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We provide analytic insight into the generation of stationary itinerant photon entanglement in a
3-mode optomechanical system. We identify the parameter regime of maximal entanglement, and
show that strong entanglement is possible even for weak many-photon optomechanical couplings.
We also show that strong tripartite entanglement is generated between the photonic and phononic
output fields; unlike the bipartite photon-photon entanglement, this tripartite entanglement diverges
as one approaches the boundary of system stability.
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I. INTRODUCTION

Entanglement is one of the most fascinating and poten-
tially useful aspects of quantum systems. Of particular
interest is the generation of entangled itinerant quanta
(which can be easily spatially separated), and of true
multipartite entanglement (involving irreducible correla-
tions between three or more subsystems). These goals
have been the subject of considerable theoretical and ex-
perimental work, in a variety of systems spanning quan-
tum optics setups [1, 2], cold atoms [3], superconducting
circuits [4–6] and spin qubits [7]. Optomechanical sys-
tems [8], where mechanical motion interacts with elec-
tromagnetic fields, could be another powerful platform to
realize these goals. A key advantage here is the potential
to use mechanical motion to entangle disparate subsys-
tems (e.g., microwave and optical photons). A number of
schemes to generate entangled photons in optomechanics
have been studied theoretically [9–15]. Recent experi-
ments have also demonstrated mechanically-mediated en-
tanglement between two microwave pulses [16].

Here, we analyze theoretically both itinerant and mul-
tipartite entanglement in a 3-mode optomechanical sys-
tem where two cavities are coupled to a single mode of
a mechanical resonator. Such a setup has been realized
in several recent experiments [17–19]. Previous theory
work, largely numerical, examined bipartite output en-
tanglement in this system [11, 13–15] but mostly focused
on transient [15] or experimentally-challenging strong-
coupling regimes [13, 14]. In contrast, we focus here
on identifying optimal conditions to generate stationary
output entanglement with weak many-photon optome-
chanical couplings. We obtain that maximum entangle-
ment is achieved through a simple matching condition
of optomechanical cooperativities. Surprisingly, this op-
eration point coincides with the least favorable regime
for the generation of intra-cavity entanglement. We pro-
vide a complete yet simple analytic understanding of the
physics, which also allows us to illustrate the trade-off
between large entanglement and thermal resilience, and
uncover a sensitive dependence of entanglement on the
time delay between emitted wave-packets.

We also address the generation of tripartite entan-
glement in such a hybrid 3-mode system, considering
correlations between both output photons and phonons.
While usually ignored, the mechanical output field could
be accessed experimentally, using for example optome-
chanical crystal geometries with phonon waveguides [20],
or by having the mechanical dissipation be dominated
by a third auxiliary cavity used for cooling. We find
that true hybrid tripartite entanglement is indeed cre-
ated: the output state corresponds to a “twice-squeezed
vacuum”, involving two 2-mode squeezing operations.
We also quantify this entanglement using the Gaussian
Rényi-2 measure [21]. Besides being of fundamental in-
terest, such tripartite entangled states have applications
to a variety of quantum information processing tasks such
as teleportation, tele-cloning, and dense coding [22, 23].
The present setup is especially suited to the continuous
generation of non-local multipartite entanglement, as the
phonons and photons from the two cavities are all emit-
ted into spatially separated outputs. Note that Genes et
al. [10] also studied tripartite entanglement in an optome-
chanical system, though in a setting where the entangled
subsystems were not all spatially separated or itinerant.

It also worth noting that, while our emphasis here is
on optomechanics, the physical features uncovered here
apply generally to other bosonic 3-mode systems (e.g.,
realized with superconducting circuits [24, 25]).

Our paper is organized as follows: in Sec. II, we give
the description of the physical system and its stability
conditions. In Sec. III we obtain the optimal condition
for bipartite output entanglement, based on an analyt-
ical solution. In Sec. IV, we analyze in detail various
imperfections such as thermal noise, non-RWA correc-
tions, internal losses, and finite bandwidth. In Sec. V,
we describe how to achieve non-local tripartite output,
which we quantify with the “residual Gaussian-Rényi-2”
(GR2) entanglement measure. Section VI summarizes
our results.
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FIG. 1. System schematics. Two driven cavities (cavities 1
and 2) interact with a common mechanical resonator (mode

b̂). This can generate entanglement in the optical outputs.
An auxiliary third cavity (cavity a) can be used to cavity
cool the mechanics, and to make the mechanical output mode
accessible.

II. PHYSICAL SYSTEM

We consider a 3-mode optomechanical system where
two cavities are coupled to a single mode of a mechani-
cal resonator (see Fig. 1). The standard optomechanical
interacting Hamiltonian

Ĥ = ωmb̂
†b̂+

∑
i=1,2

[
ωiâ
†
i âi + gi

(
b̂† + b̂

)
â†i âi

]
(1)

governs the system’s dynamics, with âi the annihilation

operator for cavity i (frequency ωi), b̂ the annihilation
operator of the mechanical mode (frequency ωm), and gi
the optomechanical coupling strengths. In order to gen-
erate steady-state entanglement, cavity 1 (2) is driven at
the red (blue) sideband associated with the mechanical
resonator: ωd1 = ω1−ωm and ωd2 = ω2+ωm. By working
in an interaction picture with respect to the free Hamilto-
nian and following the usual linearization procedure [8],

we have ĤR = Ĥint + ĤCR (t) with

Ĥint =
(
G1b̂

†d̂1 +G2b̂d̂2

)
+ h.c. = G̃

(
b̂†β̂A + h.c.

)
,

(2)

and ĤCR (t) = G̃
(
b̂†β̂†Ae

2iωmt + h.c.
)

. Here d̂i = âi − āi
with āi the classical cavity amplitude. Gi = giāi is the
dressed coupling (we take gi, āi > 0 without loss of gen-

erality), G̃ =
√
G2

1 −G2
2, and β̂A = d̂1 cosh r + d̂†2 sinh r

(r = tanh−1 (G2/G1)) is a Bogoliubov mode.
We first focus on the resolved-sideband regime ωm �

κ1, κ2 and make the rotating wave approximation (RWA)

by neglecting ĤCR. The non-RWA corrections are
treated in Sec. IV C. The combined swapping and en-
tangling interactions in Ĥint lead to a net entangling
interaction between the two cavity modes; as discussed
in [26], this interaction has a fundamentally dissipative

nature. It is useful to diagonalize Ĥint in terms of three
normal modes [14, 26]: one “mechanically-dark” Bogoli-

ubov mode β̂B = d̂1 sinh r+ d̂†2 cosh r (which is robust to
mechanical thermal noise), and two coupled eigenmodes
involving both the mechanics and cavities.

The dissipation of each mode is treated via standard
input-output theory [27] and is given explicitly by the
Langevin equations below:

d

dt
â = −γ

2
â− i

(
G1d̂1 +G2d

†
2

)
−√γâin,

d

dt
d̂1 = −κ1

2
d̂1 − iG1â−

√
κ1d̂

in
1 ,

d

dt
d̂†2 = −κ2

2
d̂†2 + iG2â−

√
κ2d̂

in,†
2 , (3)

where γ is the mechanical damping rate and κ1,2 the ex-
ternal damping rates of the two cavities. We will first
neglect the effect of internal damping rates κ′1,2, dis-

cussed in detail in Sec. IV. In Eq. (3), d̂inj are the in-

put operators (d̂inm = âin) whose correlation functions are

〈d̂inj (t)d̂in,†k (t′)〉 = Njδ(t − t′). Here Nj is the average
thermal population of each mode and, in the following
discussion, we assume that the cavity thermal popula-
tions are always zero (due to the high frequency), while
keeping the mechanical thermal population Nm finite.

The frequency-resolved output modes d̂outi [ω] ≡∫
dωeiωtd̂outi (t) /

√
2π are related to the input by

d̂outi [ω] =
∑3
j=1 Sij [ω]d̂inj [ω] (j = 3 denotes the me-

chanical fields). The scattering matrix S[ω] is obtained

straightforwardly from the input-output relations d̂outi =√
κid̂i+ d̂

in
i [27] and the system Langevin equations (with

RWA) as follows:

S[ω] = 1 +
1

C1χ1χm − C2χ2χm + 1

 χ1

(
C2

4 χ2χm − 1
) √

C1C2

4 χ1χ2χm
iC1

2 χ1χm

−
√
C1C2

4 χ1χ2χm −χ2

(
C1

4 χ1χm + 1
)
− iC2

2 χ2χm
iC1

2 χ1χm
iC2

2 χ2χm −χm

 , (4)

with χi = 2κi/(κi − 2iω) (i ∈ {1, 2,m}, κm ≡ γ). Notice
that at ω = 0 the matrix only depends on the coopera-
tivities.

Given the blue-detuned laser drive, a first question in-
volves the stability of our linearized system. The Routh-
Hurwitz conditions [28] yield two requirements [14, 26]

to guarantee stability. The first is that γtot > 0, where
γtot = γ+4G2

1/κ1−4G2
2/κ2 is the effective damping rate

of the mechanical resonator interacting with the two cav-
ities. Focusing on the interesting and relevant regime of
strong cooperativities Ci ≡ 4G2

i / (γκi)� 1 and κi � γ,
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the two requirements can be combined into:

G2
1/G

2
2 > max(κ2/κ1, κ1/κ2). (5)

III. BIPARTITE CAVITY OUTPUT
ENTANGLEMENT

We start by discussing the entanglement of light leav-
ing the two cavities. The following canonical mode oper-
ators:

D̂out
i [ω, σ, τi] =

1√
σ

∫ ω+σ
2

ω−σ2
dω′e−iω

′τi d̂outi [ω′] . (6)

describe output temporal modes in a bandwidth σ cen-
tered about the frequency ω. τi sets the absolute time at
which the wave packet of interest is emitted from cavity
i; without loss of generality, we set τ2 = 0. The covari-
ance matrix of the output operators can be computed
via the scattering matrix. Then, the two-mode entangle-
ment can be quantified using the logarithmic negativity
Eout
N [ω, σ, τ1] [29, 30].
For clarity, we restrict ourselves in this section to the

zero-bandwidth case σ → 0; the result is then inde-
pendent of τ1 (D̂out

i [ω] ≡ D̂out
i [ω, 0, τi] e

iωτi , Eout
N [ω] ≡

Eout
N [ω, 0, τ1]). We first discuss a simple analytical solu-

tion of the bipartite cavity output entanglement and then
derive the optimal condition for output entanglement. In
the following section, we will relax the assumption of zero
bandwidth σ. We will also discuss other possible im-
perfections and their influence on output entanglement:
mechanical thermal noise, cavity internal losses, and non-
RWA corrections.

A. Mapping to a two-mode squeezed thermal state

Using the standard approach (i.e. plugging the sys-
tem covariance matrix into the definition of logarithmic
negativity), the entanglement of the 3-mode system can
be easily computed numerically. However, we find that
mapping the output state to a 2-mode squeezed thermal
state can yield a simple analytical expression which re-
veals a number of interesting properties of the output
entanglement.

A 2-mode squeezed thermal state can be written as

ρ̂12 = Ŝ12 (R12)
[
ρ̂th1 (n̄1)⊗ ρ̂th2 (n̄2)

]
Ŝ†12 (R12) . (7)

Here

Ŝ12 (R12) = exp
[
R12D̂

out
1 [0]D̂out

2 [0]− h.c.
]

(8)

is the two-mode squeeze operator, with R12 the squeezing
parameter, and ρ̂thj (n̄j) describes a single-mode thermal
state with average population n̄j . The output state is
thus completely characterized by just 3 parameters: n̄1,

n̄2 and R12 and the entanglement of this state (if Eout
N ≥

0) is simply given by:

Eout
N = − ln

(
nR −

√
n2R − (1 + 2n̄1)(1 + 2n̄2)

)
, (9)

with nR = (n̄1 + n̄2 + 1) cosh 2R12. In fact, for relevant
case discussed below n̄1 = 0, we find any finite squeezing
R12 > 0 yields nonzero entanglement.

From the Langevin equation Eq. (3), it is easy

to verify that
〈
D̂out
i [ω]

〉
are all zero and only 3

correlators of the output cavity modes are nonzero:〈(
D̂out

1 [ω]
)†
D̂out

1 [ω]

〉
,

〈(
D̂out

2 [ω]
)†
D̂out

2 [ω]

〉
, and〈

D̂out
1 [ω] D̂out

2 [ω]
〉

. Thus the covariance matrix of the

system is the same as a two-mode squeezed thermal state.
Since two Gaussian states with the same covariance ma-
trix represent the same state, this output cavity state can
be mapped to a two-mode squeezed thermal state whose
non-zero correlation function are simply〈(

D̂out
i [ω]

)†
D̂out
i [ω]

〉
= n̄i + (n̄1 + n̄2 + 1) sinh2 |R12 [ω]| ,〈

D̂out
1 [ω] D̂out

2 [ω]
〉

= −e
iθ[ω]

2
(n̄1 + n̄2 + 1) sinh 2 |R12 [ω]| ,(10)

where n̄i ≡ n̄i [ω], R12 [ω] is complex in general and
θ [ω] ≡ arg (R12 [ω]). Using the correlators with σ = 0
and ω = 0 (i.e., output light near the cavity resonances),
we find that R12 is real and the output state can be char-
acterized by:

n̄1,2 =
±2Nm

C1 − C2 + 1
+

√
E2 −D2 ∓ 4 (C2 +Nm)

2 (C1 − C2 + 1)
2 − 1

2
,

(11)
where the upper (lower) sign applies to n1 (n2), and

tanh 2R12 = E/D, (12)

where

D = (C1 + C2)
2

+ 2 (C1 + C2) (1 + 2Nm) + 1 + 4C1C2,

E = 4
√
C1C2 (C1 + C2 + 1 + 2Nm) . (13)

Notice that such a mapping is unique, i.e., no other
choice of n̄1, n̄2 and R12 yields the same covariance ma-
trix. From Eqs. (9), (11) and (12), we see that the out-
put entanglement depends only on cavity cooperativities
Ci = 4G2

i / (γκi) and the mechanical bath temperature
(we always assume zero thermal occupancy for the two
cavities).

Plugging Eqs. (11-13) into Eq. (9), one can obtain the
full expression of the output entanglement including ther-
mal effects. By focusing first on zero temperature we
obtain:

n̄1 = 0, n̄2 = 4C2
γ2

γ2tot
=

4C2

(1 + C1 − C2)
2 , (14)

tanh 2R12 =
4
√
C1C2 (C2 + C1 + 1)

C2
1 + C2

2 + 6C1C2 + 2 (C1 + C2) + 1
. (15)
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We stress that the effective thermal occupancies n̄j are
not simply equal to bath temperatures; in particular,
n̄2 6= 0 even when all input noises are vacuum. The
zero-temperature output entanglement is

Eout
N [0] = ln

(
(1 + C1 − C2)

2

A+B + 2C2 (1 + 2C1)− 4
√
AB

)
, (16)

with A = C2 (C1 + C2), B = (1 + C1)
2

+ C1C2. Note
that an analytic expression for entanglement can also be
obtained at finite temperature, but it is too cumbersome
to reveal much insight. In the following section, we will
discuss in detail the effect of finite temperature in two
different regimes. The results at both zero and finite
temperature are plotted in Fig. 3.

Equations (9), (14) and (15) give us a simple way to
understand entanglement generation. The ideal situation
is when the two-mode squeeze parameter R12 � 1 and
the thermal occupancy n̄i → 0. From Eq. (15), we see
that a large R12 generically requires large cooperativity.
However, Eq. (14) indicates that this limit also yields
a large effective temperature for cavity 2 (heuristically,

Ĥint turns vacuum noise into thermal noise). This heat-
ing degrades the purity of the state [31]; however, as n̄1
remains zero, it only slightly degrades the entanglement
[26].

B. Optimal output entanglement

Equation (16) shows that the zero-temperature entan-
glement is only a function of C1, C2, thus weak-coupling
does not prevent strong entanglement; for fixed C1, the
expression is optimized when

C2 = C1 + 1 ≡ C2,opt. (17)

Heuristically, this condition corresponds to having a total
mechanical damping γtot = 0. While Eout

N [0] appears to
be only a function of the Ci, the ratio κ1/κ2 also plays
an independent role via the stability condition of Eq. (5).
If κ1 ≥ κ2, C2,opt is also the maximum value of C2 for
which the system is stable. In contrast, if κ2 ≥ κ1, the
system becomes unstable before C2 reaches C2,opt, hence
one cannot achieve the optimal amount of entanglement.
We thus see that, in addition to achieving large Ci, it is
advantageous to have κ1 ≥ κ2. Figure 2 illustrates the
behavior of Eout

N [0] in these two cases (C2,opt is indicated
as a gray vertical line). Note that a similar dependence on
κ1/κ2 was observed numerically in [14], but in a regime
far from optimal entanglement (i.e., for C2 � C2,opt).

In the large C1 limit, the maximum achievable entan-
glement for the two cases reduces to:

Eout
N [0]

∣∣∣
max
'


ln
(

2C1

1+2Nm

)
, κ1 ≥ κ2,

− ln

[(
κ2−κ1

κ2+κ1

)2
+

4κ2
2κ1N

′
m

C1(κ1+κ2)3

]
, κ1 < κ2.

(18)
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FIG. 2. Output entanglement of the two cavity fields at res-
onance (i.e. ω = 0) as a function of C2 for C1 = 12000 in two
different cases: (a) κ1 > κ2 (κ1 = 1.5κ2 = 2π×0.3 MHz), (b)
κ1 < κ2 (κ1 = 0.75κ2 = 2π × 0.3 MHz). Without consider-
ing the instability condition, the entanglement would reach a
maximum finite value at C2 = C1+1 (gray vertical lines). The
green lines show the real part of the three eigenvalues (Ev) of
the susceptibility matrix; the system becomes unstable when
one of the real parts becomes positive, which is indicated by
the blue dashed lines. The red dots indicates the maximum
entanglement in each case, by also considering the stability
constraints. We used γ = 2π × 10 KHz. The red dashed line
indicates that the system has entered the unstable regime.
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FIG. 3. Entanglement of the two cavity output fields on reso-
nance (i.e. ω = 0) (thick blue) and corresponding intracavity
entanglement (thin red) as functions of C2, with C1 = 4000
and ωm � κ (allowing use of the RWA). The orange dot de-
notes the value of ln 2C1 as in Eq. (18) with κ1 ≥ κ2. Except
the blue dashed line (mechanical bath occupancy Nm = 100),
results are for zero temperature. The output EN curves only
depend on Ci. For the intracavity curve (thin red), we have
also assumed strong coupling, taking G1 : κ : γ = 100 : 10 : 1.

with N ′m = Nm(1+κ2/κ1)+1. In both cases, the output
entanglement Eout

N is maximal at the boundary of sys-
tem stability, similar to the behavior of a non-degenerate
parametric amplifier (NDPA) [32]. However, unlike a
NDPA, Eout

N does not diverge at this boundary. Further,
while Eout

N is maximal at this boundary, the intra-cavity
entanglement is extremely sub-optimal at this point. For
κ1 ≥ κ2 � γ and C2 ' C2,opt � 1, one has extremely
large entanglement of the output fields while simultane-
ously having almost zero entanglement of the intracavity
fields (see Fig. 3).
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IV. DISCUSSION OF IMPERFECTIONS

So far we have given the analytical solution and the
optimal condition for cavity output entanglement in the
ideal case, where we have neglected the cavity inter-
nal loss, non-rotating wave terms, and finite bandwidth.
However, for a real system there are various imperfec-
tions. We now specialize to the case κ1 = κ2 = κ, Cj � 1
and carefully examine the influence of various imperfec-
tions in two generic regimes.

The first is that of equal couplings G1 = G2 = G (i.e.,
C1 = C2) which, as discussed, is essentially optimal for
maximizing Eout

N [0] (it is also an ideal point to generate
quantum-limited amplification [33]). In this regime, the

effective coupling G̃ in Eq. (2) vanishes, meaning that

the three normal modes of Ĥint are degenerate. Conse-
quently, the σ = 0 entanglement spectrum Eout

N [ω] has
a single peak at ω = 0 (see thick curves in Fig. 4(a))
of width ∼ γC3/4 in the weak-coupling case (red curve)

and ∼
√
G
(
2κ5γ

)1/12
in the strong-coupling case (green

curve). We stress that achieving large optimal EN in this
regime only requires strong cooperativities, and not the
more stringent strong coupling condition Gj > κj (c.f.
Eq. (18)).

Keeping κ1 = κ2 and Cj � 1, another generic regime
is where G2/G1 is sufficiently smaller than 1 such that

the effective coupling G̃ is larger than κ, γ; this neces-
sarily requires G1 > κ. In this regime, the three normal
modes of Ĥint are spectrally resolved and Eout

N [ω] has cor-
respondingly three peaks [14], see the thin blue curve of
Fig. 4(a). The entanglement at ω = 0 is necessarily much
smaller than the optimal value in Eq. (18). One finds that
C1 � 1 is not by itself enough to ensure large EN in this
regime; one also needs to be deep in the strong coupling
regime, G1 � κ. As discussed in [14], this “resolved-
modes” regime does however offer enhanced protection
against mechanical thermal noise, as the central peak is
due to the mechanically-dark normal mode βB .

A. Thermal resilience of entanglement

Thermal fluctuation severely limits the coherence of
the low-frequency mechanical resonator and it is impor-
tant to improve the thermal resilience for protocols where
the mechanics acts as a coherent mediator, such as for
state transfer [34, 35]. The bipartite entanglement medi-
ated by the mechanics also suffers from mechanical ther-
mal noise. While the analytical solution including ther-
mal noise has been derived in the previous section, we
discuss here the thermal resilience of the output entangle-
ment in the two representative regimes mentioned above,
in order to elucidate the function of the “mechanically-
dark mode” [14, 34–36].

For the first regime G1 = G2 = G and κ1 = κ2 = κ
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FIG. 4. (a) Output entanglement in the limit of small mode
bandwidth (σ → 0) as a function of mode center frequency
ω, for 3 cases: strong equal-coupling (red thick upper line,
G1 = G2 = 13.3κ), weak equal-coupling (green thick lower
line, G1 = G2 = 0.1κ) and resolved normal-modes (blue
thin line, G1/κ = 13.3 and G2/κ = 6.7. For the blue and
red curves, γ/κ = 1.67 × 10−3 while for the green curve
γ/κ = 3.3 × 10−5. The inset shows a zoom-in of the green
curve (weak coupling case). (b) Thermal resilience. The out-
put entanglement at ω = 0 is plotted vs. Nm for the 3 cases.
(c) The influence of counter-rotating terms. For the 3 cases,
the curves show how the output entanglement Ēout

N [ω = 0]
including the counter-rotating terms approaches the RWA re-
sults neglecting those terms (marked by the dots) as ωm/κ in-
creases. The inset shows a good fit of the analytical expression
Eq. (29) (dashed lines) with the numerical result (solid line)
in the weak equal-coupling case and the gray line indicates the
RWA result. (d) Effects of non-zero mode bandwidth σ on the
output entanglement of modes with center frequency ω = 0.
The solid lines are for zero time-delay between the two cavity
output modes (τ1 = 0, c.f. Eq. (6)) while the dashed lines are
the result including an optimal time delay τ1 = κ/(4G2).

(i.e., C1 = C2), the entanglement value at ω = 0 is

Eout
N [0] ≈ ln

(
2C

1 + 2Nm

)
+O

(
C−1

)
, (19)

We stress that a robust peak in Eout
N [ω] remains in the

weak-coupling case G < κ as long as C � 1.
The entanglement at ω = 0 in the equal-coupling

regime shows a prominent decrease with temperature due
to the mechanical thermal noise. At low temperature, the
equal-coupling regime (G1 = G2) yields a decent entan-
glement even for weak coupling (κ > G) as shown by the
green curve in Fig. 4(b).

We turn now to another regime: G̃ =
√
G2

1 −G2
2 > κ,

where the three normal modes of the interaction Hamil-
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tonian in Eq. (1) are spectrally resolved. In this regime
(as discussed in [14]), Eout

N [ω] has three resolved peaks,
with each peak corresponding to a normal mode. The
“dark mode” βB corresponds to the peak at ω = 0, while
the peaks at ±G̃ are the coupled “hybrid” modes (see
blue thin curve in Fig. 4(a)); all have width ∼ κ. In
the simple case κ1 = κ2, resolving the normal modes
requires G1 > κ cosh r � κ, i.e., deep in the strong cou-
pling regime for a large r. For typical parameters, the
maximum entanglement in the resolved-peaks regime is
far less than the optimal value that would be achieved
if C2 were increased to C1 (see Fig. 4(b)). On the other
hand, the output entanglement at the central peak can
be written as (assuming Nme

2r � C̃)

Eout
N [0] ≈ 4r − 2e2r (2Nm + 1) /C̃, (20)

with the effective cooperativity C̃ = 4G̃2/γκ. This shows
that, as the central peak corresponds to the dark mode,
the mechanical noise is suppressed by the effective coop-
erativity and the entanglement is robust to thermal fluc-
tuations [14] as shown in Fig. 4(b). The entanglement at
the side peaks (bright modes involving the mechanics) is
still sensitive to thermal noise and in the large r limit:

Eout
N

[
ω = ±G̃

]
≈ 2r − ln

(
4γ

κ

(
Nm +

1

2

))
, (21)

valid if γNm/κ� 1.

B. Influence of cavity internal losses

Except the loss through output channels, there is also
extra zero-point noise incident on the cavity which can
be described by the internal damping rate κ′i. This can
be treated as an additional independent input channel
in the Langevin equations for the cavities. In contrast
to the generation of intracavity entanglement [26], the
output entanglement is sensitive to the internal losses of
the cavities (cf. Eq. (3)).

a. Equal coupling case. With finite internal loss
κ′1 = κ′2 = κ′ and also assuming G � γ, κ, κ′, the
entanglement reads:

Eout
N [0] ≈ − ln

(
κ′

κ′ + κ
+

1

2C

)
, (22)

which recovers the two limits:

Eout
N [0] ≈ ln 2C (23)

at small internal loss (κ/κ′ � C � 1), and

Eout
N [0] ≈ ln (1 + κ/κ′) (24)

at large internal loss (κ/κ′ � 2C). In the case of a cavity
with tunable external damping rate, the optimal κ satis-

fies κ = κ′
(√

2C ′ − 1
)

, with C ′ = 4G2/κ′γ. The corre-

sponding entanglement is Eout
N [0] ≈ 1

2 ln(C ′/2). This re-
sult is the same as the optimal intracavity entanglement,
as shown in Eq. (11) of [26] (notice that the definition of
C in this paper differs by a factor of 4 compared to [26]).
Thus, the maximum entanglement for both spectral en-
tanglement and intracavity entanglement are the same.

b. Resolved peaks case. Including internal loss and
assuming κ′i = κ′, G̃� κ, γ, κ′ we have:

Eout
N [0] ≈ 4r − ln

(
κ+ e4rκ′

κ+ κ′
+
er sinh r

C̃

)
. (25)

When κ/κ′ � e4rC̃/(e2r + C̃), this reduces to Eout
N [0] ≈

ln (1 + κ/κ′). The maximum of entanglement in Eq. (25)
is obtained as follows:

Eout
N,opt [0] = 4r − ln

(
1 +

√
2

C̃

e4r − 1√
e2r + 1

+
1− e2r

C̃

)
.

(26)
with

κopt = κ′
(√

C̃ (1 + e2r) /2− 1

)
.

However, notice that in order to have resolved peaks,
G̃� κ+κ′. This means the optimal condition is normally
not satisfied unless κ′ � γ.

C. Influence of counter-rotating wave terms

So far, we only discussed the dynamics with the ro-
tating wave approximation (RWA), considering the good
cavity limit κ � ωm. Here we will give the full result
including the non-RWA terms and show that the RWA
condition can be more stringent in certain regimes.

First, we notice that the counter-rotating terms are
time-independent in the rotating frame with respect to
the cavity drives. In this frame, the full Hamiltonian is

written as Ĥ = ωm

(
b̂†b̂+ d̂†1d̂1 − d̂

†
2d̂2

)
+ Ĥint + ĤCR

with

Ĥint =
(
G1b̂

†d̂1 +G2b̂d̂2

)
+ h.c.

ĤCR =
(
G1b̂

†d̂†1 +G2b̂d̂
†
2

)
+ h.c.. (27)

Thus, a closed set of equations in the frequency domain
can be obtained:
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−i (ω − ωm) b̂ [ω] = −γ
2
b̂ [ω]− iG1

(
d̂1 [ω] + d̂†1 [ω]

)
− iG2

(
d̂†2 [ω] + d̂2 [ω]

)
−√γb̂in [ω] ,

−i (ω − ωm) d̂1 [ω] = −κ1
2
d̂1 [ω]− iG1

(
b̂ [ω] + b̂† [ω]

)
−
√
κ1d̂in,1 [ω] ,

−i (ω − ωm) d̂†2 [ω] = −κ2
2
d̂†2 [ω] + iG2

(
b̂ [ω] + b̂† [ω]

)
−
√
κ2d̂
†
in,2 [ω] . (28)

These equations can be solved analytically. Figure 4(c)
shows the comparison of the results for Eout

N [ω = 0]
with/without RWA. The lower curve corresponds to the

case where G̃ > κ and the normal modes are resolved:
counter-rotating terms suppress the entanglement, but
become insignificant once ωm > κ. The two upper curves
correspond to the case with equal-coupling. In the good
cavity limit, the maximum entanglement in the equal-
coupling regime is much larger than the resolved-peak
regime. Consequently, non-RWA corrections play a larger
role, and one can only achieve the RWA result deep into
the good cavity limit ωm � κ.

For both equal-coupling and resolved-peak cases, the
leading non-RWA correction to Eout

N [0] is

Ēout
N [0]− Eout

N [0] ≈ −eE
out
N [0] κ2

16ω2
m

. (29)

Here Ēout
N [0] is the entanglement including the counter-

rotating terms. This approximate expression is shown by
the orange dashed line in the inset of Fig. 4(c). Thus the
condition to justify the use of RWA is∣∣∣ωm

κ

∣∣∣� 1

4

√
eE

out
N

Eout
N

, (30)

which is looser in the case of resolved-peaks (due to the
smaller Eout

N ).

D. Time delay to improve the entanglement
bandwidth

So far, we have considered the output entanglement
with zero bandwidth, i.e., Eout

N [ω, σ = 0, τ1]. However,
in practice, the filter function has a finite bandwidth.
Assuming the center frequency is set at ω = 0 (the cavity
resonance frequency in the lab frame), the entanglement
has a non-trivial dependence on the bandwidth σ and the
relative time delay τ1 (taking τ2 = 0).

The solid lines of Fig. 4(d) show the entanglement of
the two output cavity modes for zero time delay Eout

N [ω =
0, σ, τ1 = 0] as a function of bandwidth σ. While the
equal-coupling case yields large entanglement at σ = 0,
it is much more sensitive to the increase of the band-
width. Eout

N [0, σ, 0] decays on a scale σ ∼ C−1/4γ. In
contrast, in the resolved normal-mode case, Eout

N [0, σ, 0]
is less sensitive to increasing the mode bandwidth, and
is only suppressed significantly when σ ∼ κ.

The strong sensitivity to non-zero σ in the case of
equal-coupling is related to the change of squeezing phase

0

1

2

3

4

5

-0.02 0.020

0.5

0

-0.5

-0.02 0 0.02

θ
/π

ω/κ

|R
12
|

ω/κ

(a) (b)

FIG. 5. The dependence of the squeezing parameter R12[ω] =
|R12|eiθ on frequency. The left panel shows the magnitude
change of R12, while the right panel shows the phase change
of R12. The dashed line in the right panel is the linear depen-
dence given by Eq. (31). The parameters used are G/κ = 0.1,
γ/κ = 3.3× 10−5.

at different ω. As discussed before, the cavity output
state can be characterized by a 2-mode squeezed thermal
state (see Eq. (7)) with a complex squeezing parameter

R12 [ω] whose phase is θ [ω] = arg
〈
−D̂out

1 [ω] D̂out
2 [ω]

〉
,

(see Eq. (10)). At ω = 0 and σ = 0, R12 [0] is real (see
Eq. (15)), i.e., θ = 0. For ω 6= 0, a frequency-dependent
phase arises (see Fig. 5(b)). In the large squeezing limit,
i.e., |R12| � 1, such a phase variation leads to a rapid de-
crease of entanglement as σ increases. Assuming κ1 = κ2
and G1 = G2, where the magnitude of squeezing is max-
imized, the peak width of |R12|[ω] is comparable to that
of Eout

N [ω]. The corresponding phase variation is approx-
imately linear in the vicinity of ω = 0 (as shown by the
dashed line in Fig. 5(b))

δθ ≈ (κ/4G2)δω. (31)

This suggests (as per Eq. (6)), that the optimal entan-
glement is between a cavity-2 mode emitted at τ2 = 0 and
a cavity-1 mode emitted at τ1 = κ/4G2. The entangle-
ment with time delay is shown by the red-dashed curve in
Fig. 4(d). On a heuristic level, one could think that our
system first generates entangled phonon - cavity 2 pho-
ton pairs via the G2 interaction in Eq. (2); next the G1

interaction swaps the phonon state into a photon in cav-
ity 1. This physical picture is in agreement with finding
that the optimal entanglement involves a positive delay
for the cavity 1 output mode, as in Fig. 4(d). Finally, we
note that for ω away from 0, the squeezing phase θ has a
nonlinear frequency dependence, and hence the optimal
filter function for larger σ will not correspond to a simple
delay as in Eq. (31).
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V. GENUINE TRIPARTITE ENTANGLEMENT
OF THE ITINERANT MODES

As mentioned in the introduction, alternative methods
exist to access the mechanical output field. We discuss
them in detail below and, motivated by these possibili-
ties, we analyze the multipartite entanglement properties
of all three output fields in our system. Note that previ-
ous work studied the non-stationary tripartite entangle-
ment of intracavity fields generated by the closed-system
Hamiltonian Ĥint in Eq. (2) [37]; in contrast, our focus
here is on the steady-state output entanglement in our
dissipative 3-mode system.

A. Phonon output through an auxiliary cavity

Experimental setups using optomechanical crys-
tals [20, 38] could access the mechanical output field via
engineered phonon waveguides. For a general optome-
chanical system where a phonon waveguide is absent, we
find it is still possible to access the phonon output by
having its damping dominated by the optical damping
of an auxiliary cooling cavity (see Fig. 1). This auxil-
iary cavity will have a large damping rate, and will be
coupled to the mechanics via a linearized optomechanical
coupling (the cavity is strongly driven by a red-detuned
laser):

Ĥa = Ga

(
b̂d̂†a + b̂†d̂a

)
, (32)

where d̂a is the annihilation operator of the auxiliary cav-
ity and Ga is the corresponding coupling. The auxiliary
cavity, due to the large damping rate κa, can be described
by the following steady-state relation:

d̂a = −i2Ga

κa
b̂− 2
√
κa
d̂ina . (33)

Plugging this into the equation of motion for the mechan-
ical resonator one obtains

d

dt
b̂ = −2G2

a

κa
b̂− i

(
G1d̂1 +G2d̂

†
2

)
+

2iGa√
κa
d̂ina , (34)

where we have neglected other damping channels of the
resonator, supposing that G2

a/κa is sufficiently large.
Comparing Eq. (34) with the Langevin equation with-

out an auxiliary cavity, d
dt b̂ = −γ2 b̂− i

(
G1d̂1 +G2d̂

†
2

)
−

√
γd̂ina , we can identify

b̂in = −id̂ina , and γ = 4G2
a/κa. (35)

The input-output relation of the auxiliary cavity is

d̂outa = d̂ina +
√
κad̂a which, together with Eqs. (33) and

(35), gives d̂outa = −i√γb̂− ib̂in, thus

d̂outa = −ib̂out. (36)

This shows that a strongly damped auxiliary cavity can
serve as output of the mechanical mode.

B. 3-mode output state

We focus on zero frequency and zero bandwidth, and
consider the ideal case where all dissipative baths are at
zero temperature. In this case, the 3-mode output state
is a pure state |Ψs〉. Since n̄1 = 0 (see Eq. (14)), cavity
1 must be in the ground state if we consider the “un-
squeezed” state |Ψs〉 ≡ S̃12 (−R12) |Ψ〉. However, |Ψs〉
has residual entanglement between cavity 2 and the me-
chanical mode. This is clear from the finite value of n̄2,
which diverges at the instability condition γtot = 0 (the
finite population n̄2 is a consequence of tracing out the
mechanical mode). One can compute explicitly the corre-
lations of the state |Ψs〉 and identify it as a squeezed vac-
uum of cavity 2 and the mechanical mode, with squeezing
parameter R2m = sinh−1 n̄2. Hence the output state can
be written as a twice-squeezed vacuum

|Ψ〉 = Ŝ12 (R12) Ŝ2m (R2m) |000〉 , (37)

where Ŝ2m (R2m) ≡ exp
[
iR2mD̂

out
m [0] D̂out

2 [0]− h.c.
]

is

the 2-mode squeeze operator entangling the output of
the mechanics at ω = 0 (denoted by D̂out

m [0], which is
defined in a similar way as the cavity output) with that
of cavity 2. Since the effective temperature represented
by n̄2 diverges at the instability point (see Eq. (14)), the
squeezing parameter R2m = sinh−1 n̄2 diverges as well.
Equation (37) demonstrates that the effective tempera-
ture n̄2 which degraded the cavity-cavity entanglement
in Eq. (14) is a direct consequence of entanglement be-
tween cavity 2 and the mechanics. It also demonstrates
the asymmetry between the three modes (i.e., there is
no direct squeezing between the mechanical and cavity 1
outputs).

Furthermore, Eq. (37) shows that we have genuine tri-
partite entanglement (GTE): none of the parties can be
separated from any other in a mixture of product states,
implying a fully inseparable state [39, 40]. To see this,
note that the total state is pure, and if one traces over
one subsystem, the remaining two are in a mixed state.
GTE is also evident by writing the state in the Fock-state
basis |n1, n2, nm〉,

|Ψ〉 =
∑
pq

√
Cpp+q 〈Nm〉

q
2 〈N1〉

p
2

(1 + 〈N2〉)(p+q+1)/2
|p, p+ q, q〉 , (38)

where Cpp+q are binomial coefficients and 〈Ni〉 =〈(
D̂out
i [0]

)†
D̂out
i [0]

〉
(i = 1, 2,m) is the average pho-

ton/phonon number of each mode〈
N̂1

〉
=

4C1C2

(1 + C1 − C2)
2 ,〈

N̂2

〉
=

4C2 (C1 + 1)

(1 + C1 − C2)
2 ,〈

N̂m

〉
=

4C2

(1 + C1 − C2)
2 . (39)
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FIG. 6. 3-mode entanglement, evaluated by the residual
GR2 entanglement with cavity-1 as the focus mode ε2(ρ1:2:3),
versus the cooperativity of cavity 2. Here C1 is fixed to
10, 50, 100, 200 (from top to bottom). The gray dashed
lines indicate the onset of system instability. The 3-mode en-
tanglement diverges at γtot = 0 or C2 = C1+1. The C1 = 100
(red) curve is re-plotted in the inset, together with the two
residual GR2 entanglement where the focus mode is cavity-2
(ε2(ρ2:1:3)) or mechanics (ε2(ρ3:2:1)).

|Ψ〉 only involves Fock states |n1, n2, nm〉 where n2 = n1+
nm; there is thus a perfect correlation between the three
systems that is only evident by looking at all three modes.
If any two modes are traced out, the remaining third
mode is in an impure thermal state. Another interesting
observation is that, although the tripartite steady state
Eq. (37) is generated by interaction between intracavity
modes and the input-output relations, the output state
described by Eq. (37) could also be achieved by a unitary
evolution generated by the following interaction between
the output modes:

H̃ =R12 sinR2mD̂
out
m [0] D̂out

2 [0]−R2m

(
D̂out

m [0]
)†
D̂out

1 [0]

+iR12 cosR2mD̂
out
1 [0] D̂out

2 [0] + h.c. (40)

This result can be obtained by Wei-Norman decompo-

sition in terms of a closed algebra {D̂out
m [0]

†
D̂out

1 [0] +

h.c., D̂out
m [0] D̂out

1 [0] + h.c., D̂out
1 [0] D̂out

2 [0]− h.c.}.

C. 3-mode entanglement measure based on
Rényi-2 Entropy

The tripartite entanglement can be measured by the
residual Gaussian Rényi-2 (GR2) entanglement [21]. We
find that it is indeed non-zero, and diverges as one in-
creases C2 to the instability point C1 + 1 (due to the
divergence of n̄2 and R2m). These calculations also re-

veal the absence of any direct entanglement between the
mechanical and cavity 1 outputs.

The Rényi-2 entropy is given by S2 (ρ) = − ln Tr
(
ρ2
)

and allows to define an entanglement measure ε2 (ρA:B)
for bipartite states ρAB . For pure states one simply
has ε2 (ρA:B) = S2 (ρA), with ρA the reduced density
matrix of subsystem A. The tripartite entanglement
is then characterized through the residual entanglement
ε2 (ρi:j:k), given by:

ε2 (ρi:j:k) = ε2 (ρi:jk)− ε2 (ρi:k)− ε2 (ρi:j) ≥ 0, (41)

where i 6= j 6= k = 1, 2, 3 represent the 3 different modes
(the 3rd mode denotes the mechanics in our case). In
Eq. (41), ε2 (ρi:jk) is the bipartite entanglement parti-
tioning the global system into A = i and B = jk, while
ε2 (ρi:j) and ε2 (ρi:k) consider the reduced density ma-
trices of subsystems ij and ik, respectively. In general,
three different values of ε2 (ρi:j:k) are obtained, depend-
ing on the choice of the “focus mode” i. There are special
cases when ε2 (ρi:j:k) is invariant under mode permuta-
tion [21]; as we explain below, that is not the case for our
system.

For pure tripartite Gaussian states, ε2 (ρi:j:k) can be
evaluated analytically [21]. The first term of Eq. (41) is:

ε2 (ρi:jk) = S2 (ρi) = ln ai, (42)

where ai is related to the covariance matrix Vi of sub-
system i:

ai =
√

detVi. (43)

Using the covariance matrix for our system, calculated
from the Langevin equation, it is possible to obtain ex-
plicit formulas for ε2 (ρ1:23), ε2 (ρ2:13), ε2 (ρ3:12) in terms
of the cooperativities C1,2. Although we omit them here,
it is worth mentioning that these three quantities are all
non-zero, showing that none of the three systems is sep-
arable.

The last two terms in Eq. (41) are given by [21]:

ε2 (ρj:k) =
1

2
ln gi (i 6= j 6= k),

where

gi =


1, ak ≥

√
a2i + a2j − 1,

β
8a2k

, αk < ak <
√
a2i + a2j − 1,(

a2i−a
2
j

a2k−1

)2
ak ≤ αk,

(44)
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with

αk =

√√√√2
(
a2i + a2j

)
+
(
a2i − a2j

)2
+
∣∣a2i − a2j ∣∣√(a2i − a2j)2 + 8

(
a2i + a2j

)
2
(
a2i + a2j

) ,

β = 2a21 + 2a22 + 2a23 + 2a21a
2
3 + 2a22a

2
3 + 2a21a

2
2 − a41 − a42 − a43 −

√
δ − 1,

δ =
(

(a1 − a2 − a3)
2 − 1

)(
(a1 + a2 − a3)

2 − 1
)(

(a1 − a2 + a3)
2 − 1

)(
(a1 + a2 + a3)

2 − 1
)
.

Since ε2 (ρj:k) is the GR2 2-mode entanglement mea-
sure in the subspace where the mode i is eliminated,
it serves as an alternative way to quantify the 2-mode

entanglement in our system, other than the logarithmic
negativity used in Sec. III. We obtain all the two-mode
entanglements as follows:

ε2 (ρ1:2) = ln
(1 + C2)2 + C2

1 + 2C1 + 6C1C2

(1 + C2)2 + C2
1 + 2C1 − 2C1C2

≈ ln
C2

2 + 6C1C2 + C2
1

(C1 − C2)
2 +O

(
1

C2

)
,

ε2 (ρ3:2) = ln
(1 + C1)2 + C2

2 + 6C2 + 2C1C2

(1− C2)2 + C2
1 + 2C1 + 2C1C2

≈ O
(

1

C2

)
,

ε2 (ρ1:3) = 0, (45)

where the last approximation is in the large C limit.
These results show that the entanglement between cavity
1 and the mechanics is always zero, although the mechan-
ics is entangled with the composite system of the two cav-
ities (ε2 (ρ3:12) 6= 0). In particular, there is entanglement
between the mechanics and cavity 2, although it is much
smaller than the entanglement between cavity 1 and 2.
These results are all in agreement with those based on

the logarithmic negativity.
We now turn to the evaluation of the tripartite en-

tanglement ε2 (ρi:j:k), which is permutationally invariant
only when all the ε2 (ρi:jk) and ε2 (ρi:j) are non-zero [21].
The fact that ε2 (ρ1:3) = 0 implies that ε2 (ρi:j:k) depends
on the focus mode, thus we consider all three choices
i = 1, 2, 3. Using the results for ε2 (ρi:jk), ε2 (ρi:j) dis-
cussed above, Eq. (41) gives:

ε2 (ρ1:2:3) = ln

(
C2

1 + (1 + C2)
2

+ 2C1 − 2C1C2

(1 + C1 − C2)
2

)
− 2 tanh−1

(
2C2

(1 + C1)
2

+ 6C1C2 + C2
2

)
,

ε2 (ρ2:1:3) = ln

(
C2

2 + (1 + C1)
2

+ 6C2 (1 + C1)

C2
2 + (1 + C1)

2
+ 2C2 (3 + C1)

)

+ ln


(
C2

1 + (1 + C2)
2 − 2C1 (C2 − 1)

)(
C2

1 + (1− C2)
2

+ 2C1 (1 + C2)
)

(1 + C1 − C2)
2
(
C2

1 + (1 + C2)
2

+ 2C1 (1 + 3C2)
)

 ,

ε2 (ρ3:1:2) = ln

(
C2

2 + (1 + C1)
2

+ 6C2 − 2C1C2

(1 + C1 − C2)
2

)
− 2 tanh−1

(
4C2

(1 + C1 − C2)
2

)
. (46)

As announced, the three “residual GR2 entanglements”
are unequal. Nevertheless, they are all larger than zero,
which confirms the presence of genuine tripartite entan-
glement. Furthermore, as shown in Fig. 6, the ε2 (ρi:j:k)
all diverge at the instability point γtot = 0. This diver-
gence is similar to the case of a parametric amplifier and
is related to the divergences of n̄2 and R2m discussed in

the previous subsection.

VI. CONCLUSION

We have studied in detail the bipartite and tripar-
tite entanglement of the output fields in a 3-mode op-
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tomechanical system. For bipartite photonic entangle-
ment, we have found an explicit analytical expression
based on identifying the output with a squeezed thermal
state. This has allowed us to find an optimal “impedance
matching” condition for entanglement generation: tuning
the system parameters to achieve this condition yields a
dramatic increase of the maximum output entanglement.
Strikingly, our optimal condition corresponds to a regime
where entanglement between the two optical cavities is
nearly zero [26], but at the same time strongly entangled
photons are emitted into the output channels.

We also show that large values of the output entan-
glement can be achieved even in the standard “weak-
coupling” regime with large cooperativity (the same
regime used for cavity cooling in numerous experiments):
one simply needs to tune parameters to achieve the afore-
mentioned impedance matching condition. Furthermore,
we have considered realistic conditions including differ-

ent types of imperfections: finite temperature, internal
losses, sizable counter-rotating terms, as well as finite
mode bandwidth. By restricting ourselves to the opti-
mal equal coupling regime, we find that it is crucial to
consider time delays of emitted wave packets; we find the
optimal value of this delay and show that it substantially
improves the attainable entanglement. At last, we show
how to generate genuine tripartite entanglement of spa-
tially separated, itinerant quanta: we provide a simple
analytic characterization of the output state and use a
rigorous entanglement monotone to quantify the three-
mode entanglement. Our results can also be applied
to other parametrically coupled 3-mode bosonic systems,
besides optomechanical systems.
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