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The transition from “few to many” has recently been probed experimentally in an ultracold
harmonically confined one-dimensional lithium gas, in which a single impurity atom interacts with
a background gas consisting of one, two, or more identical fermions [A. N. Wenz et al., Science
342, 457 (2013)]. For repulsive interactions between the background or majority atoms and the
impurity, the interaction energy for relatively moderate system sizes was analyzed and found to
converge toward the corresponding expression for an infinitely large Fermi gas. Motivated by these
experimental results, we apply perturbative techniques to determine the interaction energy for weak
and strong coupling strengths and derive approximate descriptions for the interaction energy for
repulsive interactions with varying strength between the impurity and the majority atoms and any

number of majority atoms.

PACS numbers:

I. INTRODUCTION

One-dimensional Bose and Fermi systems with contact
interactions have been studied for many decades now,
especially in the regime where the systems obey peri-
odic boundary conditions [1-5]. A large fraction of the
eigenstates can be thought of as corresponding to gas-
like states. A second subset of eigenstates corresponds
to self-bound droplet-like states. These states maintain
their bound state character in the absence of periodic
boundary conditions, i.e., in free space. In many cases,
both the gas-like and droplet-like states can be obtained
analytically via the Bethe ansatz. The Bethe ansatz takes
advantage of the fact that the zero-range nature of the
interactions, combined with the fact that particles in one
dimension have to pass through each other to exchange
positions, allows one to identify constants of motion. The
solutions can then be derived in terms of these constants
of motion. A closely related aspect is that a variety of
one-dimensional systems with two-body contact interac-
tions are integrable [1, 4].

The solution of the homogeneous system can be ap-
plied to one-dimensional systems under spatially vary-
ing external confinement via the local density approxi-
mation [6-10]. This approximation typically provides a
highly accurate description for a large number of par-
ticles but not necessarily for a small number of parti-
cles. It is thus desirable to derive more accurate descrip-
tions for small one-dimensional systems with two-body
delta-function interactions under external confinement.
Unfortunately, extensions of the Bethe ansatz to inho-
mogeneous systems are, in general, not known. This
can be understood intuitively by realizing that the rel-
ative two-body momentum in inhomogeneous systems is
not conserved due to the presence of the spatially vary-
ing confinement. Correspondingly, harmonically trapped
one-dimensional few-body systems have been treated nu-
merically by various techniques [7, 11-17].

In this work, we apply standard Raleigh-Schrodinger

perturbation theory to harmonically confined systems
and derive approximate solutions whose accuracy can
be improved systematically by considering successively
higher orders in the expansion in the small parame-
ter. We focus on one-dimensional Fermi gases with a
single impurity under external harmonic confinement.
This system is of particular interest since it has been
realized experimentally in Jochim’s cold atom labora-
tory [18, 19]. In the experiments, the impurity is a
lithium atom that occupies a hyperfine state different
from the hyperfine state that the majority atoms oc-
cupy. The trapping geometry is highly-elongated and ef-
fectively one-dimensional. We will show that our pertur-
bative results enable us to calculate the energy of the up-
per branch, which has been studied experimentally, with
fairly good accuracy for all N over a wide range of cou-
pling strengths. In addition, our results provide bounds
on the energies in the weakly- and strongly-interacting
regimes. These bounds can, e.g., be used to assess the
accuracy of numerical solutions.

The remainder of this paper is organized as follows.
Section II introduces the system Hamiltonian and nota-
tion. Section III summarizes our perturbative results.
The perturbative results are analyzed in Secs. IV and V.
Finally, Sec. VI concludes.

II. SYSTEM HAMILTONIAN

We consider a single impurity immersed in a one-
dimensional Fermi gas that consists of IV identical mass
m fermions. The mass of the impurity is equal to that
of the majority or background particles. The impurity,
with position coordinate zg, interacts with the majority
particles, with position coordinates z; (j = 1,---,N),
through a zero-range two-body potential with strength
9,

Van (zj0) = 96(2j — 20), (1)



where z;o = z; —29. The Hamiltonian H for the harmon-
ically confined (NN, 1) system then reads

N N
H =7 Hiolz) + Huo(20) + ) Van(zj0),  (2)

j=1 j=1

where the single particle harmonic oscillator Hamiltonian
Hyo(z) is given by

Hio(2) = — o~

here, w denotes the angular trapping frequency. The
delta-function interactions in Eq. (2) can be replaced by
a set of boundary conditions on the many-body wave
function ¥(zg, 21, , 2N),
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8sz
where the limits zjo — 07, zj0 — 07, and zjo0 — 0
are taken while keeping the other N coordinates, i.e.,
21,0, Zj—1, Zj+1, - 2N and (zj + 20)/2, fixed.

In the following, we determine the eigenenergies F(N)
of the Hamiltonian H for various N. Throughout, we
restrict ourselves to the so-called upper branch. This
branch can be populated by preparing the system in the
non-interacting limit (g — 07) and by then adiabati-
cally first increasing g to large positive values, then con-
tinuing across the confinement-induced resonance [20] to
infinitely negative g values and finally increasing g to
small negative values. Solid, dotted, and dashed lines
in Fig. 1(a) show the energy of the upper branch for
N =1 [21], 2, and 3 [14, 15, 22], respectively, as a func-
tion of —1/g. For all N, the energy increases monotoni-
cally as a function of increasing —1/g. The upper branch
corresponds to the ground state of the model Hamilto-
nian when ¢ is positive but not when g is negative. For
negative g, the model Hamiltonian supports molecular-
like bound states. In real cold atom systems, energet-
ically lower-lying molecular states exist even for posi-
tive g. However, it has been demonstrated experimen-
tally [19] that the upper branch can be populated with
reasonably high fidelity for positive g, motivating us—as
well as others [7, 12, 13, 16, 17, 23-26]—to investigate
the properties of the upper branch within a stationary
zero-temperature quantum mechanics framework. Since
decay to states with molecular character can lead to sig-
nificant depopulation of the upper branch for negative g,
our primary focus in the following lies on the positive g
portion of the upper branch.

For ¢ = 07", the energy of the upper branch is equal
to Eni(N) = (N? + 1)hw/2. We write the energy E(N)
of the upper branch in terms of the interaction energy
e(N),

oy
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E(N) = En(N) + e(N). (5)

Solid, dotted, and dashed lines in Fig. 1(b) show the
interaction energies, normalized by the energy FEr(N),
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FIG. 1: (Color online) (a) Solid, dotted, and dashed lines
show the energy of the upper branch for N = 1, 2, and 3
as a function of —1/g. The energies of the (1,1) system are
obtained by solving the transcendental equation derived in
Ref. [21]. The energies of the (2,1) and (3,1) system are
taken from Refs. [14, 15, 22]. (b) Solid, dotted, and dashed
lines show the interaction energy e(N), normalized by the
Fermi energy Er(N), for N = 1, 2, and 3, respectively, as
a function of —1/g. The harmonic oscillator length ano is
defined in Eq. (10).

for systems with N =1, 2, and 3 majority particles. The
energy Ep(N) is directly proportional to the number of
majority particles,

Ep(N) = Nhw. (6)

Figure 1(b) shows that the normalized interaction en-
ergy depends relatively weakly on the number of parti-
cles. Independent of N, we have ¢(IN) = 0 for g = 07 and
e(N) = Er(N) for |g| = co. As can be read off Figs. 1(a)
and 1(b), the energy increase of the upper branch is the
same on the positive g side as it is on the negative g side,
indicating that €¢(IN) approaches 2Ep(N) in the g = 0~
limit for N = 1 — 3. We refer to Er(NN) as the Fermi
energy of the majority particles. It should be noted,
however, that the “exact” Fermi energy of the majority
particles is Erp(N)—hw/2, i.e., Er(N) corresponds to the
leading order term of the Fermi energy of the majority
particles in the large N limit.

One of the main goals of this paper is to derive ex-
pansions for the interaction energy of the upper branch
around ¢ = 07 and |g| = oo using standard Raleigh-
Schrodinger perturbation theory for any N, i.e., for
N =1,---,00. To this end, we express the interaction



energies €0 and €D in the vicinity of ¢ = 07 and
lg| = oo, respectively, in a power series of the dimension-
less interaction parameter 7 (for |g| small) or in a power
series of =1 (for |g| large) [27],

kmax

€OON) = | 37 BONN | Br(N) + Ot (1)
k=1

and

6(I<>o|)(N) -
Kmax

1+ > CO Ny ™| Br(N) + Oy~ tmextD) - (8)
k=1

where the dimensionless interaction parameter ~ is given
by

=7 (9)
T BN hwan,’
with
h
o=1— 1
“h mw (10)

denoting the harmonic oscillator length. As we will show
below, the scaling of the interaction energy by Ep(N)
ensures a smooth connection between the energy shifts
for finite and infinite N. In Egs. (7)-(8), the dimension-
less kth-order perturbation theory coefficients B®*) ()
and C®)(N) depend on N and will be determined in the
next section.

III. PERTURBATIVE RESULTS

N — oo limit: The impurity problem for the homo-
geneous system with positive v was solved by McGuire
in 1965 [28]. Within the local density approximation the
Fermi wave vector is replaced by the wave vector at the
trap center such that the interaction energy of the ground
state for the harmonically trapped system with N — oo
becomes [19]

€(c0)

i) = {1 -2+ (% + 2%) arctan (%)} a1

Expanding Eq. (11) around v = 0 and || = oo, respec-
tively, B(*)(c0) and C*)(c0) can be obtained for k =
1,2,---. We find BM(c0) = 2/7%, B®(c0) = —1/(47?),
B®(00) = 1/(6n%), CM(00) = —8/3, C®(00) = 0,
and C'®)(00) = 3272/15. The numerical values of these
coefficients are summarized in Tables I-II. It is readily
shown that the small and large « series, Egs. (7) and
(8), converge for v < 2 and y~! < (27) 7!, respectively.
Table TI shows that C'(®)(cc) vanishes. We will return
to this finding when we discuss the N-dependence of the
C®)(N) coefficients.

TABLE I: Coefficients B*(N) for various (N, k) combina-
tions. The numbers in parenthesis denote the uncertainty
that arises from evaluating the perturbation theory sums with
a finite energy cutoff. The numbers without errorbars have
been rounded.

k=1 k=2 k=3
N=1 |0.179587 —0.0223551 0.00179230
N=2 |0.190481 —0.0239838 0.00179523
N=3 {0.194409 —0.0244852 0.00177603(1)
N=4 [0.196423 —0.0247210 0.0017627(1)
N=5 {0.197647 —0.0248563 0.0017535(1)
N=6 [0.198469 —0.0249435 0.0017470(1)
N=T7 |0.199059 —0.0250042
N=8 |0.199503 —0.0250488
N=9 |0.199849 —0.0250828
N=10|0.200126 —0.0251096
N=11|0.200353 —0.0251313
N=12|0.200543 —0.0251491
N=00|0.202642 —0.0253303 0.00171100

TABLE II: Coefficients C*)(N) for various (N, k) combina-
tions. The numbers in parenthesis denote the uncertainty that
arises from evaluating the perturbation theory sums with a fi-
nite energy cutoff. The numbers without errorbars have been
rounded.

k=1 k=2 =3
N=1 |—3.54491 3.85603  34.3007
N=2 |—3.17245 2.41904(1) 25.38(2)
N=3 |—3.02854 1.8142(2) 23.78(8)
N=4 |—2.95040
N=5 |—2.90081
N=6 |—2.86634
N=7 |—2.84091
N=8 |-2.82133
N=9 |—2.80578
N=o00|—2.66667 0 21.0552

(1,1) system: The eigenenergies of the harmonically
trapped (1, 1) system can be obtained for any v by solv-
ing a simple transcendental equation [21]. Expanding
the transcendental equation around the known eigenen-
ergies for small and large 7, one obtains power series in
the interaction energy. Inverting these series, one obtains
analytical expressions for the B*) (1) and C®)(1) coeffi-
cients. We find BM (1) = 7=3/2, B®(1) = —In(2) /7%,
BB (1) = —[x% — 91In(4)?]/(247%/2), CM (1) = —271/2
C? (1) = —4xn[In(2) — 1], and C®)(1) = 73/2[x2 — 24 —
9(In(4) — 4)In(4)]/3. The numerical values of these coef-
ficients are summarized in Tables I-II. As in the N — oo
case, the small and large ~y series for N = 1, Egs. (7) and
(8), have a finite radius of convergence. Employing the
techniques of Ref. [29], we find—using up to 50 expansion
coefficients—that the small and large v series converge
for v < 1.0745(2) x 27 and v~ < [1.0745(2) x 27|71,
respectively. Our result for the convergence of the small
~ series is consistent with what is reported in the litera-
ture [30].

Weakly-repulsive (N, 1) system, N =2,3,---: To treat



the weakly-interacting system with finite N, N > 1, we
rewrite the system Hamiltonian in second quantization
and expand the field operators for the majority particles
and the impurity in terms of single particle harmonic
oscillator states (see, e.g., Ref. [31]). The interaction
matrix elements can be evaluated analytically and the
first-order perturbation theory treatment for positive g
yields

2v/NT(1/2 + N)

(1) —

BY(N) = 3N . (12)
The first-order energy shift may be interpreted
as the leading-order mean-field shift. We find

limy 00 BM(N) = 2/72, which agrees with the coef-
ficient obtained by expanding Eq. (11). The evalua-
tion of the second-order energy shift involves the eval-
uation of infinite sums. We find, as expected, that these
sums converge. The reason is that the one-dimensional
delta-function interaction does not, unlike two- or three-
dimensional delta-function interactions [32, 33|, require
any regularization if used in standard perturbation the-
ory approaches. We did not find a compact analytical ex-
pression applicable to all N for the second-order energy
shift. For N = 1 and 2, we have B (1) = —In(2)/n*
and B®)(2) = [-9+6v3+31In(2++/3) — 121n(2)]/(473).
For larger N, the expressions are lengthy. The numer-
ical values for N < 12 are listed in Table I. Table I
also summarizes the numerically determined values for
the third-order coefficients B®)(N) for N = 2 — 6. The
B®)(N) coefficient increases slightly as N changes from
1 to 2, and then decreases monotonically as N increases
further. The numerically determined B®) (N) coefficients
for N = 2 — 6 approach the N = oo coefficient smoothly
if plotted as a function of 1/N.

Strongly-interacting (N, 1) system, N = 2,3,---: The
strongly-interacting regime has been treated perturba-
tively at leading order, i.e., at order 1/, for N < 8 [26]
(note, though, that only the coefficients for N < 4 were
reported explicitly, i.e., in equation or numerical form).
To derive these results, the two-body interaction for large
|g| is modeled by imposing the two-body boundary condi-
tion on the many-body wave function when the distance
between the unlike particles approaches zero [23, 26, 34].
Since the ground state eigenenergy for |g| = oo is degen-
erate, the perturbation shift is obtained by diagonalizing
the perturbation matrix constructed using the degener-
ate states for ¢ = co. For the many-body states ¥, and
U g, the perturbation matrix element V,g reads [23]

ﬁ4
Vap = ———
B ng X
N
ov?, ov*
[ 52 -5e B(250) X
Jj=1 Zjo Zj()—)o+ Zjo zjo—0~
v )
Q - ﬁ dzodzy - - - dzn(13)
(92]‘0 zj0—0+ (9Zj0 2j0—0~

These matrix elements are closely related to the bound-
ary condition representation of the one-dimensional odd-
parity pseudo-potential [35, 36]. We evaluate the inte-
grals in Eq. (13) analytically for N = 1 — 4. The analyt-
ical results for N = 1 and 2 read C(V(1) = —2,/7 and
CW(2) = —/7/2(81/32). The analytical expressions
for N = 3 and 4 are lengthy and not reported here [37].
For larger N, we perform all but one integration for each
of the perturbation matrix elements analytically. The re-
sulting numerically determined energy shifts are accurate
to more than 10 digits. Table IT summarizes the numeri-
cal values for the coefficient C() (N) for N < 9 obtained
by us. The extension to larger N is, although tedious,
possible in principle.

To determine the energy shift proportional to 2,
we use second-order perturbation theory. Reference [38]
pointed out that the second-order perturbation theory
energy shift of the (1,1) system diverges, thus requiring
regularization. Analogous divergencies arise in the per-
turbative treatment of one-dimensional single-component
Fermi gases with delta-prime or delta-double-prime inter-
actions (see, e.g., Ref. [35]) and that of one-dimensional
Bose gases with effective range dependent zero-range in-
teractions. In the following, we discuss the impurity
problem with N = 2 and 3. To evaluate the second-
order energy shifts, we need to know the complete set of
eigenstates of the (2,1) and (3,1) systems with |g| = co.
For the (2,1) system, we use the analytical wave func-
tions from Ref. [39] and evaluate the integrals analyti-
cally. For the (3,1) system, we derive compact forms
for the eigenstates using spherical coordinates and evalu-
ate the relevant integrals analytically. We then evaluate
the second-order perturbation theory sums numerically,
imposing an energy cutoff on the relative energy of the
intermediate (or virtual) states that are being summed
over. The second-order energy shift is found to contain
powerlaw divergencies in the energy cutoff. These di-
vergencies are canceled through the introduction of a
counterterm and the constant (and physically meaning-
ful) part is extracted with high precision by a regular-
ization scheme similar to that developed for harmoni-
cally trapped bosons [40]. Table II reports the resulting
second-order perturbation theory coefficients with error-
bars. Our perturbative coefficients are consistent with
the coefficients obtained by fitting the (2,1) and (3,1)
energies reported in Refs. [14, 22] to a polynomial in v~ 1.
For the N = 2 and 3 systems, we extend the above treat-
ment to the third order (see Table II). These third-order
calculations require the evaluation of matrix elements
Vap between excited states. Since the third-order per-
turbation expression is more involved than the second-
order perturbation expression, our third-order result has
a larger errorbar than our second-order result [41].

The calculations of the second- and third-order energy
shifts can, in principle, be extended to larger N. To do
so, two challenges need to be overcome. First, an efficient
method to generate the complete set of eigenstates at
|g| = oo has to be devised. Second, an efficient scheme for



TABLE III: Fitting coefficients bg»k) for k =2 and 3. For k = 2
and 3, we used jmax = 6 and 4, respectively.

k=2 k=3

j=0]—0.0253304 1.71100 x 1073
j=1| 0.0019591 2.23905 x 10~*
j=2| 0.0033477 6.59881 x 10~°
j=3|—-0.0116972 —3.67025 x 10~*
7j=4
7=5
7=06

0.0379414 2.64073 x 10~*
—0.0684440
0.0486346

evaluating the matrix elements and infinite perturbation
theory sums has to be developed. This is not pursued
here.

IV. FITTING THE B®(N) AND C®(N)
COEFFICIENTS

Tables I-IT suggest that the coefficients B*)(N) and
C®*)(N) change, for fixed k, smoothly with N. This mo-
tivates us to write

Jmax 7
B®(N) = ;0 b (%) (14)
and
CW(N) _NTm (i)j. (15)
j=0 ’ N

It should be noted that the expressions (14)-(15) reduce

to b((Jk) and cék), respectively, in the N — oo limit. In the

following, the parameters b§k) and cg-k) are obtained by

fitting the coefficients B*)(N) and C*®)(N) for fixed k.

We start with B®)(N). We fit Eq. (14) to the B®)(N)
values for N = 1 — 80 (the values for N = 1 — 12 are
reported in Table IT), varying jmax from 2 —20. We find
that the most reliable fit is obtained for jyha.x = 12 —
13. In this case, the fitting parameter b(()2) differs from
—1/(47?) [the result obtained by expanding Eq. (11)] by
less than 1078. This suggests that not only the k =
1 coeflicient (see discussion above) but also the k = 2
coefficient connects smoothly with the infinite N result.
Table ITI reports the results of our fit to the B()(N)
coefficients with N = 1 —80 and oo by a polynomial with
jmax = 6.

As mentioned earlier, the B®)(1) coefficient is slightly
smaller than the B®)(2) coefficient. The B®)(N) coeffi-
cients for N > 2, however, decrease monotonically. This
motivates us to fit the B (N) coefficients with N = 2—6
and oo by a polynomial with jy,.x = 4. The fit coeflicients
are reported in Table III. It can be seen that the coef-
ficient b(()g) agrees with the coefficient B(®)(c0) reported
in Table I. We believe that our fit provides an accurate
description of the 6 < N < oo coefficients.

c(N)

| I T I |

FIG. 2: (Color online) Symbols show the coefficients (a)
CH(N), (b) CH(N), and (c) C®(N) as a function of 1/N.
The solid lines show our fits with jmax = 6, 3, and 3, respec-
tively.

TABLE IV: Fitting coefficients cgk) for K = 1,2, and 3. For
k=1,2, and 3, we used jmax = 6,3, and 3, respectively.

k=1 k=2 k=3
j=0[—2.66667 0.00000 21.05520
j=1|-1.40749 7.06739 8.80915
j=2| 1.78704 —5.70589 —5.07455
j=3|—4.21746 2.49453 9.51090
j=4| 7.33094
j=5|—7.13604
j=6| 2.76476

Symbols in Figs. 2(a)-2(c) show the C*)(N) coeffi-
cients with & = 1,2, and 3, respectively, as a function of
1/N. Our fits to these data (see Table II) using poly-
nomials with jnax = 6,3, and 3 are shown by solid lines
(see Table IV for the coefficients).

The discussion so far has focused on the coefficients
B®)(N)and C®)(N) with k = 1—3. It is, in general, not
feasible to extend the perturbative calculations to higher
k for arbitrary N. However, for N = 1 and oo, the co-
efficients with larger k£ can be obtained readily. We find
that |B*)(1)| decreases monotonically with increasing k
(we checked this for k& < 50). The |C*)(1)| coefficient



increases monotonically with increasing k for k < 37; for
k > 37, we observe small non-monotonic oscillations. For
N = oo, we find that the B*)(c0) with k even and k > 4
vanish while the |B®*)(c0)| with & odd decrease mono-
tonically with increasing k (again, we checked this for
k < 50). Similarly, the C*)(c0) with &k even and k > 2
vanish while the |C*) (c0)| with k odd increase monoton-
ically with increasing k. Assuming a linear change with
1/N, interpolating between B*) (1) and B*) (c0) and be-
tween C*) (1) and C'®) (c0) for k > 3 yields estimates for
the finite N, N > 1, coefficients. While rough, these es-
timates might provide a reasonable means to connect the
weak and strong perturbation theory limits for quantities
such as those shown in Figs. 3 and 4.

We cannot accurately estimate the radius of conver-
gence of the small and large v expansions for 1 < N < co.
However, the fact that the radius of convergence is given
by v < 1.0745(2) x 27 for N = 1 and 7 < 27 for N = 00
for the small 7 series and by y~! < [1.0745(2) x 27]~!
for N =1 and y~! < (2m)7! for N = oo for the large
v series suggests two speculations: First, a convergent
series can be found for any v and N. Second, the radius
of convergence of the small «y series is approximately 2w
for all N. Figures 3 and 4, which are discussed in the
next section, are consistent with these speculations.

V. DISCUSSION

This section compares the perturbative energy expres-
sions with the numerically determined energies of the up-
per branch. Figure 1(b) shows that the scaled interaction
energy €(N)/Ewr(N) depends weakly on N if plotted as
a function of —Awane/g. The dependence on N is even
weaker when the interaction strength is parameterized by
~ as opposed to g. To benchmark the applicability of the
perturbative expressions we analyze the interaction en-
ergy of the system with IV majority atoms by comparing
with that of the (1,1) system. Specifically, we consider
the quantities p(N),

(N)/Ee (V)
PN = =) /e (1) (16)

and (N, N'),
v CO/Ee(N) W/ Be)

e(N")/Ep(N') — e(1)/Er (1)’

For finite N, p(N) reduces to €(N)/[Ne(1)], i.e., p(N)
tells one the interaction energy per particle, normalized
by the interaction energy of the (1,1) system. The quan-
tity §(N, N’) can alternatively be written as [p(N) —
11/[p(N") = 1].

Expanding Eq. (16) in the weakly-interacting (small )
regime, we find

p(N) = oS (N) + p (N )y + p8 (N )72 + O(47), (18)

11 (b)

P(3)

()

FIG. 3: (Color online) Solid lines show the quantity p(V)
as a function of —1/v for (a) N = 2, (b) N = 3, and (c)
N = oo, respectively. For comparison, dotted, dashed, and
dash-dotted lines show the perturbative results for p(IN) ac-
counting for terms up to order 4°, 4! and ~2, respectively,
in the weakly-interacting regime and accounting for terms
up to order v, v72 and v~ 3, respectively, in the strongly-
interacting regime.

where the coeflicients p,(cw) (N) are determined by the
BW(N) and B® (1) with [ < k + 1. Expanding Eq. (16)
in the strongly-interacting (large |y|) regime, we find

p(N) =14 p (N)y ™1+ pS (N)y 2 +
PN +0(0h,  (19)

where the coefficients p,(:) (N) are determined by the
CO(N) and CW(1) with I < k. Solid lines in Figs. 3(a)-
3(c) show the quantity p(N) for N = 2, 3, and oo, re-
spectively. The solid lines are obtained using the nu-
merical (2,1) and (3,1) energies and the semi-analytical
(1,1) and (0o,1) energies. For v — 0% (ie., for
—1/v = —o00), the quantity p(IN) approaches the con-
stant péw)(N) = BW(N)/BM(1) [see the horizontal dot-
ted lines in Figs. 3(a)-3(c)], which increases monotoni-
cally from 1.0607 to 1.1284 as N goes from 2 to co. This
portion of the interaction energy can be interpreted as the
mean-field contribution. Inclusion of the next order cor-
rection [the pgw) (N)~ term] and the next two corrections



[the plw) (N)~v and péw) (N)y? terms] yields the dashed
and dash-dotted lines in Figs. 3(a)-3(c). The dash-dotted
lines provide a fairly accurate description of the quantity
p(N) for —=1/v < —0.4. For |y| — oo, the leading-order
~v-dependent term [see the (non-horizontal) dotted lines
in Figs. 3(a)-3(c)] increases monotonically from 0.3725 to
0.8782 as N changes from 2 to co. Inclusion of the next-
order correction and the next two corrections yields the
dashed and dash-dotted lines in Figs. 3(a)-3(c). It can
be seen that the dash-dotted lines provide a fairly accu-
rate description of the quantity p(N) for —1/v 2 —0.15.
This value is close to the expected radius of convergence
of the interaction energy [recall, the radius of convergence
is 1/ = (1.0745 x 27)~! ~ 0.148 for the (1,1) system].
Combining the perturbative descriptions for small and
large |y|, the expansions provide a fairly accurate de-
scription of the interaction energy for the system with
N majority particles, normalized by that for the (1,1)
system, over a wide range of interaction strengths -y.

Expanding Eq. (17) in the weakly-interacting regime,
we find

(N, N') = 68 (N, N') 4 60 (N, N")y +
S (N, N2 +0(%),  (20)

where the coefficients 5,(€W)(N ,N') are determined by the
BW(N), BO(N"), and BV (1) with [ < k+1. Expanding
Eq. (17) in the strongly-interacting regime, we find

S(N,N') = 68(N, N") + 6% (N, N")y " +
SN, N W2+ 007, (21)

where the coefficients 5,(:)(]\] ,N') are determined by the
CO(N), CO(N"), and CD(1) with I < k+1. The quan-
tity (N, N') is shown by the solid line in Fig. 4(a) for
(N,N") = (2,00) and by dots in Figs. 4(b)-4(c) for (3, o)
and (2,3), respectively. We observe that the quantity
d(N, N’) changes only slightly as —1/v goes from —oo
to 0; this is particularly true for 6(2,3) [see Fig. 4(c)].
The limiting values [see the dotted lines in Figs. 4(a)-
4(c)] are given by 65" (N, N’) and 65 (N, N'), respec-
tively. Dashed lines include the next order correction in
the weakly- and strongly-interacting regimes, and dash-
dotted lines include the next two corrections. In the
weakly-interacting regime, the dash-dotted lines provide
a fairly good description of the quantity §(N, N’). In the
strongly-interacting regime, however, the validity regime
of the perturbative expressions is quite small. For §(2, 3),
e.g., the expansion coefficients are 5(()5)(2,3) = 0.7213,
5)(2,3) = 0.0694(3), and 657(2,3) = —2.31(12), where
the numbers in brackets denote the errorbars due to the
uncertainties of the second- and third-order perturbation
theory coefficients. The fact that |5§S)(2, 3)| > |5§S)(2, 3)]
is responsible for the turn-around of the dash-dotted line
for large positive v. We note that the errorbar of the
quantities 6(3, c0) and §(2, 3), obtained from the numer-
ical energies [see dots in Figs. 4(b)-4(c)], is too large in
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FIG. 4: (Color online) The quantity §(IN, N’) as a function of
—1/7. The solid line is for (a) N = 2 and N’ = oo and the
circles are for (b) N =3 and N' = co and (¢) N = 2and N’ =
3. In the large v regime, the uncertainty of the numerically
determined (3,1) energies leads to appreciable uncertainties
in §(2, 3) and (3, co) [see the errorbars in Figs. 4(b) and 4(c)].
For comparison, dotted, dashed, and dash-dotted lines show
the perturbative results for §(IN, N') accounting for terms up
to order 4%, 1, and 42, respectively, in the weakly-interacting,
small |y| regime and accounting for terms up to order ~
~v72, and 473, respectively, in the strongly-interacting, large
|v| regime.

the large v regime to meaningfully compare with the per-
turbative results.

VI. CONCLUSION

This paper considered the upper branch of a non-
interacting harmonically trapped one-dimensional Fermi
gas with a single impurity. Zero-range two-body contact
interactions with strength g were assumed between the
majority atoms and the impurity. This system consti-
tutes one of the simplest mesoscopic systems accessible
to experiment and theory. On the experimental side, it
has been demonstrated by the Heidelberg group that the
upper branch of the model Hamiltonian can be emulated
reliably using ultracold atoms [18, 19]. On the theory



side, various numerical and analytical techniques have
been applied [7, 11-17, 23-26]. This paper pursued a per-
turbative approach, which determined expansions of the
energy of the upper branch in the weakly- and strongly-
interacting regimes for various N. In the cases where
we were not able to obtain general N expressions for a
fixed order in the perturbative expansion, approximate
expressions applicable to all N were obtained through
fits. Through comparison with accurate numerical few-
body energies, the perturbative expressions were shown
to provide a satisfactory description for a wide range of
interaction strengths.

The main results of this work are: (i) We determined
an expansion for the energy of the upper branch of a
one-dimensional harmonically trapped Fermi gas with a
single impurity in the weakly-repulsive regime up to or-
der 43, applicable to any system size. (ii) We deter-
mined an expansion for the energy of the upper branch
in the strongly-interacting regime up to order y~3, ap-
plicable to any system size. While the idea to treat the
coupling strength 1/~ as a small parameter is not new,
our work provides an explicit demonstration that such

a program can be carried through explicitly beyond the
leading-order correction. (iii) The radii of convergence
of the series were reported for N = 1 and oo. (iv) The
behavior of the expansion coefficients in the series in v*
and 7% with k& > 3 was discussed. (v) The perturba-
tive expressions were benchmarked and found to provide
a reliable description over a wide range of interaction
strengths.

The results presented in this work can be used to cal-
culate perturbative expressions for the contact and other
observables. Moreover, the second- and third-order re-
sults in the vy~ ! series allow one to assess the applicability
regime of effective spin models [26, 34, 42].
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