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Optomechanical systems provide a unique platform for observing quantum behavior of macro-
scopic objects. However, efforts towards realizing nonlinear behavior at the single photon level
have been inhibited by the small size of the radiation pressure interaction. Here we show that it
is not necessary to reach the single-photon strong-coupling regime in order to realize significant
optomechanical nonlinearities. Instead, nonlinearities at the few quanta level can be achieved, even
with weak-coupling, in a two-mode optomechanical system driven near instability. In this limit,
we establish a new figure of merit for realizing strong nonlinearity which scales with the single-
photon optomechanical coupling and the sideband resolution of the mechanical mode with respect
to the cavity linewidth. We find that current devices based on optomechanical crystals, thought
to be in the weak-coupling regime, may be able to achieve strong quantum nonlinearity; enabling
deterministic interactions between single photons.

PACS numbers: 42.50.Wk, 07.10.Cm, 42.50.Lc, 42.50.Dv

I. INTRODUCTION

Recent years have seen dramatic progress in realizing
deterministic interactions between single photons, which
has profound implications for future optical technologies
[1–4]. The most striking success has been achieved with
cavity quantum electrodynamics (cQED) [5–12], where
photons inherent the saturation of a single two-level atom
due to strong interactions between the atom and the
cavity field. Alternative approaches have been explored
based on slow-light-enhanced Kerr nonlinearites [13–15],
single dye-molecules [16], strong photon interactions me-
diated by Rydberg atoms [17–20], enhanced nonlineari-
ties in plasmonic systems [21, 22] and atoms coupled to
wave guides[23–26].

Optomechanical systems, where light and mechanical
motion are coupled by radiation pressure [27–33], are a
promising approach to realizing strong photon interac-
tions. Unfortunately no experiment has yet managed to
reach the single-photon strong coupling regime. Recently
it was noted that, in the weak coupling regime, there are
still signatures of optomechanical nonlinearity [34–36];
however, strong coupling is required to achieve signifi-
cant nonlinear quantum effects and deterministic photon
interactions with optomechanics [37–40].

In this article, we show that it may not be necessary
to reach the quantum strong coupling regime in order to
obtain large single-photon nonlinearities. Instead, in two-
mode optomechanical systems with strong side-band res-
olution, the nonlinearity can be enhanced to the single-
photon level by driving the system near an instability. In
particular, as the strength of the driving field increases,
the frequency of one of the optomechanical normal modes
approaches zero and the associated harmonic oscillator
length becomes large [41]. The increased quantum fluc-
tuations associated with this mode result in an enhanced
nonlinear interaction. We show that when the mechani-
cal mode is sideband resolved with respect to the cavity,

the enhancement in the nonlinear coupling can exceed
the dissipation by an amount scaling with the sideband
resolution ωm/κ, where ωm is the mechanical frequency
and κ is the cavity linewidth. We demonstrate that this
results in enhanced photon-photon interactions by cal-
culating the equal time, two-photon correlation function
g(2)(0) for weakly incident probe light. The presence of
anti-bunching g(2)(0) < 1 in the cavity output field in-
dicates the onset of photon blockade and, in this case,
significant two-photon nonlinearity. We infer a new pa-
rameter P = g2

0ωm/κ
3 (g0 is single-photon optomechan-

ical coupling), whose largeness is the relevant quantity
for determining the strength of the nonlinearity. We find
that in current devices based on optomechanical crystals,
our approach could increase the observable antibunching
by more than an order of magnitude.

In section II, we describe the system using an effec-
tive hamiltonian and show that after diagonalization, the
nonlinear interaction is strongly enhanced. In section III,
we take dissipation into account using the master equa-
tion and determine the conditions for realizing strong
quantum nonlinearity. Subsequently, in section IV, we
discuss the photon-blockade mechanism and present nu-
merical simulations for the two-photon correlation func-
tions. In section V, we discuss the feasibilities of our
scheme and do a case study in optomechanical crystals.

II. MODEL

The system we consider is shown in Fig. 1(a). It con-
sists of a high finesse optical cavity that has two spa-
tially separated, degenerate optical modes (aL, aR) at
frequency ωc coupled at a rate J through a mirror with
near perfect reflection [42]. Both optical modes are also
coupled to a common mechanical mode (c) through ra-
diation pressure with single-photon optomechanical cou-
pling rate g0. In the symmetric-antisymmetric mode ba-
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FIG. 1. (color online). (a) Schematic of the coupled two-mode
system. Displacements of the middle mirror (via mechanical
oscillations) couple the symmetric mode a (red) and antisym-
metric mode b (blue) as the left-right symmetry is broken.
(b) Normal modes of the coupled harmonic oscillator bilinear
hamiltonian for ∆b = 5ωm, with blue (green) line representing
the higher (lower) energy branch b̄ (d). As pump power in-
creases, the energy of the lower branch decreases, the effective
potential becomes flat and the associated harmonic oscillator
length becomes larger. (c) Energy scales for the pump, probe
and cooling modes.

sis a = (aL+aR)/
√

2, b = (aL−aR)/
√

2 the Hamiltonian
is (~ = 1):

H = (ωc − J)a†a+ (ωc + J)b†b+ ωmc
†c

− g0(a†b+ b†a)(c+ c†) . (1)

In addition, there is also a dissipative interaction of the
cavity and mechanical modes with their environment,
with a conservative term V =

√
κ(ain(t)a† + h.c.) and

damping κ (described below). The two cavities are as-
sumed to have identical damping rates.

In the presence of a strong drive ain(t) = ain +√
καpe

−iωt there is an an effective linear coupling be-
tween the antisymmetric mode and the mechanical mode,
and also a residual nonlinear coupling between the me-
chanical mode and both optical modes. The Hamiltonian
in the rotating frame for the pump displaced oscillator

states (a→ a+ α) becomes [28]

H = ∆aa
†a+ ∆bb

†b+ ωmc
†c−G0(b+ b†)(c+ c†)

− g0(a†b+ b†a)(c+ c†) (2)

where ∆a(b) is the detuning of mode a (b) with respect to
the pumping laser and G0 ≡ g0α = g0αpκ/(∆a − iκ/2)
is the pump-enhanced linear coupling. By choosing an
appropriate phase of the pump, we can make G0 real.
In what follows, we make the further assumptions that
∆b � ωM , such that the parameter η ≡ ωm/∆b is much
smaller than 1. In this regime the hybridized polariton
modes Eq. (4)-(5) retain mostly their original photonic
or mechanical character, reducing the deleterious effect
of optical loss on the ‘mechanical’ mode. We give the full
expressions in Appendix A and Appendix B.

The first four terms in H are bilinear in the oscillator
modes and can be diagonalized to give the normal modes
(see Appendix A)

H0 = ∆aa
†a+ (∆b + δ)b̄†b̄+ ωmζ d

†d, (3)

with the normal mode frequencies given in terms of the
parameters δ ≈ r2ωmη/2 and ζ =

√
1− r2 to first or-

der in η. We defined the rescaled driving amplitude
r ≡ 2G0/

√
ωm∆b. As r → 1 the frequency of the lower

branch goes to zero and the mode effectively becomes a
free particle, leading to enhanced quantum fluctuations
in this mode, as shown in Fig. 1(b). For r > 1, the normal
mode frequency becomes imaginary signifying the onset
of the instability. For 0 ≤ r < 1 and η � 1, the normal
mode operators are, surprisingly

b̄ ≈ b− r

2

√
η(c+ c†), (4)

d ≈ 1

2
√
ζ

(c− c†) +

√
ζ

2
(c+ c†) +

r

2

√
η(b− b†). (5)

In this regime, b̄ is mostly optical while d is mostly me-
chanical, to O(r

√
η). Including the nonlinearity, we can

reexpress the normal-ordered Hamiltonian to first order
in η

H = H0 −
g0√
ζ

(a†b̄+ ab̄†)(d+ d†) (6)

− g0√
ζ

√
η

4ζ
(a+ a†)(d2 + d†2 + 2d†d).

Near the instability, ζ � 1, the effective optomechanical
coupling g0/

√
ζ is strongly enhanced. This approach is

distinct from simply choosing a low frequency mechanical
oscillator to begin with because the mass and frequency
of a mechanical oscillator (of the same shape and mate-

rial) are usually related to each other by ωm ∝
√

1/m,
so that the stiffness mω2

m remains constant. As a result,
the optomechanical coupling g0, which scales with the
intrinsic position fluctuations xzpf =

√
~/mωm, will typ-

ically increase with frequency. This back-action induced
softening has the benefits of combining small mass and
low frequency, so the effective coupling can be enhanced
substantially.
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III. NONLINEAR INTERACTIONS AND
DISSIPATIONS

In the normal mode basis, H contains five distinct non-
linear interactions:

b̄†ad+ h.c., a†b̄d+ h.c., a†dd+ h.c.,
add+ h.c., (a+ a†)d†d.

(7)

When the frequency of the d mode is small, these non-
linear terms will destabilize the system towards large
mode occupation, which, together, with the cavity in-
duced decay will contaminate any few photon effects.
To keep the system far in the stable regime, we require
g0/
√
ζ, g0

√
η/ζ2 � ωmζ, which further constrains ∆b

and ζ. In addition, the mechanical mode must be close to
the ground state, below we show how this can be achieved
with optomechanical cooling for the normal mode when
the heating rate γ↑ (defined below) is much less than κ.
All together, to have a large effective single photon op-
tomechanical nonlinearity we require

γ↑ � κ� g0/
√
ζ � ωmζ. (8)

This can be satisfied for large ∆b and small γ↑ when

P ≡ g2
0

κ2

ωm
κ
� 1. (9)

Thus the condition for single photon nonlinearities is re-
laxed from g0 � κ to P � 1.

To treat the dissipation we use the master equation for
the density matrix ρ of the three-mode system

ρ̇ = −i[H, ρ]− κ
(
D[a] +D[b]

)
ρ

− γm
(
(n̄th + 1)D[c] + n̄thD[c†])

)
ρ, (10)

where D[A]ρ = 1/2 {A†A, ρ} − AρA† for any opera-
tor A, γm is the mechanical heating rate, and n̄th is
the thermal occupation of the mechanical mode in the
absence of the coupling to the cavity. In the normal
mode basis, the jump operator for the cavity and me-
chanical modes become b → b̄ +

√
η/ζ

(
d + d†

)
/2 and

c→ (d+ d†)/2
√
ζ +
√
ζ(d− d†)/2, respectively, implying

that dissipation of both cavity mode b and mechanical
mode c results in added noise on the d mode. Near the
instability ζ � 1, the downward transitions (emission)
and upward transitions (absorption) in the d mode occur
at the respective rates

γ↓ =
η

4ζ
κ+

γm
4ζ

(2n̄th + 1 + 2ζ), (11)

γ↑ =
η

4ζ
κ+

γm
4ζ

(2n̄th + 1− 2ζ). (12)

Since γ↓− γ↑ = γm � γ↑, the absorption terms will tend
to excite the d mode to high occupation numbers roughly
given by n̄d ∼ γ↑/(γ↓ − γ↑) [28].

A natural way to overcome this difficulty is to add
optomechanical cooling to the d mode. As shown in
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FIG. 2. (color online). (a) Dotted line shows g2(0) of the
b̄ mode as a function of P with g0 = κ (so P = ωm/κ),
αe = 0.1 and βb̄ = 0.02κ. We restrict the mode occupations
to be less than 4. When P > 40, g2(0) roughly scales as 1/P
(black line). The black square represents the value of g2(0)
obtained in Ref. [34] when ωm/κ → ∞. For comparison, the
g2(0) in Ref. [37], when g0 = κ, increases linearly with P 2.
(b)The level diagram of the system when the interaction b̄†ad
becomes resonant. The probe field drives the lower energy
state of the first excited state on resonance. (c) Evolution of

the equal time, two-photon correlation function g(2)(0) (red
lines) and the population in the d mode nd =

〈
d†d

〉
(blue

lines), after the probe field is turned on (P = 500, g0 = κ,

γ↑↓ = κ/
√
P and βb̄ = 0.02κ). Dotted lines show the result

for αe = 0 indicating cooling on d is OFF, while solid lines
are for αe = 0.1 indicating cooling is ON.

Fig. 1(c), we consider using another pair of cavity modes
e, f separated by the cavity free spectrum range (FSR) to
induce sideband cooling of the d mode. Driving mode e
enhances the coupling between mode f and the mechan-
ical mode c by an amount αe, the steady state amplitude
of e. Moving to the optomechanical normal mode basis,
we get the additional terms in the hamiltonian:

∆ee
†e+ ∆ff

†f − g0√
ζ
αe(f + f†)(d+ d†). (13)

We see that the coupling is further enhanced by 1/
√
ζ

because of the increase of harmonic oscillator length.
Similar to the usual single-mode optomechanical cooling,
when ∆f = ωmζ, the d mode is cooled by the f mode
[28] and the system quickly reaches steady state.
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IV. PHOTON-BLOCKADE AND NUMERICAL
SIMULATIONS OF g2(0)

The nonlinear terms will have the strongest effect when
one of the interactions in Eq. (7) is tuned into resonance.
Here we focus on the resonant interaction b̄†ad, which
has the resonance condition: ∆b̄ = ∆a + ωmζ (Here
∆b̄ = ∆b + δ is the energy of the normal mode b̄). In
the occupation number basis |na, nb̄, nd〉, the 2-fold de-
generacy of the first excited state is broken by gnl and the
3-fold degeneracy of the second excited state is broken by√

6gnl due to the 3-body interaction b̄†ad+ h.c.:

|0, 1, 0〉 gnl←−−→ |1, 0, 1〉 , ∆ω : ±gnl

|0, 2, 0〉
√

2gnl←−−→ |1, 1, 1〉 2gnl←−−→ |2, 0, 2〉 , ∆ω : 0,±
√

6gnl

with gnl = g0/
√
ζ. Since b̄ has a strong overlap with the

antisymmetric cavity mode, we can optically probe it as
illustrated in Fig. 1. Similar to the Jaynes-Cummings
nonlinearity in cQED system [5], when probing the b̄
mode at frequency ωp = ∆b̄ − gnl with strength βb̄, we
can observe a photon-blockade effect because of the an-
harmonicity of the ladders, which is shown in Fig. 2(b).
The signature of the photon blockade will be in the an-
tibunching of the output light, i.e., when g(2)(0) < 1,
where g(2)(0) is the equal time, two-photon correlation
function defined by

g(2)(t) =

〈
b̄†(τ)b̄†(τ + t)b̄(τ + t)b̄(τ)

〉〈
b̄†(τ)b̄(τ)

〉2 (14)

for a given evolution time τ . Fig. 2(a) shows that, for
optimal parameters described below, the minimum value
of g(2)(0) ∼ 1/P , thus the system exhibits a strong single
photon nonlinearity even when g0 . κ.

Fig. 2(c) shows the typical evolution of g(2)(0) with τ
obtained from numerical simulation of the master equa-
tion. The initial condition has all modes in the vacuum
state. Without cooling the system reaches a quasi-steady
state with strong antibunching before it is eventually
pumped to states with a finite population in d as shown
by the dashed blue line in Fig. 2(c). However, in the
presence of cooling the d mode occupation remains small
and the system reaches a steady state with strong anti-
bunching.

To achieve single photon blockade using the scheme il-
lustrated in Fig. 2(b), we also need to satisfy the inequal-
ities given in Eq. (8), which requires optimization of the
system parameters. After rescaling by κ and taking the
resonance condition ∆b̄ = ∆a + ωmζ, there are four in-
dependent parameters: (P, ωm/κ,∆b̄/κ, ζ). P and ωm/κ
are device-dependent parameters we cannot tune, while
∆b̄/κ and ζ can be controlled by tuning the frequency
and amplitude of the strong pumping laser. A simple
theoretical analysis can be done for βb̄ � κ by neglecting
quantum jumps in the master equation (see Appendix C
for details). This gives the scaling in the quasi-steady
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FIG. 3. (color online). Contour plots of the minimum g(2)(0)
in steady state versus the experimental control parameters
∆̄b̄ = ∆b̄/κ and ζ. (a) P = 100, ωm/κ = P ; (b) g0/κ = 0.1,
ωm/κ = 500, P = 5 and αe = 2

√
ζ.

state regime g2(0) ∼ κ2/g2
nl + g2

nl/ω
2
mζ

2, which is opti-

mized when ζ ∼ 1/
√
P and g(2)(0) ∼ 1/

√
P . Numer-

ical simulations of the master equation however, show
that the optimal antibunching scales as 1/P , as seen in
Fig. 2(a) and in the full contour plots of g(2)(0) versus
∆b̄ and ζ shown in Fig. 3. This anomalous scaling is
caused by pumping into the dark states |0, 0, n〉. The re-
gion of the parameter space for optimal performance is
roughly given by ∆b̄/κ > P 2 and 1/

√
P < ζ < 1. These

results demonstrate that near the instability, the figure
of merit for observing the photon blockade is P � 1 and
not simply g0/κ� 1.

V. EXPERIMENTAL CONSIDERATIONS AND
CASE STUDY

There is an additional constraint that, in order to use
the resonant b̄†ad interaction term, the photon tunnel-
ing rate J must be much smaller than the mechanical
frequency ωm. For the membrane in the middle setup,
these conditions may be challenging to achieve due to the
high reflectivity required for the membrane. This could
be circumvented by instead utilizing the a†dd nonlinear-
ity, which has no such requirement. One can also consider
using differential modes in ‘zipper’ optomechanical crys-
tals [44], where the photon tunneling rate can be tuned
over a wide range by controlling the separation between
the two cavities.

Finally, successfully working near the instability re-
quires the classical power fluctuations in the pump laser
to be small enough to prevent the system from cross-
ing the instability. More precisely, the amplitude fluc-
tuations in the pump must be less than the instability
parameter ζ (defined below Eq. (3)), which has an opti-

mum value greater than 1/
√
P ; thus, for P less than 103,

this requires stabilizing the pump power below the 5 %
level, which is readily achievable.
Case study – Experimentally these effects could be

observed for systems with strong sideband resolution
ωm � κ and relatively large single photon optomechan-
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ical coupling g0 ∼ κ. Hybrid photonic-phononic crystals
are a promising route to realize both these constraints
[30], as are mechanical membranes placed in the middle
of a high-finesse optical cavity as illustrated in Fig. 1(a)
[29]. State of the art photonic-phononic crystals have
achieved optomechanical coupling g0/2π above 1 MHz
[45, 46] and mechanical frequency ωm/2π ∼ 10 GHz [47].
Optical quality factors as high as nine million have also
been reported in silicon photonic crystal cavities, which
gives cavity decay rate of κ/2π ∼ 20 MHz [48]. In such a
case with g0/κ = 0.1 and ωm/κ = 500, P can be as large
as 5 in current devices. Fig. 3(b) shows the full range of
antibunching obtainable for this P , in the optimal case
we find that it can be as small as 0.8, more than an or-
der of magnitude improvement compared to what would
be expected away from the instability ∼ 0.99 [35]. To
satisfy the condition γ↑ � κ, we need ωm/4ζ∆b � 1
and γmn̄th/2ζ � κ, which imply ∆b � ωm/4ζ and
n̄th � 2ζκ/γm. This gives an minimum requirement on
the Q·frequency product: Qm ·ωm/2π > ωm/2ζκ·kBT/h,
which requires cryogenic temperatures. In principle,
room temperature operation is possible for mechanical
oscillators at frequencies above 10 GHz and quality fac-
tors above 106.

VI. CONCLUSION

We have presented a scheme to realize few-photon in-
teractions in strongly driven, two-mode optomechanical
systems. Our approach suggests a new figure of merit
for realizing strong optomechanical coupling and demon-
strates that current devices, previously thought to have
weak coupling, may be able to be pushed into the regime
of strong single-photon nonlinearity. This would allow
one to achieve deterministic entanglement of light in op-
tomechanical systems, which has far-ranging applications
in quantum information science.
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Appendix A: Diagonalization of the bilinear
hamiltonian

The bilinear hamiltonian in the first line of Eq. (2) is

H0 = ∆aa
†a+ ∆bb

†b+ ωmc
†c−G0(b+ b†)(c† + c).

(A1)

In this hamiltonian, mode a is already decoupled, so we
only need to diagonalize the coupled harmonic oscillator
subsystem b− c. Define the quadrature variables as

Xb = (b+ b†)/
√

2, Yb = (b− b†)/i
√

2, (A2a)

Xc = (c+ c†)/
√

2, Yc = (c− c†)/i
√

2. (A2b)

They satisfy the commutation relations [Xb, Yb] =
[Xc, Yc] = i, [Xb, Xc] = [Xb, Yc] = [Yb, Xc] = [Yb, Yc] = 0.
We can then rewrite the hamiltonian of the b− c subsys-
tem as

Hbc =
1

2
∆b(X

2
b+Y 2

b )+
1

2
ωm(X2

c+Y 2
c )−2G0XbXc. (A3)

We now rescale the operators Xc and Yc according to

Xc = X ′c
√
ωm/∆b, Yc = Y ′c

√
∆b/ωm, (A4)

but keep Xb and Yb the same

Xb = X ′b, Yb = Y ′b . (A5)

In this transformed basis the hamiltonian becomes

Hbc =
1

2
∆b(X

′
b
2

+ Y ′b
2
) +

1

2
∆b

(
ω2
m

∆2
b

X ′c
2

+ Y ′c
2
)

− 2G0

√
ωm
∆b

X ′bX
′
c. (A6)

We then make an unitary transformation to get the nor-
mal mode coordinates that yields

(
X ′b
X ′c

)
=

(
α β
−β α

)(
X+

X−

)
, (A7a)(

Y ′b
Y ′c

)
=

(
α β
−β α

)(
Y+

Y−

)
. (A7b)

The commutation relations are preserved if α2 + β2 = 1
(α, β are real).
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So the hamiltonian of the b− c subsystem is given by

Hbc =
1

2
∆b

(
α2 +

ω2
m

∆2
b

β2 +
4G0

∆b

√
ωm
∆b

αβ

)
X2

+ +
1

2
∆b

(
β2 +

ω2
m

∆2
b

α2 − 4G0

∆b

√
ωm
∆b

αβ

)
X2
−

+
1

2
∆b

(
Y 2

+ + Y 2
−
)

+

[
1

2
∆b2αβ(1− ω2

m

∆2
b

)− 2G0

√
ωm
∆b

(α2 − β2)

]
X+X−. (A8)

It is diagonal if the cross term X+X− is zero:

∆bαβ(1− ω2
m

∆2
b

)− 2G0

√
ωm
∆b

(α2 − β2) = 0. (A9)

This condition along with α2 + β2 = 1 determines α and
β for the normal modes. The diagonalized hamiltonian
thus becomes

Hbc =
1

2
∆b(ξ

2
+X

2
+ + Y 2

+) +
1

2
∆b(ξ

2
−X

2
− + Y 2

−) (A10)

with

ξ2
+ = α2 +

ω2
m

∆2
b

β2 +
4G0

∆b

√
ωm
∆b

αβ, (A11a)

ξ2
− = β2 +

ω2
m

∆2
b

α2 − 4G0

∆b

√
ωm
∆b

αβ. (A11b)

In the limit described in the main text with ωm � ∆b,
ξ+ ≈ 1 and ξ− ≈ ηζ.

The diagonalized hamiltonian describes two decou-
pled harmonic oscillators HO+ and HO− with effective
masses m± = ∆−1

b and effective frequencies ω± = ∆bξ±,
so it can be rewritten as

Hbc = H+ +H− (A12)

=
Y 2

+

2∆−1
b

+
1

2
∆−1
b (∆bξ+)2X2

+

+
Y 2
−

2∆−1
b

+
1

2
∆−1
b (∆bξ−)2X2

−.

We can write the wavefunction of the nth eigenstate of
HO− (for example) in position representation:

ψn(X−) =
1√

2nn!

(
ξ−
π

)1/4

e−
ξ−
2 X2

−Hn(
√
ξ−X−).

(A13)
as illustrated in Fig. 1(b) for the ground state (n = 0)
and the first excited state (n = 1) for two values of ξ−.

Appendix B: Hamiltonian in the normal mode basis

We now focus on the nonlinear interaction term in
the hamiltonian (second line of Eq. (2)). We define new
squeezed operators

d± =

√
ξ±
2
X± + i

√
1

2ξ±
Y±, (B1)

so [d±, d
†
±] = 1, [d±, d

†
∓] = 0, and ξ2

±X
2
± + Y 2

± =

2ξ±(d†±d± + 1). The bilinear hamiltonian H0 written in
new operators is

H0 = ∆aa
†a+ ω+d

†
+d+ + ω−d

†
−d−. (B2)

The new operators written in original operators are:

d+ =

√
ξ+

2

[
α(b+ b†)− β

√
∆b

ωm
(c+ c†)

]
+

1

2
√
ξ+

[
α(b− b†)− β

√
ωm
∆b

(c− c†)
]
, (B3a)

d− =

√
ξ−

2

[
β(b+ b†) + α

√
∆b

ωm
(c+ c†)

]
+

1

2
√
ξ−

[
β(b− b†) + α

√
ωm
∆b

(c− c†)
]
. (B3b)

and the inverse:

b =
α

2

[
1√
ξ+

(d+ + d†+) +
√
ξ+(d+ − d†+)

]
+
β

2

[
1√
ξ−

(d− + d†−) +
√
ξ−(d− − d†−)

]
, (B4a)

c = −β
2

[√
ωm
ξ+∆b

(d+ + d†+) +

√
ξ+∆b

ωm
(d+ − d†+)

]
+
α

2

[√
ωm
ξ−∆b

(d− + d†−) +

√
ξ−∆b

ωm
(d− − d†−)

]
. (B4b)
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Now it is straightforward to write the nonlinear interaction in terms of the normal mode coordinates:

Hnl = −g0a
†b(c+ c†) + h.c.

= −g0

√
ωm
∆b

[
− αβ

2ξ+
(a+ a†)(d+ + d†+)2 +

αβ

2
(a− a†)(d2

+ − d
†2
+ ) (B5)

+
α2 − β2

2
√
ξ+ξ−

(a+ a†)(d+ + d†+)(d− + d†−) +
β2

2

√
ξ−
ξ+

(a− a†)(d+ + d†+)(d− − d†−)

−α
2

2

√
ξ+
ξ−

(a− a†)(d− + d†−)(d+ − d†+) +
αβ

2ξ−
(a+ a†)(d− + d†−)2 − αβ

2
(a− a†)(d2

− − d
†2
− )

]
.

We now look at the simplified expressions of the nor-
mal mode operators and the nonlinear interaction hamil-

tonian in the regimes of interest. Define tanφ =
ωm

∆b
, r =

2
G0

ωm

√
ωm

∆b
and α = cos θ, β = sin θ, then the diagonal-

ization condition reduces to

tan 2θ = r tan 2φ, (B6)

and the normal mode energies become

ξ2
± =

1

2
(1 + tan2 φ)

(
1±

√
cos2 2φ+ r2 sin2 2φ

)
. (B7)

We now consider the regime where the mechanical fre-
quency is small compared to the detuning of mode b and
the driving is so strong that r is close to 1. This allows
us to introduce two small parameters η ≡ ωm/∆b and

ζ ≡
√

1− r2. When η � 1, tanφ ≈ sinφ � 1, and we
have

ξ+ ≈ 1 + r2ω2
m/2∆2

b = 1 + r2η2/2, (B8a)

ξ− ≈
√

1− r2ωm/∆b = ζη. (B8b)

The diagonalized hamiltonian becomes:

H0 = ∆aa
†a+ (∆b + δ)b̄†b̄+ ωmζd

†d, (B9)

with δ = r2ωmη/2 and the new notations for the normal
modes are defined as:

b̄ ≡ d+ ≈ b−
r

2

√
η(c+ c†), (B10a)

d ≡ d− ≈
1

2
√
ζ

(c− c†) +

√
ζ

2
(c+ c†) +

r

2

√
η

ζ
(b− b†).

(B10b)

The full hamiltonian, including the nonlinear terms, is
thus given by Eq. (6).

Appendix C: Derivation of g2(0) when quantum
jumps are neglected

Here we show the standard procedure for calculating
the two-photon correlation function g2(0) in the quasi-
steady state regime using an effective hamiltonian. We

consider the hamiltonian Eq. (1) (in the main text) with
antihermitian terms describing the dissipation and weak
coherent probe field on the b̄ mode at frequency ωp =
∆b̄ − gnl:

Heff = (∆a − iκ/2)a†a+ (∆b̄ − iκ/2)b̄†b̄+ ωmζd
†d

− gnl(a
†b̄+ b̄†a)(d+ d†) + iβb̄(b̄

†e−iωpt − b̄eiωpt).
(C1)

The term (a + a†)(d2 + d†2 + 2d†d) has been neglected
since its strength is weak in the limit ∆b � ωm and it is
also far off resonant. Moving to a frame rotating at ωp
for the optical fields and using the resonance condition
∆b̄ = ∆a + ωmζ, we get

Heff = (−ωmζ − iκ/2)a†a+ (gnl − iκ/2)b̄†b̄+ ωmζd
†d

− gnl(a
†b̄+ b̄†a)(d+ d†) + iβb̄(b̄

† − b̄). (C2)

The system evolves according to the effective hamil-
tonian and we can expand its quasi-steady state in the
following basis:

|ψ〉ss = |0, 0, 0〉+ c1 |0, 1, 0〉+ c2 |1, 0, 1〉+ c3 |0, 1, 2〉
+ c4 |0, 2, 0〉+ c5 |1, 1, 1〉+ c6 |2, 0, 2〉+ c7 |0, 2, 2〉
+ c8 |200〉 . (C3)

Considering the following coupling between basis states

|0, 1, 0〉 gnl←−−→ |1, 0, 1〉
√

2gnl←−−→ |0, 1, 2〉

|0, 2, 0〉
√

2gnl←−−→ |1, 1, 1〉 2gnl←−−→ |2, 0, 2〉
2gnl←−−→ |0, 2, 2〉
√

2gnl←−−→ |2, 0, 0〉

and the pumping processes

|0, 0, 0〉 ±iβb̄←−−→ |0, 1, 0〉 ±iβ←−−→ |0, 2, 0〉

|1, 0, 1〉 ±iβb̄←−−→ |1, 1, 1〉

|0, 1, 2〉 ±iβb̄←−−→ |0, 2, 2〉 ,

we can then construct the matrix representation of the
effective hamiltonian.
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The steady state is found using the Schrödinger equa-
tion:

0 = i
∂

∂t
|ψ〉ss = Heff |ψ〉ss . (C4)

Solving this set of algebra equations gives us the steady
state |ψ〉ss. The g2(0) is calculated using Eq. (13) (main
text) in the limit βb̄ → 0.

[1] G. J. Milburn, Phys. Rev. Lett. 62, 2124 (1989).
[2] Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi,

and H. J. Kimble, Phys. Rev. Lett. 75, 4710 (1995).
[3] H. J. Caulfield and S. Dolev, Nature Photon. 4, 261

(2010).
[4] J. L. O’Brien, A. Furusawa, and J. Vučković, Nature
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