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We study the ground state quantum fragmentation in a mixture of a polar condensate and a
ferromagnetic condensate when subject to an external magnetic field. We pay more attentions to
the polar condensate, due to the fact that the fragmentation of polar condensate, which typically
occurs only in a very weak magnetic field, can occur in the mixture at higher magnetic fields, where
both atom numbers and the number fluctuations will keep in a macroscopic magnitude of order
of N . The role of the ferromagnetic condensate is to provide a uniform and stable background
which can delay the rapid shrink of the 0-component population and make it possible to capture
the “super-fragmentation ”. Our method has potential applications in measuring the inter-species
spin-coupling interaction through adjusting the magnetic field.

PACS numbers: 03.75.Mn, 67.60.Bc, 67.85.Fg

I. INTRODUCTION

Recent experimental breakthroughs in spinor Boson-
Einstein Condensate, such as the sub-Poissonian spin
correlations generated by atomic four-wave spin mixing
[1], the atomic squeezed states realized in the spin-1 ul-
tracold atomic ensembles [2], and the antiferromagnetic
spatial ordering observed in a quenched one-dimensional
spin-1 gas [3], are all in connection with the vacuum fluc-
tuations and recall attentions to the finite particle num-
ber effect beyond the mean-field treatment. The vacuum
fluctuations become a significant subject in more and
more experimental facts, e.g., atomic quantum matter-
wave optics, atomic spin squeezing and quantum infor-
mation. As one of the active frontiers, the spin-1 ultra-
cold atomic ensemble is often adopted. With the basic
interaction form V (r) = (α+βF·F)δ(r), the properties of
such a three-component spinor condensate [4] have been
demonstrated experimentally [5] and two different phases
reflecting fundamental properties of spin correlation are
identified: the so-called polar and ferromagnetic states
for β > 0 (23Na) and β < 0 (87Rb) atomic condensates
respectively. The mixture of two spinor condensate with
the ferromagnetic and polar atoms, respectively, show
more attractive quantum effects [6–15]. With the help
of sympathetic cooling, the BEC mixtures of Na and Rb
have been realized and it is interesting to observe the in-
terspecies interaction induced immiscibility between the
two condensates [15].

The ground state of the condensate with β > 0 has
been predicted to be either polar (n0 = N) or antifer-
romagnetic (n1 = n−1 = N/2) within the mean-field
treatment, where the condensate is usually described by
a coherent state. However, the many-body theory by
Law, Pu and Bigelow [16] pointed out that the ground
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state of β > 0 atoms is a spin singlet with properties
(n1 = n0 = n−1 = N/3) drastically different with the
results predicted by the mean field theory. Soon, Ho and
Yip [17] show that this spin singlet state is a fragmented
condensate with anomalously large number fluctuations
and thus has fragile stability. The remarkable nature of
this super-fragmentation is that the single particle re-
duced density matrix gives three macroscopic eigenval-
ues (N/3) with large number fluctuations ∆n1,0,−1 ∼ N .
Similar considerations were also addressed by Koashi and
Ueda [18–20]. The signature of fragmentation is then re-
fer to the anomalously large fluctuations of the popula-
tions in the Zeeman levels. This is a super-poissonian
correlation character, and the large number fluctuations
shrink rapidly as the experimentally adventitious pertur-
bations exist, such as magnetic field or field gradient.
In this paper we will report the influence of external

magnetic field on the spinor condensate with β > 0, but
on the premise of doping many ferromagnetic atoms in it.
The interspecies spin coupling interaction arises and we
propose a valid procedure to observe and control the frag-
mented states. If the ferromagnetic atoms in the mixture
are condensed, the ground state favors all atoms aligned
along the same direction and provides a uniform and sta-
ble background which can delay the rapidly shrinking of
the number fluctuations when the inter-species coupling
interaction is adjusted. The back action from polar atoms
on to the more stable ferromagnetic atoms is negligible.
Doping ferromagnetic atoms into spin-1 polar condensate
can effectively influence the vacuum fluctuations and will
have potential applications in quantum information and
quantum-enhanced magnetometry.

II. HAMILTONIAN OF THE MIXTURE

We consider the mixture of two spinor condensates
of N1 ferromagnetic and N2 polar atoms, respectively.
The intra-condensate atomic spin-1 interaction takes the



2

standard interaction form Vk(r) = (αk + βkFk · Fk)δ(r)
with k = 1, 2. The inter-condensate interaction be-
tween the ferromagnetic and polar atoms is V12(r) =
1
2 (α + βF1 · F2 + γP0)δ(r), which is more complicated
because collision can occur in the total spin Ftot = 1
channel between different atoms [6, 7]. The parameters
α, β, and γ are related to the s-wave scattering lengths
in the three total spin channels and the reduced mass µ
for atoms in different species, and P0 projects an inter-
species pair into spin singlet state. Within the single
spatial-mode approximation (SMA) [16, 21, 23] for each
of the two spinor condensates, the spin-dependent Hamil-
tonian for the mixture finally reads as

Ĥ = c1β1F̂
2
1 + c2β2F̂

2
2 + c12βF̂1 · F̂2 +

c12γ

3
Θ̂†

12Θ̂12, (1)

where F̂1 = â†iF1ij âj (F̂2 = b̂†iF2ij b̂j) are defined in
terms of the 3 × 3 spin-1 matrices with i(j) = 1, 0,−1,

and â†i (b̂
†
i ) creates a ferromagnetic (polar) atom in the

hyperfine state i. The operator

Θ̂†
12 = â†0b̂

†
0 − â†1b̂

†
−1 − â†−1b̂

†
1, (2)

creates a singlet pair with one atom each from the two
species, similar to

Θ̂†
2 = (b̂†0)

2 − 2b̂†1b̂
†
−1, (3)

for intra-species spin-singlet pair [17, 18] when β2 > 0.

The interaction parameters are c1 = 1
2

∫

dr |Ψ(r)|4 , c2 =
1
2

∫

dr |Φ(r)|4 and c12 =
∫

dr |Ψ(r)|2 |Φ(r)|2 , which can
be tuned through the control of the frequency of the trap-
ping potential [7].

III. FRAGMENTATION IN THE MAGNETIC

FIELD

A. Number distributions in a magnetic field

When the interspecies scattering parameters are cal-
culated in the degenerate internal-state approximation
(DIA) [24–27], the low-energy atomic interactions can be
mostly attributed to the ground-state configurations of
the two valence electrons, and the non-commutative term

Θ̂†
12Θ̂12 can be neglected [6, 7, 9]. The ground states are

classified into four distinct phases: FF, MM−, MM+, and

AA by three critical values of c12β = − (2N−1)c2β2

N , 0, and
(2N−1)c2β2

N+1 [9].
In this paper we discuss the atom number distribution

and fluctuation in an external magnetic field. The spin-
dependent Hamiltonian in the magnetic field reads,

Ĥ = c1β1F̂
2
1 + c2β2F̂

2
2 + c12βF̂1 · F̂2 (4)

−c1p1F̂1z − c2p2F̂2z ,

where only the linear Zeeman terms are considered. As
the SU(2) symmetry is broken in a spinor mixture, one
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FIG. 1: (Color online) The dependence of atom numbers on
p, at fixed values of c1β1 = −1, c2β2 = 2, and c12β = 2.5. The
total numbers of the two species are N1 = N2 = 40, and we
consider the full-space with total magnetization m a variable.
Black dashed and red solid lines denote the number distribu-
tions in the ferromagnetic and polar condensate respectively.
All interaction parameters are in the units of |c1β1|.

can not eliminate the linear Zeeman effect through a spin
rotation [28]. Meanwhile the quadratic Zeeman energy,
typically 2 orders of magnitude weaker than the linear
terms, is negligible in the calculation of number distri-
butions. For the alkalis atoms such as 23Na and 87Rb
in their subspace of the hyperfine spin F = 1, both the
nuclear spins and the valence electron spins are the same
for the two species, the linear Zeeman shifts are thus
almost equal. In the following discussion, we will take
p = c1p1 = c1p2 for simplicity.

We consider the direct product of the Fock states of
the two species |n1, n0, n−1〉1⊗|n1, n0, n−1〉2, and do not
restrict the model in the subspace with zero total mag-
netization [9, 10]. Instead, we consider the full space in-
cluding all possible system magnetization m = m1 +m2.
Using the full quantum approach of exact diagonaliza-
tion, we can get the ground state of the system and study
the response of the two species to the external magnetic
field p for N1 = N2 = 40. The three critical points for
the phase boundaries are approximately c12β = −4, 0, 4.

The field dependence of the population is shown in
Fig. 1 for the MM+ phase at c12β = 2.5, where polar
atoms are partly polarized in the oppsite direction as the
ferromagnetic atoms [9]. We notice that the ferromag-
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FIG. 2: (Color online) The dependence of atom numbers and
fluctuations on c12β and p at fixed values of c1β1 = −1 and
c2β2 = 2. This column only shows the results of polar atoms
with n0 and ∆n0. When the extra magnetic field parameter
p (in the units of |c1β1|) increases, there are serval critical
points associated with c12β. All interaction parameters are
in the units of |c1β1|.

netic atoms (black dashed lines) are very sensitive to the
magnetic field, i.e. atoms quickly redistribute in the n1

component and the magnetization of ferromagnetic con-
densate m1 = n1 − n−1 saturates immediately. The fer-
romagnetic atoms actually form a stable condensate and
provide a uniform magnetic background in the mixture.
The polar atoms present a stepwise increase (decrease)
in the atom number distribution n1(n−1) when the field
increases. For small p and positive c12β, the system fa-
vors a negative magnetization (m2 = n1 − n−1) of polar
condensate, and m2 will reverse and tend to saturate for
large magnetic field. We notice that a special number
distribution with n1 = n0 = n−1 = N

3 remarkably arises
around the value of p = 100.

The situation becomes more simple if the parameter
c12β is negative, that is, in the FF phase (or MM−

phase), where polar atoms are fully (partly) polarized
in the same direction as the ferromagnetic atoms. The
enhanced ferromagnetic effect and the external magnetic
field jointly suppress the atom number distribution n0

and n−1 of the polar condensate to zero, and at the same
time saturate n1 and the magnetizationm2 without mag-
netization reversal.
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FIG. 3: (Color online) The dependence of atom number dis-
tributions and number fluctuations in the polar condensate on
magnetic coefficient p at fixed values of c1β1 = −1, c12β = 2.5
and c2β2 = 2. The total numbers of the two species are
N1 = 20, N2 = 100. Black solid, red dash-dot, and blue
dashed lines denote atom numbers and the fluctuations on
the 1, 0, and −1 sub-levels respectively. All interaction pa-
rameters are in the units of |c1β1|.

B. Retrieving the super-fragmented state

According to the spin space rotational invariant Hamil-
tonian [17–20],

Ĥ0 = c2β2F̂
2 = c2β2[N̂

2
2 − Θ̂†

2Θ̂2],

the super-fragmented state is named in [17] for the
ground state of the pure spin-1 condensate with c2β2 > 0.
This ground state is described by a many-body spin sin-
glet with the form

|φsup〉 ∝ (Θ̂†
2)

N2/2 |0〉 ,

where Θ̂†
2 creates a singlet pair formed by two identical

spin-1 bonsons. For spin-1 particles with three hyperfine

spin state |f, fm〉 = b̂†m |0〉 , the simplest spin singlet is
formed by two spin-1 particles and described as

|Ftot = 0, Fm = 0〉 =
∑

C |f1, fm1〉 |f2, fm2〉 , (5)

under the condition fm = fm1 + fm2 = 0, and with the
remainder corresponding Clebsch-Gordon coefficient C,
one can get

|Ftot = 0, Fm = 0〉 = 1√
3
(b̂†20 − 2b̂†1b̂

†
−1) |0〉 . (6)
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FIG. 4: (Color online) The dependence of atom number dis-
tributions n1,0,−1 and the number fluctuations ∆n1,0,−1 of the
polar condensate on both c12β and magnetic field p at fixed
values of c1β1 = −1 and c2β2 = 2. The total numbers of the
two species are N1 = N2 = 40. Black solid, red dot, and blue
dash-dot lines denote the numbers (fluctuations) on the 1, 0,
and −1 sub-levels respectively. All interaction parameters are
in the units of |c1β1|.

The many-body spin-singlet is constructed by applying

Θ̂†
2 as many times as needed to get the desired num-

ber of particles [29]. The particle density matrix will be

(ρ̂)mn =
〈

b̂†mb̂n

〉

= N
3 δmn, which fulfill the condition [30]

that the ground state can contain several condensates.
The number fluctuations, as the signature of fragmenta-
tion, can be calculated algebraically [17, 20] and satisfy
2∆n1 = ∆n0 = 2∆n−1, with

∆n0 =
2
√
N2 + 3N

3
√
5

. (7)

Such a state with polar interaction was not likely real-
ized in typical experiments due to its fragility towards
any perturbation breaking spin rotational symmetry. For
example, if subject to an external magnetic field, the
ground state of the system [17–20] will be

|φmag〉 ∝ (b̂†1)
m2(Θ̂†

2)
(N2−m2)/2 |0〉 , (8)

one can see a rapid shrink of the spin-0 component dis-
tribution n0 and the fluctuations ∆n1,0,−1 when m2 is
increased. The super-fragmented state then reduces to a
much more generic fragmented state: a two component
number state with essentially zero fluctuations

|φnum〉 ∝ (b̂†1)
(N2+m2)/2(b̂†−1)

(N2−m2)/2 |0〉 . (9)

For the spin-1 polar condensate doped with many fer-
romagnetic atoms, we can retrieve this super-fragmented
state in the presence of an external field. For some special

values of the magnetic field, both the spin-0 component
population and number fluctuations would not shrink but
revive to macroscopic orders of N2. In Fig. 2, we illus-
trate the revival points for three inter-species coupling
parameters c12β in the MM+ phase (0 < c12β < 4).
These revival points are found to move towards larger
value of p as c12β increases.
As learned from previous studies [23], the mean-field

treatment is efficient for atomic interaction of the fer-
romagnetic type. The much more stable ferromagnetic
condensate in the mixture can be formulated in the mean
field treatment as a boson-enhanced effective magnetic
field. This simplifies the Hamiltonian (4) as

Ĥ = c1β1〈F̂2
1〉+ c2β2F̂

2
2 + c12β〈F̂1〉 · F̂2 (10)

−c1p1〈F̂1z〉 − c2p2F̂2z

= c2β2F̂
2
2 +AF̂2z + C

where 〈F̂1〉 = 〈F̂1z〉 = N1, A = c12βN1 − c2p2, C =
c1β1N1(N1+1)−c1p1N1. The criterion for the emergence
of super-fragmented state is p = c12βN1, where the mag-
netic field (p), the optical trapping frequency (c12), and
the number of the doped ferromagnetic atoms (N1) are
all adjustable. When the magnetic field matches the con-
dition that c12βN1 and c2p2 cancel each other, we may
achieve the super-fragmented state in a magnetic field.
The three critical points in Fig. 2 are found to agree with
the numerical results exactly. The special value such as
p=100 in the Fig.1 can be predicted exactly here with
p=c12βN1=2.5× 40 = 100.
Next, we turn to the situation with population imbal-

ance in the two species. Fig. 3 illustrates the location of
the critical point when the inter-species coupling param-
eter c12β is fixed to be 2.5 and the atom numbers for the
two species are N1 = 20 andN2 = 100. As the mean-field
picture works well for the ferromagnetic atoms, we still
get the crucial point p = 2.5×N1 = 50 in Fig. 3. When
equal population n1 = n0 = n−1 = N/3 occurs for the
polar condensate, the number fluctuations also instanta-
neously reach to the macroscopic levels. Our numerical
results for the fluctuation relation (∆n0 = 2∆n±1) agree
exactly with the algebraic results in [17] for pure polar
condensate. With the emergence of equal populationN/3
regarded as a sign of anti-ferromagnetic spin interaction,
the inter-species spin coupling interaction c12β can be
estimated by the location of the critical magnetic field.

C. AA phase in a magnetic field

When the interaction parameter c12β > (2N−1)c2β2

N+1 ,
the system spontaneously breaks into a high symme-
try state called AA phase. AA phase is another super-
fragmented state which have been predicted in the ab-
sence of magnetic fields [9]. It is also a many-body spin
singlet, which requires exactly the same atoms number
of the two species (N = N1 = N2), and total spins from
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different species polarized in opposite directions. In the
notation of the angular momentum representation

|F1, F2, F,m〉 =
∑

CF,m
F1,m1;F2,m2

|F1,m1〉 |F2,m2〉 ,
(11)

AA phase is denoted as |φAA〉 = |N,N, 0, 0〉 with F1, F2

and F the total spin quantum numbers of the ferromag-
netic atoms, polar atoms, and the mixture and m1,m2

and m the corresponding z-components. The intra-
species angular momentum states involved in the AA
phase, |N,m1〉 and |N,m2〉, should obey the constraint
m1 + m2 = 0. The interesting feature of AA phase is
the equal distribution of atoms in the six components
(N/3) and the large number fluctuations. To calculate
the number distribution and the number fluctuation, one
has to expanse the two species states |N,m1〉 and |N,m2〉
into the Fock states [9, 31], and the number fluctuations
without magnetic field are calculated to be

∆n
(1,2)
0 =

√
N2 + 9N

3
√
5

∆n
(1,2)
±1 =

2
√

N2 + 3N/2

3
√
5

. (12)

However, unlike super-fragmented state, we can not give
the perfect creating operator description of AA phase,
due to the more complicated symmetry originated from
the collision occurred in the total spin Ftot = 1 channel.

In this section, we will numerically discuss the AA
phase (c12β > 4) subject to the external magnetic fields
using the full quantum approach of exact diagonalization,
and compare the results with the super-fragmented state
in the pure condensate [17].

The features of these two typical fragmented ground
states, which belong to two special phases characterized
by typical values of the interaction parameter: c12β =
4.5, and c12β = 0, are illustrated in Fig. 4. First, we
notice that the numerical results of the number distribu-
tions and fluctuations are exactly agree with the algebraic
results on the special point p=0. The AA phase is as frag-
ile as the pure polar singlet, with the number fluctuations
drop rapidly (Fig. 4d), and the number distributions fi-

nally reduces to a generic number state (b†1)
N2 |0〉. What

interesting is that the responses of the n0 component to
the magnetic field are quite different. For a pure polar
condensate (Fig. 4a), as p increases, the 0-component
distribution n0 (red dashed line) shrink rapidly, which
agree with the algebraic results in [17]. For the AA phase
(Fig. 4b), we notice that n0 does not shrink rapidly in
the beginning, instead, it increases first and remains in
a high value for a certain range of p. The applied ex-
ternal magnetic field can be used to characterize these
two spin-singlets through tracing the atoms numbers of
n0 component of the polar atoms.
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FIG. 5: (Color online) The dependence of atom number dis-
tribution n0 and ∆n0 in the polar condensate on magnetic
coefficient p and c12γ at fixed values of c1β1 = −1, c12β = 2.5
and c2β2 = 2. The total numbers of the two species are
N1 = N2 = 40. Black dashed lines and red solid lines de-
note the value of n0 and ∆n0 respectively. All interaction
parameters are in the units of |c1β1|.

D. The inter-species P0 effect

If we refer to more general case beyond the DIA ap-
proximation, the γ term of the Hamiltonian (1) should
be considered. We notice that

[

F̂
2
1,2, Θ̂

†
12Θ̂12

]

6= 0,
[

F̂
2, Θ̂†

12Θ̂12

]

= 0, (13)

which means in general they do not belong to a set of
commutative operators. However, we can numerically
study the phase transition through the order parameter

〈Θ̂†
12Θ̂12〉 [10]. To see more clearly the role played by

the parameter c12γ on the fragmentation, we numerically
diagonalize the Hamiltonian (1) with N1 = N2 = 40.
In Fig.5, we illustrate the influence of a small c12γ 6= 0

to the population n0 and ∆n0 of super-fragmented state
which has been retrieved in MM+ phase. We find that
the crucial point is still located at p = 2.5×N1, but a tiny
c12γ = 0.15 will elevate the n0 component to a dominated
value, meanwhile suppress the n1 and n−1 components
to lower level. The high occupation on n0 component is
an evidence of the nematic order [2], and the signature
of fragmentation disappears. For c12γ = −0.15, on the
contrary, the n0 component is totally suppressed, with
both n0 and ∆n0 shrinking. Away from the critical point,
the system is dominated by the magnetic field with the
magnetization m2 = n1 − n−1 increased linearly.
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The negative γ term encourages pairing two different
types of atoms into singlets [10]. In Fig. 6, the influ-
ences of negative singlet pairing coefficient c12γ on the
numbers and quantum fluctuations of the two species are
illustrated. We notice that the typical N/3 number dis-
tributions arise both in the c12β < 0 and c12β > 0 re-
gions when c12γ reaches to −20. The number fluctuation
△n0 gives two steady values, which represent two typi-
cal fragmented ground state: the inter-species entangled
fragmented state for c12β > 2, and the pure species inde-
pendent fragmented state for c12β < 0. The fluctuations
for these two states

∆n0 =

√
N2 + 9N

3
√
5

, c12β > 2,

∆n0 =
2
√
N2 + 2N

3
√
5

, c12β < 0,

are found to match the numerical results in Fig. 6.

IV. CONCLUSION

To conclude, we studied the ground state properties
of a binary mixture of ferromagnetic and polar spinor
condensates in a magnetic field. Using the full quantum
approach of exact diagonalization, we can study the com-
petition between magnetic linear Zeeman effect and the
inter-species spin coupling interaction c12β. The large
vacuum fluctuation of number distributions on the three
zeeman levels inside the polar condensate is worthy of in-
vestigation. We point out that the fragmentation proper-
ties of polar condensate can be adjusted through the mag-
netic field (p), trapping frequency (c12), and the number
of doped ferromagnetic atoms (N1). The ferromagnetic
condensate is involved to provide a uniform and stable
background which can delay the rapidly shrinking of the
large number fluctuations. We illustrated the influences
of the magnetic parameter p, and identified two typical
fragmented state with total spin 〈F̂2〉 = 0. The positive
inter-species spin coupling interaction (c12β > 0) can ef-
fectively entangle the different species, while for c12β < 0
the different species on their F = 1 manifold are essen-
tially independent. We propose a possible mechanism to
effectively measure the inter-species spin coupling inter-
actions through applying a magnetic field, as well as dis-
criminate the two types of many-body spin singlets. Our
work highlights the significant promises for experimental
work on sodium and rubidium atomic condensate mix-
tures and provide some useful information for the study
of photo-association of heteronuclear molecules.

This work is supported by the NSF of China under
Grant Nos. 11204204, 11347181, the NSF of Shanxi
Province under Grant Nos. 2012021003-2, 2014021011-
1 and the fund of Taiyuan University of Technology for
young teachers. YZ is also supported by the National
Basic Research Program of China (973 Program) un-
der Grant No. 2011CB921601, Program for Changjiang
Scholars and Innovative Research Team in University
(PCSIRT)(No. IRT13076).

[1] Eva M. Bookjans, Christopher D. Hamley, and Michael
S. Chapman, Phys. Rev. Lett. 107, 210406 (2011).

[2] C.D. Hamley, C.S. Gerving, T.M. Hoang, E.M. Book-
jans and M.S. Chapman, Nat. Phys. 8, 305 (2012); T.
M. Hoang, C. S. Gerving, B. J. Land, M. Anquez, C.
D. Hamley, and M. S. Chapman, Phys. Rev. Lett. 111,

090403 (2013).
[3] A. Vinit, E. M. Bookjans, C. A. R. Sáde Melo, and C.
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