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Thermal fluctuations and melting transitions for rotating single-component superfluids have been intensively
studied and are well understood. In contrast, the thermal effects on vortex states for two-component superfluids
with density-density interaction, which have a much richer variety of vortex ground states, have been much
less studied. Here, we investigate the thermal effects on vortex matter in superfluids with U(1)× U(1) broken
symmetries and intercomponent density-density interactions, as well as the case with a larger SU(2) broken
symmetry obtainable from the U(1) × U(1)-symmetric case by tuning scattering lengths. In the former case
we find that, in addition to first-order melting transitions, the system exhibits thermally driven phase transitions
between square and hexagonal lattices. Our main result, however, concerns the case where the condensate
exhibits SU(2)-symmetry, and where vortices are not topological. At finite temperature, the system exhibits
effects which do not have a counter-part in single component systems. Namely, it has a state where thermally
averaged quantities show no regular vortex lattice, yet the system retains superfluid coherence along the axis
of rotation. In such a state, the thermal fluctuations result in transitions between different (nearly)-degenerate
vortex states without undergoing a melting transition. Our results apply to multi-component Bose-Einstein
condensates, and we suggest how to experimentally detect some of these unusual effects in such systems.

PACS numbers: 67.25.dk, 67.60.Bc,67.85.Fg,67.85.Jk

I. INTRODUCTION

Bose-Einstein condensates (BECs) with a multicomponent
order parameter, and the topological defects such systems sup-
port, represent a topic of great current interest in condensed
matter physics.[1–15] Such multicomponent condensates may
be realized as mixtures of different atoms, mixtures of differ-
ent isotopes of an atom, or mixtures of different hyperfine spin
states of an atom. The interest in such condensate from a fun-
damental physics point of view, is mainly attributed to the fact
that one may tune various interaction parameters over a wide
range in a BEC. This enables the study of a variety of phys-
ical effects which are not easily observed in other superfluid
systems such as He3 and He4.

The behavior of a single-component BEC under rotation is
well known. The ground state is a hexagonal lattice of vortex
defects which melts to a vortex liquid via a first order phase
transition. This is well described by the London model, where
amplitude fluctuations may be ignored. Over the years, in
the context of studying vortex-lattice melting in high-Tc su-
perconductors, many works have confirmed this through nu-
merical Monte Carlo simulations for systems in the frozen
gauge, 3DXY and Villain approximations, [16–25] as well as
in the lowest-Landau-level approximation,[26] and by map-
ping it to a model of 2D bosons.[27] Single component con-
densates have been available experimentally for quite some
time[28, 29], and the hexagonal lattice ground state has been
verified.[30]

Condensates with two components of the order parameter
have also been studied extensively. Analytical works focus-
ing on determining the T = 0 ground states have demon-
strated a range of interesting possible lattice structures[5, 6,
10, 13, 14, 31] By varying the ratio between inter- and intra-
component couplings, the ground state lattice undergoes a
structural change from hexagonal symmetry through square

symmetry to double-core lattices and interwoven sheets of
vortices. Similar systems with three components have also
been studied.[15] Experimentally, spinor condensates have
been realized in two general classes of systems. The first
option is to use one species of atoms, usually rubidium,
and preparing it in two separate hyperfine spin states.[1, 2]
Vortices[3] and vortex lattices[7] have been realized in these
binary mixtures, where both hexagonal and square vortex lat-
tice states were observed. The other option is to mix conden-
sates of two different species of atoms.[4, 12] The use of Fesh-
bach resonances[32, 33] allows direct tuning of the scattering
lengths, and by extension the inter- and intra-component in-
teractions of multi-component condensates.[8, 9, 11]

In this paper, we consider a specific model of a two-
component BEC, which has the full range of fluctuations of
the order parameter field included, as well as intercompo-
nent density-density interactions. We consider the model with
U(1)×U(1)- and as SU(2)-symmetries. For the U(1)×U(1)
case, we find a succession of square and hexagonal vor-
tex ground state patterns as the intercomponent interaction
strength is varied, along with the possibility of thermal re-
construction from a square to a hexagonal vortex lattice as
temperature is reduced.

The SU(2)-symmetric case is interesting and experimen-
tally realizable. In this case U(1)-vortices are no longer topo-
logical, contrary to the U(1) × U(1)-symmetric case. In this
case, when fluctuation effects are included we find a highly
unusual vortex state where there is no sign of any vortex
lattice. Nonetheless, global phase coherence persists. This
state of vortex matter is a direct consequence of massless
amplitude-fluctuations in the order-parameter, when the bro-
ken symmetry of the system is SU(2). At the SU(2) point,
but at lower temperatures, we also observe dimerized vortex
ground state patterns.

The paper is organized as follows. The model and defini-
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tions of relevant quantities are presented in Section II. The
technical details of the Monte Carlo simulations are briefly
considered in Section III. In Section IV, the results are pre-
sented and discussed. In Section V, we discuss how to ex-
perimentally verify the results we find. Some technical de-
tails, and the investigation of the order of the melting transi-
tions with full amplitude distributions included, for the cases
N = 1 and N = 2, are relegated to appendices.

II. MODEL AND DEFINITIONS

In this section we present the model used in the paper, first
in a continuum description and then on a three-dimensional
cubic lattice appropriate for Monte Carlo simulations. The
relevant quantities for the discussion are also defined.

A. Continuum model

We consider a general Ginzburg-Landau(GL) model of a
N -component Bose-Einstein condensate, coupled to a uni-
form external field, which in the thermodynamical limit is de-
fined as

Z =

∫ N∏
i

Dψ′ie−βH , (1)

where

H =

∫
d3r

[
N∑
i=1

3∑
µ=1

~2

2mi

∣∣∣∣(∂µ − i
2π

Φ0
A′µ)ψ′i

∣∣∣∣2

+

N∑
i

α′i |ψ′i|
2

+

N∑
i,j=1

g′ij |ψ′i|
2 ∣∣ψ′j∣∣2

]
(2)

is the Hamiltonian. Here, the field A′µ formally appears as a
non-fluctuating gauge-field and parametrizes the angular ve-
locity of the system. The fields ψ′i are dimensionful complex
fields, i and j are indices running from 1 to N denoting the
component of the order parameter (a “color”-index), α′i and
g′ij are Ginzburg-Landau parameters, Φ0 = h/2e is the flux
quantum, and mi is the particle mass of species i. For mix-
tures consisting of different atoms or different isotopes of one
atom, the masses will depend on the index i, while for mix-
tures consisting of atoms in different hyperfine spin states, the
masses are independent of i. The inter- and intra-component
coupling parameters g′ij are related to real inter- and intra-
component scattering lengths, aij , in the following way

g′ii =
4π~2aii
mi

, (3)

g′ij =
8π~2aij
mij

, (i 6= j) (4)

where mij = mi mj/(mi + mj) is the reduced mass. In
this paper we focus on using BECs of homonuclear gases

with several components in different hyperfine states, hence
mi = m ∀ i. Inter-component drag in BEC mixtures have
been considered in previous works using Monte-Carlo simu-
lation (ignoring amplitude fluctuations), but we will not con-
sider this case here. [34–38]

We find it convenient for our purposes to rewrite (2) on
the following form, the details of which are relegated to Ap-
pendix A,

H =

∫
d3r

[
1

2
(DµΨ)†(DµΨ) + V (Ψ)

]
. (5)

Here, Ψ is an N -component spinor of dimensionless com-
plex fields, which consists of an amplitude and a phase, ψi =
|ψi| exp (iθi), Dµ = ∂µ − i 2π

Φ0
A′µ is the covariant derivative,

and summation over repeated spatial indices is implied. We
neglect, for simplicity, the presence of a trap and centrifugal
part of the potential. This is equivalent to the number of vor-
tices induced into the Bose-Einstein condensate by rotation.
We only consider the case where the vector potential is ap-
plied to each component of Ψ, as follows from the fact that
the masses are independent of species-index i.

We have studied this model in detail withN = 2, where we
write the potential on the form

V (Ψ) = η(|Ψ|2 − 1)2 + ω(Ψ†σzΨ)2. (6)

This formulation is more relevant for our discussion, as it im-
mediately highlights the symmetry of Ψ, as well as the soft
constraints applied to it. The details of the reparametrization
is shown in Appendix A.

Note that Eq. 6 may also be rewritten on the form (correct
up to an additive constant term)

V = (η + ω)(|ψ1|4 + |ψ2|4) + 2(η − ω) |ψ1|2 |ψ2|2 . (7)

Comparing with Eq. 2, we have g11 = g22 ≡ g = η + ω and
g12 = η − ω. The model features repulsive inter-component
interactions provided η − ω > 0, and this is the case we will
mainly focus on. We will however briefly touch upon the
case η − ω < 0 corresponding to attractive inter-component
density-density interaction, which leads to ground states with
overlapping vortices in components 1 and 2. Normalizabil-
ity of the individual order parameter components, equiva-
lently boundedness from below of the free energy, requires
that η + ω > 0. Thus, while ω > η makes physical sense,
ω < −η does not. In this paper, we assume η > 0 and ω ≥ 0.

Two-component BECs feature considerably richer physics
than a single-component BEC. Since the gauge-field
parametrizing the rotation of the system is non-fluctuating,
there is no gauge-field-induced current-current interaction be-
tween the two condensates (unlike in multi-component su-
perconductors). The only manner in which the two super-
fluid condensates interact is via the inter-component density-
density interaction 2(η − ω)|ψ1|2|ψ2|2. In the limit where
the amplitudes of each individual component are completely
frozen and uniform throughout the system, one recovers the
physics of two decoupled 3DXY models, with a global U(1)×
U(1) symmetry. The density-density interaction between ψ1
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and ψ2 leads to interactions between the topological defects
excited in each component. As a result, a first order melt-
ing of two decoupled hexagonal lattices is not the only possi-
ble phenomenon that could take place. Previous experiments
and numerical studies have reported a structural change of the
ground state from hexagonal to square lattice of vortices as
the effective inter-component coupling is increased.[5–7] This
corresponds to increasing the ratio η/ω in our case. As we will
see below, other unusual phenomena can also occur, notably
when thermal fluctuations are included.

One special case of the model deserves some extra atten-
tion. If one takes the limit ω → 0 in Eq. (6) the symmetry
of the model is expanded to a global SU(2) symmetry. One
may then shift densities from one component to the other with
impunity, as long as |ψ1|2 + |ψ2|2 is left unchanged. This ef-
fectively leads to massless amplitude-fluctuations in the com-
ponents of the order parameter. Therefore, it is possible to
unwind a 2π phase winding in one component by letting the
amplitude of the same component vanish. The introduction
of this higher symmetry leads to very different vortex ground
states than what are found in the U(1)×U(1)-symmetric case
with ω 6= 0.

B. Separation of variables

In multicomponent GL-models it is often possible to sepa-
rate the initial fields in order to identify the other interesting
components of the model. This is of great importance in an
SU(2) model, as the thermal vortices of each separate com-
ponent are not topological objects. However, other more com-
plex objects, often combinations of vortices of different colors
might be of interest. In general, it is possible to rewrite an N -
component model coupled to a gauge field, fluctuating or not,
in terms of one mode coupled to the field and N − 1 neutral
modes.[39, 40] For a more general discussion of charged and
neutral modes in the presence of amplitude fluctuations see
Refs. 41 and 42. Considering only the kinetic part of the two
component Hamiltionian, Hk, we have the following expres-
sion

Hk =
1

2 |Ψ|2
∣∣∣ψ∗1∂µψ1 + ψ∗2∂µψ2 − iAµ |Ψ|2

∣∣∣2
+

1

2 |Ψ|2
|ψ1∂µψ2 − ψ2∂µψ1|2 . (8)

Hence, the first mode couples to the applied rotation, while the
second does not. This corresponds to the phase combinations
θ1 + θ2 and θ1 − θ2, respectively.

C. Lattice regularization

In order to perform simulations of the continuum model,
we define the field Ψ on a discrete set of coordinates, i.e
Ψ(r) → Ψr, where r ∈ (ix̂ + jŷ + kẑ|i, j, k = 1, . . . , L).
Here, L is the linear size in all dimensions, the system size

is V = L3. We use periodic boundary conditions in all di-
rections. By replacing the differential operator by a gauge
invariant forward difference

(
∂

∂rµ
−iAµ(r)

)
Ψ(r)→ 1

a

(
Ψr+aµ̂e−i 2π

Φ0
aA′

µ,r−Ψr

)
, (9)

and introducing real phases and amplitudes ψr,i = |ψr,i| eiθr,i
we can rewrite the Hamiltonian.

H =
∑
r,µ̂
i

∣∣ψr+µ̂,i

∣∣∣∣ψr,i

∣∣ cos(θr+µ̂,i − θr,i −Aµ,r)

+
∑
r

V (Ψr). (10)

The lattice spacing is chosen so that it is smaller than the
relevant length scale of variations of the amplitudes. A di-
mensionless vector potential, Aµ, has also been introduced.
See Appendix A for details. We denote the argument of the
cosine as χµr,i, as a shorthand.

D. Observables

An important and accessible quantity when exploring phase
transitions is the specific heat of the system,

cV = β2 〈H2〉 − 〈H〉2

L3
. (11)

While crossing a first order transition there is some amount of
latent heat in the system, manifesting itself as a delta-function
peak of the specific heat in the thermodynamic limit. On the
lattice one expects to see a sharp peak, or anomaly, at the tran-
sition. This is used to characterize the transition as first order.

A useful measure of the global phase coherence of the sys-
tem, is the helicity modulus, which is proportional to the su-
perfluid density. It serves as a probe of the superfluid to nor-
mal fluid transition. In the disordered phase, the moduli in all
directions are zero, characterizing an isotropic normal-fluid
phase. Moving to the ordered phase, all moduli evolve to a
finite value. The cause of this is a vortex loop blowout. If we
turn on the external field we still have zero coherence in all
directions in the disordered phase. In the ordered phase, how-
ever, the helicity modulus along the direction of the applied
rotation jumps to the finite value through a first order tran-
sition. The value of the transverse moduli will remain zero.
Formally, the helicity modulus is defined as a derivative of the
free energy with respect to a general, infinitesimal phase twist
along rµ,[43]. That is, we perform the replacement

θr,i → θ′r,i = θr,i − biδµrµ (12)

in the free energy, and calculate

Υµ,(b1,b2) =
∂2F [θ′]

∂δ2
µ

∣∣∣∣
δµ=0

. (13)
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Here, b = (b1, b2) represents some combination of the phases
θ1 and θ2, b1θ1 + b2θ2. To probe the individual moduli, bi is
chosen as bi = (1, 0) or bi = (0, 1). The composite, phase
sum variable is represented by the choice bi = (1, 1), while
bi = (1,−1) is the phase difference. Generally, for a two
component model, the helicity modulus can be written as the
sum of two indivudual moduli, and a cross term,[36, 40]

Υµ,(b1,b2) = b21Υµ,(1,0) + b22Υµ,(0,1) + 2b1b2Υµ,12. (14)

For the model considered in this paper, the individual helicity
moduli can be written as

〈Υµ,i〉 =
1

V

[〈∑
r

ψriψr+µ̂,i cos(χµr,i)

〉

− β
〈(∑

r

ψr,iψr+µ̂,i sin(χµr,i)

)2〉]
, (15)

while the mixed term has the form

〈Υµ,12〉 = −β
〈(∑

r

|ψr,1| |ψr+µ̂,1| sin(χµr,1)

)
(∑

r

|ψr,2| |ψr+µ̂,2| sin(χµr,2)

)〉
. (16)

We denote the helicity modulus of the phase sum Υµ,(1,1) as
Υ+
µ as a short hand.
The structure factor, Si(q⊥), can be used to determine the

underlying symmetry of the vortex lattice. Square and hexag-
onal vortex structures will manifest themselves as four or six
sharp Bragg peaks in reciprocal space. In a vortex liquid
phase one expects a completely isotropic structure factor. The
structurfactor is defined as the Fourier transform of the longi-
tudinally averaged vortex density, 〈ni(r⊥)〉, which is subse-
quently thermally averaged.

Si(q⊥) =
1

LxLyf

〈∣∣∣∣∑
r⊥

ni(r⊥)e−ir⊥·q⊥

∣∣∣∣〉. (17)

Here ni(r⊥) is the denisity of vortices of color i averaged over
the z-direction

ni(r⊥) =
1

Lz

∑
z

ni(r⊥, z), (18)

and r⊥ is r projected onto a layer of the system with a given
z-coordinate. The vortex density is calculated by traversing
each plaquette of the lattice, adding the factor χµi,r of each
link. Each time we have to add (or subtract) a factor of 2π
in order to bring this sum back into the primary interval of
(−π, π] a vortex of color i and charge +1(-1) is added to this
plaquette.

In addition to the structure factor, we look at thermally av-
eraged vortex densities, 〈ni(r⊥)〉, as well as thermally and
longitudinally averaged amplitude densities, 〈|ψi|2 (r⊥)〉, de-
fined similarly to Eq. (18),

|ψi|2 (r⊥) =
1

Lz

∑
z

|ψi|2 (r⊥, z). (19)

This provides an overview of the real space configuration of
the system.

When including amplitude fluctuations, which, when dis-
regarding the potential term, are unbounded from above, it
is of great importance to make sure all energetically allowed
configurations are included. To this end, we measured the
probability distribution of |ψi|2, P (|ψi|2) during the simula-
tions by making a histogram of all field configurations at each
measure step, and normalizing its underlying area to unity in
post-processing.

The uniform rotation applied to the condensates is imple-
mented in the Landau gauge.

A = (0, 2πfx, 0), (20)

where f is the density of vortices in a single layer. Note that
this implies a constraintL·f ∈ (1, 2, 3, . . .) due to the periodic
boundary conditions. When probing a first order melting tran-
sition, it is important to choose a filling fraction large enough
that an anomaly in the specific heat is detectable. However,
if the filling fraction is too large, one may transition directly
from a vortex liquid into a pinned solid, completely missing
the floating solid phase of interest. This scenario is charac-
terized by a sharp jump in not only the longitudinal helicity
modulus, but also the transverse.[44, 45] One must therefore
chose f small enough, to assure that the vortex line lattice is
in a floating solid phase when it melts.

III. DETAILS OF THE MONTE CARLO SIMULATIONS

The simulations were performed using the Metropolis-
Hastings algorithm.[46, 47] Phase angles were defined as
θ ∈ (−π, π], while amplitudes as |ψ|2 ∈ (0, 1 + δψ]. The
choice of δψ will be discussed further, as it is important to
ensure inclusion of the full spectrum of fluctuations. Both
the phases and the amplitudes were discretized to allow the
use tables for trigonometric and square root functions in order
to speed up computations. We typically simulated systems
of size L3 = 643, with sizes up to L3 = 1283 used to re-
solve anomalies in the specific heat. We used 106 Monte Carlo
sweeps per inverse temperature step, and up to 107 close to the
transition. 105 additional sweeps were typically used to ther-
malize the system. In the simulations, we examined time se-
ries of the internal energies taken during both the thermaliza-
tion runs and the measurements runs to make sure the simula-
tion converged. One sweep consists of picking a new random
configuration for each of the four field variables separately in
succession, at each lattice site. Measurements were usually
performed with a period of 100 sweeps, in order to avoid cor-
relations. Ferrenberg-Swendsen multi-histogram reweighting
was used to improve statistics around simulated data points,
and jackknife estimates of the errors are used.
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FIG. 1: (Color online) The probability distribution of the
amplitudes, P(|ψi|2), for N = 2, at inverse temperature

β = 1.20, f = 1/32, η = 2, with ω-values from 0 to 3. The
distribution is completely symmetric in i.

Fig. 1 shows the probability distribution of the amplitudes,
P(|ψi|2). We get a peaked distribution for finite ω. On the
other hand, when ω = 0, this is no longer the case. The distri-
bution now approaches a uniform distribution on the interval
(0, 1]. A CP 1 constrained model would behave in exactly
this way. In this case the parameter η serves to control the
approach to uniformity, η → ∞ corresponding to the CP 1

limit.
With these initial simulation runs as a basis, we choose δψ

appropriately in order to capture the entire spectrum of fluctu-
ations.

IV. RESULTS OF THE MONTE CARLO SIMULATIONS

In this section, the η − ω phase diagram of ground states
is explored by slow cooling and examination of vortex- and
amplitude-densities, as well as structure factors. In addition
to the expected hexagonal and square vortex ground states,
several interesting regions of the parameter space is inves-
tigated further. A special case between the square and the
hexagonal region of the phase diagram is discovered, where
the lattice first forms a square structure, but thermally recon-
structs into a hexagonal lattice as the temperature is decreased
further. Furthermore, we consider in detail the ω = 0 line
in the phase diagram, where we discover new vortex fluctua-
tion effects. For ω = 0, the system features an SU(2) sym-
metry. An unusual feature is an interesting state with global
phase coherence, but without a regular vortex lattice. In this
case ordinary vortices do not have topological character due to
SU(2) symmetry. Additionally, we obtain several interesting
vortex structures characterized by dimer-like configurations at
lower temperatures. Here, we observe honeycomb lattices, or
double-core lattices, and stripe configurations, consistent with
previous T = 0 results.[6]

We also examine the melting transitions of the square and
hexagonal lattices with the full amplitude distribution in-
cluded, as well as the melting of the hexagonal lattice in a
model with N = 1 as a benchmark of the method. To classify
the transition, we look at thermal averages of the specific heat,
helicity moduli, and vortex structure factors. These results are
presented in Appendices B and C.

A. The η − ω phase diagram

Adding a second matter field and inter-component density-
density interactions results in a considerably richer set of
ground states than the single-component case. In the absence
of a fluctuating part of the rotational ”gauge-field” there will
be no gauge-field-mediated inter-component current-current
interactions. For η − ω < 0, (η, ω) > 0) the effective inter-
component density-density coupling η−ω is negative and the
ground state of each color of condensate has a hexagonal sym-
metry, as shown in Fig. 2(a). If, on the other hand η − ω > 0,
the inter-component coupling becomes positive. Now, for suf-
ficiently large ratios η/ω, the vortices arrange themselves into
two inter-penetrating square lattices, shown in Fig. 2(b). The
value of the ratio η/ω for which the lattice reconstructs de-
pends on the strength of the rotation, f . If we neglect fluctu-
ations, η − ω < 0 is expected to result in a hexagonal lattice,
while η − ω > 0 leads to a square lattice for sufficiently large
η/ω.

The physics of the reconstruction of the lattice can be ex-
plained by modulations of the amplitude fields. The existence
of static periodic amplitude-modulations (density-variations)
is due to the presence of vortices. Without vortices (f = 0)
and ω > 0, the ground state is one where both amplitudes are
equal and smooth. Vortices in one component tend to suppress
locally the corresponding amplitude, which in turn means that
the term η(|ψ1|2 + |ψ2|2 − 1)2 enhances the amplitude of
the other component. At small ω, i.e. large η − ω there is
a strong tendency to form a square density lattice due to this
intercomponent density-density interaction. Conversely, if ω
is large enough compared to η, the density-density interac-
tion is not strong enough to overcome the isotropic current-
current interactions between same-species vortices. In other
words if the current-current interactions dominate the inter-
species density-density interactions, a hexagonal lattice is en-
ergetically favoured over a square lattice, and vice versa.
Note that similarly a square vortex lattice forms in two-
component London models with dissipationless drag when
there are competing inter- and intra-species current-current
vortex interaction.[34, 35]

The Figs. 3(a) and 3(b) show the phase diagrams for filling
fractions f = 1/32 and f = 1/64, respectively. The sep-
aration line is approximate and drawn from several separate
simulations.

To clarify what is going in Figs. 3(a) and 3(b), we refer to
Figs. 11 and 12 in Appendix D. Here, we show tableaux to
illustrate in more detail how the density- and vortex lattices
reconstruct at a temperature well below any melting tempera-
tures of the vortex (and density) lattices, as the density-density
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FIG. 2: (Color online) Representative configurations of the
two main ordered phases in the U(1)×U(1) region.

Subfigure (a) shows a square structure at (η, ω) = (5.0, 0.5),
while subfigure (b) illustrates the hexagonal structure at

(η, ω) = (5.0, 5.0). Each subfigure shows vortex densities,
〈ni(r⊥〉, in the left column, amplitude densities, 〈|ψi|2 (r⊥〉,

in the right column, and structurue factors (insets) of each
component as indicated. The induced vortex density and
inverse temperature are fixed to f = 1/64 and β = 1.5 in

both subfigures.

interaction 2(η − ω)|ψ1|2|ψ2|2 is varied. Specifically, we fix
the interaction parameter η, as well as the inverse tempera-
ture β and filling fraction f , while increasing the parameter
ω. This reduces the effective inter-component density-density
interaction which favors a square lattice, until the lattice re-
constructs from square to hexagonal symmetry.

When η = ω, it is seen from Eq. (7) that the two compo-
nents of the order parameter decouple. For ω < η the inter-
component density-density interaction is repulsive, while it is
attractive for ω > η. For ω < η, the vortex lattices (and the

Dimer phase
0
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ω

η
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III

0

0.5

1

0 1 2 3 4 5

ω

η

Dimer phase
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III

FIG. 3: (Color online) The η − ω phase diagram of the
ground states for f = 1/32 (top) and f = 1/64 (bottom).

The simulations were performed for a range of (η, ω) pairs to
determine the zero temperature ground state. Approximate

demarcation lines for the phase boundaries separating
hexagonal lattices, square lattices, and dimerized phases,
were drawn from these results (solid lines). I denotes the

phase where the hexagonal vortex lattices in the two
components are cocentric, II denotes the case where the
hexagonal lattices are intercalated, while III denotes the
square lattice phase. The dotted line is the line ω = η at

which the intercomponent density-density interaction
2(η − ω)|ψ1|2|ψ2|2 changes sign. See also Figs. 11 and 12 in

Appendix D.

density lattices) are intercalated, while for ω > η they are co-
centric. In Fig. 3a and Fig. 3b we illustrate the demarcation
line between the two situations as a dotted line in the hexago-
nal phase.

Beyond the square and hexagonal lattices we also observe
dimer configurations of vortices for ω = 0, which will be
discussed further in its own section. The calculations are con-
sistent with the ground states obtained in Refs. 6 and 10.
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B. Thermally induced reconstruction of vortex lattices

Now we move to discussion of the effects of thermal fluc-
tuations in these systems. Fig. 4 shows the vortex-densities in
component 1 in reciprocal space, as β is increased, i.e as tem-
perature is reduced, in a temperature range below where the
lattice melts. The actual melting of the two component lattice
is discussed in Section C. We fix the filling fraction f = 1/64,
as well as the interaction parameters η = 2, ω = 0.5.

For the highest temperatures shown in Fig. 4 the vortex lat-
tice is square. Upon cooling the system, the vortex lattice re-
constructs into a hexagonal lattice, consistent with the ground
state phase-diagram of Fig. 3(b). The density-density interac-
tion term 2(η−ω)|ψ1|2|ψ2|2 aids formation of a square lattice
at higher temperatures, while the current-current interactions
drives the lattice towards a hexagonal configuration when it
is cooled further. This means that the free energy per vortex
of the square lattice, which is lower than that of the hexag-
onal lattice at β = 0.90, has become larger than that of the
hexagonal lattice when β = 1.50. This is essentially the com-
bination of an energetic and an entropic effect. We observe
this reconstruction not too far away from the demarcation line
separating a square and a hexagonal vortex lattice. Deep in-
side the hexagonal phase in Fig. 3(b), we observe the vortex
lattice to melt directly from a hexagonal lattice to a vortex liq-
uid. We note that intermediate entropically-stabilized vortex
lattice phases were of a subject of interesting investigation in
the different system of U(1)×U(1) superconductors [48], the
vortex interaction form is however different in our case.

C. SU(2) vortex states

The limit ω → 0 is quite different from the U(1) × U(1)-
symmetric case ω 6= 0. From Eq. (6), it is seen that the
Hamiltonian is invariant under SU(2) transformations of Ψ.
Vortices, which are topological in a U(1) × U(1) model, are
no longer topological in the SU(2) case. One may unwind a
2π phase winding by entirely transferring density of one com-
ponent to the other, which may be done at zero energy cost.

Fig. 5 shows one of the main results of our paper. These
are simulations with SU(2) symmetry, i.e. ω = 0, as well
as η = 5.0 and f = 1/64. The top panel show the phase
stiffness associated with the phase sum, Υ+

µ . This is the phys-
ically relevant phase variable in this case, as it couples to the
rotation.

We observe that the stiffness along the z-direction becomes
finite at an inverse temperature, β ∼ 0.9. This is what one
would expect when a vortex lattice forms. However, the bot-
tom panel, which shows the vortex density of component one
at β = 0.94, shows no apparent signs of vortex ordering.
Hence, we have an unusual situation. There is a relatively
large β-range where we have a finite z-directed helicity mod-
ulus of the phase sum, but no apparent ordering of induced
vortices. A finite helicity modulus generally means that there
are straight vortex lines with very little transverse fluctuations
threading the entire system along the direction in question. In
the U(1) picture this corresponds to a regular vortex lattice.
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FIG. 4: (Color online) Thermally induced reconstruction
from a square vortex lattice in either of the components at
η = 2, ω = 0.5, to a hexagonal vortex lattice, as β is

increased. Here, f = 1/64. Subfigures (a)-(f) show inverse
temperatures β = {0.80, 0.90, 1.20, 1.30, 1.34, 1.38},

respectively Each subfigure shows S1(q⊥) only, S2(q⊥) is
identical. The physical reason for the reconstruction
originates with the inter-component density-density

interaction term 2(η − ω)|ψ1|2|ψ2|2), and is explained in
detail in the text.

For an SU(2)-condensate, this is no longer the case. Large
relative amplitude fluctuations can occur since they have zero
energy cost in the ground state as the energy is no longer min-
imized by a preferential value of |ψ1|2 − |ψ2|2. This results
in many (nearly)-degenerate vortex states between which the
system can fluctuate, thus greatly simplifying the effort of
moving an entire, almost straight, vortex line. We are left with
a phase where we have coherence along the z-direction, but
no regular vortex lattice appears in thermal averages. Nearly
straight vortex lines will shift between a large number of de-
generate, or nearly degenerate, states at a time scale shorter
than a typical Monte-Carlo run.

Fig. 5(b) shows some inhomogeneities of the vortex den-
sities, exemplifying that this is not an ordinary vortex liq-
uid with segments of vortex lines executing transverse me-
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FIG. 5: (Color online) Illustration of the observed state with
coherence along the direction of the rotation axis without a
regular vortex lattice, seen only with SU(2) symmetry. The
parameters used are ω = 0.0, λ = 5, and f = 1/64. The top
panel shows the helicity modulus of the phase sum, Υ+

µ . The
two bottom panels show the vortex densities, n1(r⊥), at

β = 0.94, where the z-directed modulus is clearly finite. The
bottom left and bottom right panel are taken from simulations

using 106 and 107 Monte-Carlo sweeps, respectively. No
apparent vortex line structure is seen here, and by increasing

the number of Monte-Carlo sweeps the variations of the
vortex density is smoothed out further. Note how the value of
the average vortex density seems to converge towards 1/64.

anderings along their direction, which would yield zero helic-
ity modulus along the direction of the field-induced vortices.
Rather, what we have is a superposition of many lattice-like
states of nearly straight vortex lines, where the fluctuations
are largely collective excitations of entire nearly straight lines,
rather than fluctuations of smaller segments of lines.

We emphasize again that these collective excitations orig-
inate with large amplitude fluctuations due to the SU(2)-
softness of the amplitudes of the components of the superfluid
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FIG. 6: (Color online) Two examples of SU(2) vortex
configurations from a single simulation, for two different

inverse temperatures. The parameters η, f , and ω are fixed in
each subfigure, at η = 1.0, ω = 0.0, and f = 1/64.

Subfigure (a) shows β = 0.84, while subfigure (b) shows
β = 1.50. Each subfigure shows vortex densities, 〈ni(r⊥〉, in
the left column, amplitude densities, 〈|ψi|2 (r⊥〉, in the right
column, and structure factors (insets) of each component as
indicated. This illustrates the degeneracy of the vortex line
lattice in the isotropic limit, as the configurations evolve

when β is varied. See appendix D for more details.

order parameter, rather than with phase fluctuations. Increas-
ing the number of Monte-Carlo sweeps by an order of magni-
tude smooths these variations out (without noticably altering
the value of Υ+

z ), as seen in the right panel of Fig. 5(b). Note
how the average value of the vortex density seems to converge
towards 1/64. This is what we expect for a vortex lattice or
liquid in a U(1) × U(1) symmetric model, as the density of
thermal vortices will average to zero, and f is the average flux
density per plaquette.
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As the system is cooled further, the movements of large vor-
tex line cease, and a regular vortex lattice appears. However,
some degeneracy must still be present, as the exact pattern
formed by the lattice is distinctively different between simu-
lations (keeping all parameters equal). The lattice also has a
tendency to shift between configurations as the temperature
is varied, below the temperature of initial vortex lattice for-
mation. We observe two distinct classes of vortex states, illus-
trated in Fig. 6. The two are stripes (Fig. 6(a)) and honeycomb
lattices (Fig. 6(b)), both of which are seen in Ref. 6. Note that
these vortex densities are taken from a single simulation, after
the lattice has formed. Within the accuracy of our simulations
the obtained states are not metastable. The evidence of this
is obtained by performing several independent runs from dif-
ferent initial configurations. Again, we refer to Appendix D,
where Fig. 13 illustrates the degeneracy in the vortex line lat-
tices obtained in the isotropic limit in further detail.

V. EXPERIMENTAL CONSIDERATIONS

Hexagonal and square lattices have already been observed
in binary condensates of rubidium. [7] However, an SU(2)
condensate has not been realized experimentally. In this sec-
tion, we briefly outline under what circumstances an observa-
tion of an SU(2) vortex state may be feasible.

In order to experimentally realize SU(2) conditions, one
requires a two-component BEC, where both intra- and inter-
component interactions are equal. As we have seen, the SU(2)
physics crucially depends on this, since even minor devia-
tions from this condition immediately yield U(1) × U(1) or
phase separation physics. This corresponds to ω = 0 in our
parametrization. Intra- and inter-component density-density
interactions are given in terms of scattering lengths. While
tuning of these in an experiment is possible with Feshbach
resonances, it may still be a challenge to tune two scatter-
ing lengths independently to be equal a third, to arrive at the
SU(2) point. From what is known for scattering lengths of
real systems, it appears that a mixture of two species of the
same system, but in different hyperfine states, lend themselves
more readily to a realization of a SU(2) condensate than mix-
ture of different atoms or mixtures of different isotopes of the
same atom. This is so, since in the former case, the relevant
scattering lengths typically a priori are much more similar to
each other than what they are in more heterogenous mixtures.

One promising candidate therefore appears to be a con-
densate of 87Rb prepared in the two hyperfine states |F =
1,mf = 1〉 ≡ |1〉 and |F = 2,mf = −1〉 ≡ |2〉. In this
system, the three relevant s-wave scattering lengths already
have values close to the point of interest, a11 = 100.4aB ,
a22 = 95.00aB , and a12 = 97.66aB , where aB is the Bohr
radius. [2, 49] Ref. 11 reports on a magnetic Feshbach res-
onance at a field of approximately 9.1 Gauss, where con-
trol of a12 of the order of 10aB is possible. Additionally,
Ref. 50 reports on an optical Feshbach resonance of the state
|F = 1,mF = −1〉, able to tune the intracomponent scat-
tering length, using two Raman lasers, with detuning pa-
rameters approximately given by ∆1 = 2π × 75MHz and

∆2 = 2π × 20MHz. Here, varying ∆2 tunes the value of the
scattering length around the Feshbach resonance, while vary-
ing ∆1 changes the width. Hence, greater control of the res-
onance is possible with an optical Feshbach-resonance com-
pared to a magnetic one. Presumably, there should exist opti-
cal Feshbach resonances able to tune the scattering length of
either the |1〉 or the |2〉 state, for instance the one reported to
exist at 1007G for the |1〉 state. [51] This resonance should be
far enough away from the inter-component resonance at 9.1G
to not cause any interference.

This suggests one possible setup. Namely, prepare a two-
component condensate of 87Rb in the |1〉 and |2〉 states under
rotation, and tune a12 to a22 using a magnetic field. Then,
tune a11 to the same value using optical techniques, while
taking time-of-flight images of the condensate. The predic-
tion is that as the system is tuned through the optical Feshbach
resonance, one should observe a hexagonal composite vortex
lattice at sub-resonance frequencies, the discussed above non-
unique vortex ordering pattern at a frequency where all scat-
tering lengths are equal, close to the optical Feshbach reso-
nance, and finally the reappearance of a hexagonal vortex lat-
tice at frequencies above the frequency where all lengths are
equal Fig. 6. The observation of a featureless rotating conden-
sate would be a direct manifestation of the loss of topological
character of U(1)-vortices in the SU(2)-symmetric case. It
would be interesting to study dynamics of vortex lattice in this
case with methods like those used in [52]. For other discus-
sions of SU(N) models in cold atoms see Refs. 53 and 54.

In actual experiments, a magnetic trap is used to confine
the condensate in a given lateral region. The effect of this on
thermal fluctuations in vortex matter has been studied in de-
tail in previous theoretical works for the one-component case,
without amplitude fluctuations [55, 56]. The effect of the trap
is to yield a maximum overall condensate density at the cen-
ter of the trap, while depleting it towards the edge of the trap.
As a result, the lattice melts easier near the edge of the trap.
As can be inferred from the work on single-component melt-
ing [55, 56], the results of the present paper, where no inho-
mogeneity due to a magnetic trap has been accounted for, is
therefore most relevant to the region close to the center of the
trap.

VI. CONCLUSIONS

In this paper, we have investigated a two-component
U(1) × U(1) and SU(2) Bose-Einstein condensate with
density-density interaction under rotation at finite tempera-
ture, thereby extending previous works which calculated the
zero-temperature ground state numerically. In the U(1)×U(1)
case we report that thermal fluctuations can lead to a phase
transition between hexagonal and square vortex lattices with
increased temperature.

In the isotropic, SU(2), limit, we have observed a new inter-
mediate state of global phase coherence without an accompa-
nying vortex lattice in the thermally averaged measurements.
In addition, we observe a variety of dimerized vortex states,
such as dimerized stripes and honeycomb-like lattices, which
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exist for a wide range of temperature. These lattices could
be observed in binary Bose-Einstein in two separate hyperfine
states, by precisely tuning the inter- and intra-component scat-
tering lengths to the SU(2) point through the use of Feshbach
resonances.
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Appendix A: Rewriting the general Hamiltionian

Here we present the details of rewriting Eq. 2 into Eq.5,
which is more suited for our purposes. We repeat the starting
point here for convenience.

H =

∫
d3r

[
N∑
i=1

3∑
µ=1

~2

2mi

∣∣∣∣(∂µ − i
2π

Φ0
A′µ)ψ′i

∣∣∣∣2

+

N∑
i

α′i |ψ′i|
2

+

N∑
i,j=1

g′ij |ψ′i|
2 ∣∣ψ′j∣∣2

]
(A1)

First, we scale the field variables and Ginzburg-Landau pa-
rameters, to obtain some dimensionless quantities.

α′i = α0αi (A2)
g′ij = g0gij (A3)

|ψ′i| =
√
α0

g0
|ψi| (A4)

(A5)

This gives us a new Hamiltonian

H =
α2

0

g0

∫
d3r

[
N∑
i=1

3∑
µ=1

~2

2miα0

∣∣∣∣(∂µ − i
Φ0

2π
A′µ)ψi

∣∣∣∣2

+

N∑
i

αi |ψi|2 +

N∑
i,j=1

gij |ψi|2 |ψj |2
]
,

(A6)

which on the lattice reads

H =
α2

0a
3

g0

∑
r

[
N∑
i=1

3∑
µ=1

~2

miα0a2

×
(∣∣ψr,i

∣∣2 − ∣∣ψr+µ̂,i

∣∣∣∣ψr,i

∣∣ cos(θr+µ̂,i − θr,i −Aµ,r)
)

+

N∑
i

αi |ψr,i|2 +

N∑
i,j=1

gij |ψr,i|2 |ψr,j |2
]
, (A7)

where a is the lattice constant, and we have introduced

Aµ =
2π

Φ0
aA′µ. (A8)

Next, we specialize to the case N = 2, α1 = α2,
g11 = g22 ≡ g, m1 = m2, and define a2 to be equal to
~2/mα0, which sets our length scale. Note that it should not
be confused with the coherence length in the multi-component
case without intercomponent density-density interaction. For
the definition of coherence lengths in the presence of multi-
ple components and inter-component density-density interac-
tions, see Ref. 57 and 58. The energy scale is defined as J0 as
follows

J0 =
α2

0a
3

g0
. (A9)

The coupling parameters η and ω used in this paper are de-
fined by comparing the potential term of Eq. (A7) to the
form where the soft constraints |ψ1|2 + |ψ2|2 = 1 and
|ψ1|2 − |ψ2|2 = 0 are implemented. Thus, we have

V (Ψ) = η(|ψ1|2 + |ψ2|2 − 1)2 + ω(|ψ1|2 − |ψ2|2)2, (A10)

with

η = −α
2
− 3

2
. (A11)

ω =
g − g12

2
(A12)

The latticized version of the Hamiltionian reads

H =
∑
r,µ̂
i

∣∣ψr+µ̂,i

∣∣∣∣ψr,i

∣∣( cos(θr+µ̂,i − θr,i −Aµ,r)
)

+
∑
r

η(|ψ1|2 + |ψ2|2 − 1)2

+
∑
r

ω(|ψ1|2 − |ψ2|2)2. (A13)

This model will then have the following continuum form,

H =

∫
d3r

[
N∑
i

1

2
|(∂µ − iAµ)ψi|2 + V (Ψ)

]
. (A14)
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Appendix B: First order lattice melting for N = 1 revisited

As a benchmark on simulations with amplitude fluctuations
included, we verify the well established first order melting
transition on this model with only a single component of the
order parameter field, in the presence of amplitude fluctua-
tions. The new feature of the computation is that the com-
plete amplitude-distribution function was utilized, through the
methods described in Section III. In this case, the term in the
potential proportional to ω in Eq. 6 is absent, and the potential
reduces to

V (Ψ) = η(|Ψ|2 − 1)2. (B1)

With amplitude fluctuations neglected, this model reduces to
the much studied uniformly frustrated 3DXY model, with
well known results as mentioned in the introduction of the
paper. The model features a first order phase transition mani-
fested as a melting of the frustration-induced hexagonal lattice
of vortices.[16, 18–25] The fluctuations responsible for driv-
ing this transition are massless transverse phase-fluctuations
of the order parameter.

The simulations were performed with η = 10. Fig. 7(a)
shows the specific heat, which has strong signs of an anomaly
at β = 0.751. Fig. 7(b) shows that the anomaly in the specific
heat is accompanied by a relatively sharp jump in the helicity
modulus in the z-direction. It is also important to note that
the helicity moduli in the transverse directions remain zero
throughout the transition. This indicates that the vortex lattice
melts in a genuine phase transition, and not as a result of ther-
mal depinning from the underlying numerical lattice. This is
therefore a strong indication of a first order melting transition.
Fig. 8 shows the vortex density and structure factor immedi-
ately before and after the transition. The high temperature
side shows an incoherent vortex liquid, characterized by a cir-
cular structure factor. The low temperature side shows that a
clear hexagonal structure is established as soon as the liquid
freezes.

We emphasize that these results are not unexpected. The
purpose of including them here, is to demonstrate that the
method of including amplitude-fluctuations into the computa-
tion of the vortex lattice melting reproduces the known result
for N = 1, previously obtained in the absence of amplitude
fluctuations[16, 18–25], but generally believed to be correct
also when amplitude fluctuations are included.

Appendix C: First order lattice melting for N = 2

We next consider the melting transition for N = 2,
where the intercomponent density-density interaction 2(η −
ω) |ψ1|2 |ψ2|2-term in the potential energy in Eq. 7 comes
into play. We consider the U(1) × U(1)-symmetric case, i.e.
ω 6= 0. Again, the full spectrum of amplitude fluctuations is
included, using the methods described in Section III.

For parameters (η, ω, f) = (0.5, 1.0, 1/16) and (η, ω, f) =
(2.0, 1.0, 1/16) the lattices are clearly hexagonal and square,
respectively. The hexagonal lattice obtained for η = 0.5 and
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FIG. 7: (Color online) Specific heat (top) and helicity moduli
(bottom) for N = 1, f = 1/16 and η = 10. At β = 0.751 we

see a clear anomaly in the specific heat accompanied by a
sharp jump in the longitudinal helicity modulus. The

transverse moduli remain zero throughout the transition.
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FIG. 8: (Color online) Vortex density, n(r⊥), and structure
factor, S(q⊥), (inset) for N = 1, f = 1/16 and η = 10, at

inverse temperatures β = 0.749 (left) and β = 0.752 (right).
This corresponds to temperatures slightly higher and lower,

respectively, than the transition point, β = 0.751.
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ω = 1.0 was found to have a melting transition at β ≈ 0.53.
Fig. 9(a) shows the specific heat with a delta-function like
anomaly at this temperature. Around this point, we have used
a closely spaced set of temperatures, in order to get a proper
resolution of the anomaly. Fig. 9(b) shows the helicity moduli
of both components. Both of the z-directed stiffnesses have a
zero expectation value in the disordered phase, indicating no
phase coherence. In the ordered phase, both of 〈Υz,i〉 develop
finite expectation values which means that the system has su-
perfluidic properties along the direction of rotation. The two
phases are divided by a sharp jump in the longitudinal phase
stiffness, a characteristic of a first order transition. The drop
is even sharper than what was obtained for the N = 1 case,
indicating an even larger latent heat associated with the tran-
sition. The x- and y- directed stiffnesses remain zero in the
ordered state, which rules out any possibility of numerical pin-
ning effects.[44, 45] Looking further at the insets of Fig. 9a,
which show the structure factors in the disordered and ordered
phase, we see clear evidence of an incoherent vortex liquid at
β < 0.53 in the left inset, while the right inset shows an or-
dered hexagonal VLL at β > 0.53.

Turning to the square lattice, now the parameters in ques-
tion are η = 2.0 and ω = 1.0. The transition point is located
at β ≈ 1.11. Fig. 10(a) shows the specific heat. Again, an
anomaly is located at the transition point. The helicity mod-
uli, shown in Fig. 10(b), also show first order behavior. Both
z-directed components are zero on the high temperature side,
and develop a finite value through a sharp jump at the low
temperature side. It is important to also consider the trans-
verse components. Both 〈Υx,i〉 and 〈Υy,i〉 are zero through-
out the area of interest. Here we note that the x-directed mod-
ulus drops to a tiny negative value at a point after the transi-
tion. This is a non-physical effect, most likely caused by a
metastable state. We believe this is simply a numerical arti-
fact, as we used a lower amount of Monte Carlo time away
from the transition. Turning our attention to the structure fac-
tors, shown in the insets of Fig. 10b, we again see the isotropic
vortex liquid in the disordered side of the transition, the or-
dered side shows a square four-fold symmetry.

Thus, both the square and the hexagonal lattices undergo
first order melting transitions from their respective ordered
phases, into an isotropic vortex line liquid.

Appendix D: Inter-component interaction, and its effect on
density- and vortex-lattices.

In this section, we include more detailed figures of the
vortex- and density-structures in real- and reciprocal space, as
the inter-component interaction 2(η − ω)|ψ1|2|ψ2|2 is varied,
to supplement the points made in Sections IV A and IV C.

Figs. 11 and 12 illustrate how the vortex lattice, and
the component densities reconstruct as the inter-component
density-density interaction (η−ω)|ψ1|2|ψ2|2 changes. We do
this by fixing η at 5.0 and 3.0 respectively, and tuning ω. The
inverse temperature, β, is also fixed in both tableaux. Com-
mon in both figures is that the vortices first form two inter-
laced square lattices for sufficiently small ω, and, by exten-
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FIG. 9: (Color online) Specific heat (top) and helicity moduli
of both components (bottom), for N = 2, f = 1/16, ω = 1.0

and η = 0.5. At β ≈ 0.53 we see a clear anomaly in the
specific heat accompanied by a sharp jump in the

longitudinal helicity moduli of both components. The
transverse helicity moduli remain at zero throughout the

transition. The insets in (a) show the structure factors at the
high- and low-temperature side of the transition, respectively
β = 0.528 and β = 0.534. This clearly shows that the sharp

anomaly in the specific heat separates an isotropic phase
from a phase with hexagonal order.

sion, large inter-component coupling. Then the lattices recon-
struct into a hexagonal structure. Note that the hexagonal lat-
tices of the two components start out slightly shifted with re-
spect to each other, but becomes completely cocentered when
ω > η. This final state corresponds to an attractive inter-
component coupling.

The behavior of the amplitude densities are explained in
section IV A, and we can compare the reasoning to the top
two rows of figures 11 and 12. First of all, the presence of a
vortex locally suppresses the amplitude, which again may af-
fect the immediate neighbourhood depending on the value of
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FIG. 10: (Color online) Specific heat (top) and helicity
moduli of both components (bottom), for N = 2, f = 1/16,
ω = 1.0 and η = 2.0. At β ≈ 1.11 we see a clear anomaly in

the specific heat accompanied by a sharp jump in the
longitudinal helicity moduli of both components. The

transverse helicity moduli remain at zero throughout the
transition, except for the x-directed modulus which drops to a
negative value at a point well separated from the transition.
The insets in (a) show the structure factors at the high- and

low-temperature side of the transition, respectively
β = 1.110 and β = 1.112. This clearly shows that the sharp

anomaly in the specific heat separates an isotropic phase
from a phase with square order.

the inter-component coupling. For strong repulsive couplings
a suppression of the amplitude of one color in an area leads
to an enhancement of the amplitude of the other color in the
same area. The absence of vortices in the neighbourhood then
leads to the opposite effect. This causes staggering of the am-
plitude densities, and formation of distinct vortex sublattices.
Considering carefully the range of variation in the amplitudes,
it is seen that there are rather large gradients for the square
structures. When the coupling is only weakly repulsive, or

even attractive, there is a much less dramatic effect. The vari-
ations in the amplitudes are much smaller, there is little to no
staggering.

The first column of Figs. 11 and 12 is in a different class
of the rest. Here ω = 0, and we are in the SU(2) regime.
Fig. 13 further illustrates the wide variety of ground states ob-
tainable here. This tableau, in contrast to the two previous, has
a fixed η and ω, while we vary the inverse temperature β from
column to column. These pictures are all taken from a sin-
gle simulation, evolved through Monte Carlo sampling from
a single randomized initial state as β is increased. The vortex
lattice initially forms at around β = 0.7, and evolves contin-
uously. It continues to evolve even at the lowest temperatures
(β = 1.5) used in the simulation. This pattern is common in
all simulations done with similar parameter sets.

The common features in the SU(2) lattices are clearly seen
in Fig. 13. The vortices tend to form dimers, which usually
have some global alignment. The alignment is evident in the
Bragg peaks, as we in most cases have two opposing peaks
of higher intensity than the rest. The vortex dimer complexes
always arrange themselves in a hexagonal structure, which is
also seen in the structure factors.
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FIG. 11: (Color online) Tableau illustrating the different density- and vortex lattices in real space, as the parameter ω increases,
i.e. as the inter-component density-density interaction 2(η − ω)|ψ1|2|ψ2|2 decreases. This interaction promotes a square

density- and vortex lattice. The parameters f , β and η are fixed to f = 1/64, β = 1.5 and η = 5 while ω is increased from 0.0
to 6.0 horizontally. The six rows show, from top to bottom: amplitude densities of components 1 and 2, vortex densities of
components 1 and 2, and the structure factors of components 1 and 2. For ω = 0, which is the SU(2)-symmetric case, the

system exhibits a dimerized phase in component 1, which is complementary to a dimerized phase in component 2, shifted with
respect to that of component 1 by an amount corresponding to the lattice constant of the density lattice. The ground state where
the roles of component 1 and 2 are interswitched, is degenerate with the illustrated phase. Note that an area of the system with a
high vortex density always corresponds to an area with a low amplitude density. For the SU(2)-symmetric case, U(1)-vortices
are not topological. When ω 6= 0, the SU(2) symmetry is broken down to U(1)×U(1), and U(1) vortices are topological. The
reduction of the interaction 2(η − ω)|ψ1|2|ψ2|2 reduces the tendency towards formation of square density- and vortex-lattices,

leading to an eventual reconstruction to a standard hexagonal vortex lattice, and hence a hexagonal density lattice.
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FIG. 12: (Color online) Tableau illustrating the different density- and vortex lattices in real space, as the parameter ω increases,
i.e. as the inter-component density-density interaction 2(η − ω)|ψ1|2|ψ2|2 decreases. This interaction promotes a square

density- and vortex lattice. The parameters f , β and η are fixed to f = 1/64, β = 1.5 and η = 3 while ω is increased from 0.0
to 5 horizontally. The six rows show, from top to bottom: amplitude densities of components 1 and 2, vortex densities of

components 1 and 2, and the structure factors of components 1 and 2.
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FIG. 13: (Color online) Tableau illustrating the different SU(2) density- and vortex lattices in real space, as the parameter β
increases. The parameters f , η and ω are fixed to f = 1/64, η = 1.0 and ω = 0.0 while β is increased from 0.9 to 1.3
horizontally. The six rows show, from top to bottom: amplitude densities of components 1 and 2, vortex densities of

components 1 and 2, and the structure factors of components 1 and 2. Note how the vortex-structures and the density structures
always track, that is, an area of the system with a high vortex density always corresponds to an area with a low amplitude

density.
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