. The first P3

n 
polynomials are: P3

1 = 1, P3
2 = 2A, P3

3 = 4A2 -1, P3
4 = 

8A3 - 4A. The following ones can be calculated from 
the recursive equation: P3

n+1 = 2A P3
n - P3

n-1.  
A P3

n-polynomial has n-1 zeroes. The values of the 
zeroes of the P3

n until order n=13 are: n=1: none; n=2: 
0; n=3: ±½; n=4: 0, ±1/√2; n=5: ±0.223, ±0.901; n=6: 
0, ±½, ±√3/2; n=7: ±0.223, ±0.624, ±0.901; n=8: 0, 
±0.329, ±√2/2, ±0.924; n=9: ±0.174, ±½,  ±0.766, 
±0.940; n=10: 0, ±0.309, ±0.588, ±0.809, ±0.951; 
n=11: ±0.142, ±0.415, ±0.654, ±0.840, ±0.960; n=12: 
0, ±0.259, ±½, ±√2/2, ±√3/2, ±0.966; n=13: 
±0.120,±0.350,  ±0.566, ±0.748, ±0.883, ±0.971. 
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