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The precision of most compact inertial sensing schemes using trapped- and guided-atom interfer-
ometers has been limited by uncontrolled phase errors caused by trapping potentials and interactions.
Here, we propose an acoustic interferometer that uses sound waves in a toroidal Bose-Einstein con-
densate to measure rotation, and we demonstrate experimentally several key aspects of this type of
interferometer. We use spatially patterned light beams to excite counter-propagating sound waves
within the condensate and use in situ absorption imaging to characterize their evolution. We present
an analysis technique by which we extract separately the oscillation frequencies of the standing-wave
acoustic modes, the frequency splitting caused by static imperfections in the trapping potential, and
the characteristic precession of the standing-wave pattern due to rotation. Supported by analytic
and numerical calculations, we interpret the noise in our measurements, which is dominated by
atom shot noise, in terms of rotation noise. While the noise of our acoustic interferometric sensor,
at the level of ∼ rad s−1/

√
Hz, is high owing to rapid acoustic damping and the small radius of the

trap, the proof-of-concept device does operate at the high densities and small volumes of trapped
Bose-Einstein condensed gases.
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Conventional atom interferometers measure accelera-
tion [1] and rotation [2–4] by interfering dilute atomic
wavepackets that traverse distinct paths in free fall [5].
The impressive sensitivity of these devices scales with
the area enclosed by the arms of the interferometer, fa-
voring larger interferometers that average measurements
on centimeter length scales [6]. Extending the capabil-
ity of atom interferometers to probe shorter length scales
could address fundamental questions, such as how grav-
ity operates at short range; tackle practical problems,
such as non-invasive material characterization; and aid
in the development of miniaturized atomic sensors [7].
Trapped- or guided-atom interferometers may allow sen-
sitive, localized inertial measurements by allowing inter-
ferometer arms to enclose the same area multiple times,
gaining precision while remaining compact. However, for
an atom interferometer to reach high signal-to-noise and
probe short length scales, it is critical to develop an in-
terferometric scheme compatible with high densities and
realistic trapping potentials.

Trapped quantum degenerate gases offer a bright
source for atom interferometry in small volumes, reach-
ing number densities of 1014 cm−3 that are at least four
orders of magnitude higher than those utilized in free-
falling-atom devices [6]. However, the price of high den-
sity is uncontrolled phase shifts and damped atomic mo-
tion [8–11]. These interaction effects can be mitigated
by tuning the interaction strength to zero, for example,
through the use of Feshbach resonances [12]. Also, in
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spite of high densities, the number flux of ultracold atoms
through a trapped-atom interferometer is typically low,
making it highly desirable that the readout noise of such
interferometers reach, or even surpass [13–16], the atom-
shot-noise limit.

Here, we propose and demonstrate a new type of in-
terferometer that circumvents many challenges of high-
density atom interferometry: interfering collective exci-
tations of a dense, trapped sample to measure force or
rotation. In this proof-of-principle work, we interfere
phonons, our chosen collective excitation, in a toroidal
Bose-Einstein condensate (BEC) and extract a signal
that is sensitive to rotations. Our scheme is similar
to those of hemispherical resonator [17] and superfluid-
helium gyroscopes [18]. In analogy to an optical gyro-
scope, phonons play the role of light, traveling through
the vacuum mode of the BEC. The effects of trap in-
homogeneity and of atomic interactions are ameliorated
in two ways. First, atomic interactions themselves are
used to suppress the effect of trap inhomogeneity on
sound propagation. We demonstrate this fact experi-
mentally by showing that significant trap inhomogeneity
leads only to weak coupling between counter propagating
sound modes. Second, we develop an analysis technique
that allows us to isolate a rotation-sensitive signal from
the dynamical evolution of sound waves in the toroidal
BEC in a manner that is largely independent of the effects
of interactions and of trap inhomogeneity. This analysis
technique is applied to experimental data to quantify the
noise in a rotation-rate measurement, and to data gen-
erated by numerical simulations to quantify the rotation
sensitivity.

We demonstrate several key advantages of collective-
excitation interferometry by constructing a high-density
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(1 × 1014 cm−3) but small (16 µm radius) sample. As
collective modes of an interacting Bose-Einstein conden-
sate, sound waves can, in principle, propagate over long
distances. Interactions in a superfluid can enhance the
lifetime of the sound mode even in the presence of dis-
order [19] and suppress systematic biases that arise from
weak disorder in the potential. Time reversal symme-
try guarantees that linear forces, atom number varia-
tions, interaction energy shifts, and static trap inhomo-
geneities cannot distinguish counter-propagating acous-
tic modes; these effects primarily introduce common-
mode phase shifts that do not deteriorate the signal.
Further, the irrotational nature of the superfluid pro-
vides a non-rotating frame for the propagating sound
waves [20, 21], against which the slow rotation of an
observer can be measured absolutely. Our compact
device presently achieves a rotation sensitivity of only
∼ rad s−1/

√
Hz, far inferior to available sensors. Ex-

tending our scheme to circular waveguides of millime-
ter dimensions [22] and reducing damping to gain longer
propagation times would be necessary to improve sensi-
tivity.

Low-order collective modes of BEC’s have been used
to measure Casimir-Polder forces [23] and quantized cir-
culation [24–26]. We extend this work by using higher-
order standing-wave acoustic modes to increase sensitiv-
ity, overcome technical noise limitations, and reach atom-
shot-noise-limited detection. Since we lack the sensitiv-
ity to measure rotation directly, the goal of this paper
is to validate our proposal by matching the noise of the
rotation signal to the expected atom shot noise and by
identifying systematic biases. The most critical bias we
investigate results from azimuthal perturbations in the
trap potential that add frequency shifts to the standing-
wave eigenmodes, which could appear as rotation signal if
not properly accounted for. We characterize and correct
the rotational signal for these effects.

We begin in Sec. I by describing our experimental
system for producing toroidal-shaped Bose-Einstein con-
densed gases of 87Rb, our optical method for exciting
standing-wave acoustic modes of various angular orders
and initial angular positions, and our measurement of
the evolution of these modes through in-situ absorption
imaging. We characterise the frequency and spatial pat-
tern of several acoustic collective modes. We also observe
these modes to be damped more rapidly than expected
based on Landau damping. In Sec. II, we show how the
separate effects of static trap inhomogeneities and of ro-
tation can be isolated in our data analysis. The resulting
rotation-rate measurements, based on the precession of
standing-wave modes of different orders, are presented.
Because we lack sensitivity to measure rotation rates that
we can reasonably apply to our experiment, we quan-
tify the variance in these measurements as the noise in
a rotation-rate measurement. For rotation sensing using
higher-order acoustic modes, we find this measurement
noise to be consistent with that expected for atom-shot-
noise-limited measurements. Finally, in Section III we
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FIG. 1. A toroidal optical dipole trap for a 87Rb Bose-
Einstein condensed gas is formed by intersecting three light
fields, as indicated by the side (a) and top (b) views of the
trap, with the direction of gravitational acceleration indi-
cated. A standing acoustic wave oscillates initially at its
eigenfrequency (c) with fast density oscillation at the antin-
ode (Re[Am], blue arrow and curve) and no amplitude at the
node (Im[Am], red arrow and curve). Rotation induces a sig-
nal in Im[Am], whose envelope (gray) increases in proportion
to the rotation rate and mode number. Density shifts should
not alter this envelope.

examine the limits of our scheme in the zero-temperature,
mean-field limit by numerically simulating a representa-
tion of our system in the presence of rotation. In concert,
this experimental and numerical work highlights many of
the advantages of collective-excitation interferometry and
can serve to guide future work in this area.

I. CREATION AND EVOLUTION OF SOUND
WAVES

In our experiment, we prepare a degenerate, spin-
polarized gas of 87Rb atoms in a far-detuned optical
dipole trap, following a procedure similar to that of
Ref. 27. We then transfer the atoms into an overlain
toroidal optical potential formed by the intersection of
three light beams (Fig. 1(a), (b)). An attractive light
sheet, with an optical power of 12 mW, a wavelength
of λ = 836 nm, and an elliptical focus with 1/e2 radii
of 10.5 µm and 400 µm, confines atoms to a horizontal
plane. An annular potential, created by coaxial attrac-
tive (400 µW, λ=830 nm, 1/e2 radius of 26 µm) and
repulsive (3 mW, λ=532 nm, 1/e2 radius of 11 µm) ver-
tically propagating light beams provides in-plane confine-
ment. To maximize the stability of the optical system,
we deliver the coaxial vertical beams via the same large-
mode-area fiber. We adjust the alignment and beam radii
at the trap location using a telescope with adjustable ax-
ial and lateral chromatic shifts. The optical potential
minimum lies in a circle of radius 16 µm, about which
the atoms experience radial and vertical trap frequen-
cies of (ωz, ωr) = 2π × (260, 86) Hz. Evaporative cooling
from the optical potential yields samples with 8 × 104

condensed atoms with a 20% thermal fraction, Thomas-
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Fermi radii of 6 µm and 1.5 µm in the radial and ver-
tical directions, respectively, and a chemical potential of
µ = h × 700 Hz. Similar optical ring traps have been
demonstrated previously, albeit with different optical se-
tups [28–30].

The excitations of a cylindrically symmetric medium
may be characterized by the integer azimuthal quantum
number m, as well as the transverse (radial and axial)
quantum numbers. We excite a specific superposition of
the ±m lowest-transverse-order sound modes by apply-
ing an additional optical potential to the trapped BEC
that establishes an initial density modulation with high
spatial overlap with the selected mode. To create this
potential, we illuminate a chrome optical mask of an m-
fold propeller pattern (Fig. 3(e), icons) with a 400 µW,
λ=532 nm light beam. The masked light is then imaged
onto the plane of the trapped atoms, using a 1:10 imaging
system with a resolution of 6µm, imposing a repulsive op-
tical potential while the atoms are evaporatively cooled
to the final atom number and temperature. The light is
then suddenly extinguished, allowing the perturbed con-
densate to evolve freely.

After a variable hold time t, we measure the in situ
condensate density with a high signal-to-noise absorption
imaging protocol. We first reduce the optical density of
the gas by exciting only 10%−25% of the atoms to the
|F=2〉 ground hyperfine state with a short (20 µs), weak
(2% of saturation intensity) light pulse detuned by about
5 linewidths from the |F=1〉 → |F ′=2〉 D2 transition [31].
Detuning the light from resonance makes the sample op-
tically thin and ensures that it is uniformly excited. We
then apply a resonant probe pulse to the cycling tran-
sition for 50 µs at saturation intensity [32] and image
the unscattered light onto a CCD camera. We found
this approach to give greater sensitivity than dispersive
imaging.

The acoustic excitations reveal themselves as oscillat-
ing standing waves of the condensate density. From the
measured column density distribution ñ(x, y), we extract
the azimuthal spatial Fourier coefficient

Am =

∫
r<rc

dx dy ñ eimφ∫
r<rc

dx dy ñ
, (1)

where φ is the azimuthal angle about the trap center in
the imaged x-y plane. The integral is taken up to a cutoff
radius rc = 40 µm, where the atomic density is zero [33].
Am is a complex number whose phase indicates the an-
gular position of the standing wave and whose amplitude
indicates the strength of the density modulation. For
example, Fig. 2(a) shows the evolution of A3(t) for con-
densates prepared with the m=3 mask at various initial
orientations, with one datum obtained per experimental
cycle.

The excitation and read-out schemes are highly selec-
tive. The m-fold propeller produces strong excitation
of the m-node standing wave, along with a weak resid-
ual excitation of the (m±1)-node standing waves due to
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FIG. 2. (a) Real (left) and imaginary (right) components of
A3 oscillate in time. In each row, relative amplitudes cor-
respond, with 2π/3 periodicity, to the angular orientation of
the excitation mask (schematic, far right). Data are offset for
clarity. (b) Relative response of Am as a function of mode
number for each propeller. The applied mode always has the
strongest response, but neighboring modes are weakly excited
by a slight misalignment of the mask. Each column is scaled
to its peak response.

slight misalignment of the center of the mask to the cen-
ter of the trap (Fig 2(b)). The spatial mode pattern
δñ(x, y) of the standing-wave excitation can be measured
by fitting the pixel-by-pixel temporal record ñ(x, y, t) to
ñ0(x, y) + δñ(x, y) e−Γt cosω(t − t0), where Γ, ω, and t0
are fixed from a fit to Am (Fig. 3(a-d)).

The observed standing-wave mode frequencies agree
well with their predicted values [34] and demonstrate the
expected linear phonon dispersion relation. The acoustic
eigenfrequencies of a tubular medium of length L, an ap-
proximation for the toroid, are f = mceff/L, where ceff

is the effective speed of sound in the channel. The lin-
ear scaling is seen for the m=2 through m=6 modes,
with ceff = 1.29(2) mm/s for L = 2π × 16.0 µm in
Fig. 3(e)[35]. The m=7 mode is perturbed by the first
excited radial mode, as expected when the acoustic wave-
length approaches the radial extent of the gas. In partic-
ular, the mode frequency is reduced as the mode-pattern
becomes concentrated at the outer edge of the ring, in-
creasing the effective length and lowering ceff .

We observe a damping rate that increases with mode
number, giving a quality factor that is roughly indepen-
dent of mode number for modes 2-7 (inset of Fig. 3(e)).
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FIG. 3. Spatial profiles of the m=2 (a) through 5 (d) eigen-
modes are calculated from each pixel’s temporal record. Each
profile shows a field of view of 90µm× 90µm. Color scale is
the peak column-density modulation amplitude δñ(x, y) as
defined in the text. (e) Eigenfrequencies show the expected
linear trend for modes m=2−6, shown as the diagonal gray
line. A large negative shift of mode m=7 is expected from
coupling to the first radial mode (dashed black line). The
inset shows the quality factor Q for each mode.

We note that, for our experimental conditions, free-
particle (high momentum) excitations would be damped
within a distance of around d = (nσ)−1 = 14µm, shorter
than that traversed by the phonon excitations studied in
this work; here, n = 1014 cm−3 is the peak condensate
density and σ = 7 × 10−12 cm2 is the scattering cross
section.

The measured damping rates are larger than those ex-
pected from Landau damping, which is a form of thermal
de-excitation. The invariance of the excitation quality
factor with mode number is predicted for Landau damp-
ing in a homogeneous gas at temperatures greater than
the chemical potential [36, 37]. However, our system’s
anisotropic potential and near-equality of the thermal en-
ergy and chemical potential (kBT ≈ 0.9µ) place it outside
the regime in which Landau damping has been studied
and is understood. Indeed, the damping rate we observe
is a factor of 3− 6 times higher than would be predicted
by the Laudau theory at our estimated temperature of
30 nK [38]. We can safely rule out four-wave mixing
processes as the source of the high damping rate in our
system as we have verified that the damping rate does not
depend on the amplitude of the standing wave. Finally,
we note that in unrelated work in the same system we
have found long-lived vortices formed by rapidly cooling
the gas into the BEC phase. It is possible that vortices
produced inadvertently in the annulus of our ring con-
tribute to the observed damping, and that reducing their
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FIG. 4. (a) The frequency splitting is determined by fitting,
on average, 500 images and 18 orientations of the optical mask
per mode to a three-mode dynamical model. Error bars are
determined from a jackknifing procedure that excludes a sin-
gle orientation from the experimental dataset. The units here,
in rad/s per mode number, can be compared directly to the
measured rotation rate. (b) Rotation estimates are binned
in 1 rad/s intervals. Each value is the result of a fit to the
rotation rate for ∼30 points taken at each orientation of the
optical mask. (c) The standard error σ of the rotation es-
timates (closed circles) and noise in each component of Am

(open squares) are close to the atom-shot-noise limit σASN for
modes m=4−6. Modes m=2 and 3 show an excess of noise,
likely from technical fluctuations in the toroidal potential.

number would enhance the lifetime of our acoustic oscil-
lations.

II. PROOF-OF-CONCEPT ROTATION NOISE

A rotation of the lab will create a precession in the
orientation of the standing acoustic mode (see Sec. III).
In a smooth ring, the standing wave orientation remains
fixed in the inertial frame and precesses in the rotating
lab frame as the clockwise (−m) and counterclockwise
(+m) propagating modes appear to be split in frequency
by the rotation. The equations of motion of the stand-
ing wave are identical to those a Foucault pendulum [39],
where the two orthogonal standing waves (real and imag-
inary components of Am) are identified with the in-plane
(x and y) components of the pendulum’s position (see
Supplemental Material, Sec. S1). This situation differs
from phonons in a rigid object, where a standing wave
precesses at a rate dependent on the material shape and
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FIG. 5. Frequency splitting ∆fm of mode m versus the trap
distortion V2m = 2µ|A2m|. The gray line is the expected
mean-field result ∆fm/m = (V2m/h)(ξ/1.9r) for distortions
in the anharmonic waveguide. The open square data point is
from the simulated data of Section III.

slower than the lab rotation rate [40].
In contrast, static trap distortions couple, rather than

split, the ±m modes. Owing to such distortions, the de-
generacy between the sine- and cosine-like superpositions
of the ±m modes is broken, and the ±m modes them-
selves are no longer the eigenmodes of the system. For
instance, in a ring of radius r, a static potential perturba-
tion with azimuthal dependence V (φ) = Re[

∑
m Vme

imφ]
yields (to first order in Vm) a frequency splitting between
the two m-node standing acoustic modes of

∆fm ∝ (|V2m|/h)(ξ/λ), (2)

where ξ ∝ n−1/2 is the healing length [37], n is the atomic
density, and λ is the acoustic wavelength. The effects of
such distortions are thus suppressed by the high den-
sity of the atomic medium [38]; for our system we ob-
serve a suppression factor of (∆fm/m)/(V2m/h) ' 1/50
(Fig. 5) by comparing the measured frequency splitting
with trap distortions inferred from the column density
V2m = 2µ|Astatic

2m |.
While the acoustic modes are thereby affected both by

rotation and by static trap distortions, the separate ef-
fects of each of these influences are distinct, akin to the
separate effects of circular and linear birefringence, re-
spectively, on the polarization of light. To quantify each
effect, we excite each mode m=2 through 6 at a large
number of angles (a small selection is shown in Fig. 2(a)),
and fit the data at each m to a three-mode model (un-
perturbed superfluid and its ±m acoustic excitations) of
the temporal evolution described by the Hamiltonian

Hm = ~ω(a†xax + a†yay + 1)

+ ~π∆fm(a†xax − a†yay)

+ i~mΩ(a†xay − a†yax),

(3)

where ax and ay are annihilation operators for the two
non-rotating, sine- and cosine-like standing wave eigen-
modes. From this fit, we obtain the eigenmode principal
axes selected by the static trap distortion (Fig. 4, top)
and the eigenmode frequencies ωx/y = ω±π∆fm, as well

as the rotation rate Ω. The simplified three-mode de-
scription of our system is consistent with the dynamics
predicted by numerically integrating the Gross-Pitaevskii
equation for our system parameters in the limit of low
amplitude excitations of a single m-mode, as demon-
strated in Section III.

To extract a rotation rate, we fit the data at each
mask orientation (∼30 points, corresponding to a row
in Fig. 2(a)) to a prediction of the sound wave evolution
in a rotating frame. The extracted rates are plotted as
a histogram in Fig. 4(b). The only free parameters are
the rotation rate and the amplitude of the initial exci-
tation. Mechanical properties of the system such as the
frequency, frequency splitting, and phase are fixed from
fits to the rest of the data set.

The measured rotation noise is at the level of 1 rad/s.
Considering that these measurements are obtained in
around 30 repetitions of the experiment, each of which
has an average measurement time of tens of millisec-
onds, this rotation noise can also be expressed as ap-
proximately 1 rad s−1/

√
Hz where we do not account for

the low duty cycle of the experiment. This measure-
ment noise matches well with the expected atom-shot-
noise limit (Fig. 4, bottom). In imaging the distribution
of N uncorrelated atoms, atom-shot-noise yields an un-
certainty ∆Am = (2N)−1/2 in extracting either the real
or imaginary component of Am in a single run. The atom
shot noise limits the rotation signal to an uncertainty of

∆ΩASN =
αΓ

mA
√
NNr

, (4)

where Γ is the decay rate of the standing wave, A is
the fractional density modulation excited in operating
the interferometer (measured by the Fourier amplitude
Am defined in Eq. 1), and Nr is the number of inde-
pendent experimental realizations. The prefactor α de-
pends on how measurements are distributed in time; here,
α = 3.2 for evolution times sampled uniformly between
0 and 2/Γ [38]. For measurements using the higher-
order sound modes, the reduced technical noise in our
images at higher spatial frequencies allows us to achieve
the atomic shot-noise limit (Fig. 4(c)). Unfortunately,
because the quality factor of acoustic standing-wave os-
cillations is found to be roughly independent of the mode
number, the use of higher order modes does not improve
sensitivity in our apparatus beyond overcoming technical
noise.

The fundamental sensitivity due to atom shot noise in
our device, based on interfering phonons, takes a very
similar form to a conventional free-space atom interfer-
ometer, based on interfering atoms. In the latter case,
the noise can be written as

∆Ωfree =
T−1

4π(L/λ)
√
N
, (5)

where L is the distance between interaction regions, λ
is the wavelength of the optical or material grating used



6

Time (ms)

R
e
[A

3
]

 20  40  60  80 100 120

−0.01
    0

 0.01
 0.02

 

 

Time (ms)
 20  40  60  80 100 120

0

10

20
ASN

FIG. 6. A3 is extracted from snapshots of the simulated condensate column density both with (right) and without (left) the
addition of simulated atom shot noise. For each trap configuration, 300 samples over 793 ms at each of 5 angles of the excitation
propeller are analyzed using the three-mode model. Oscillation of the m=3 mode is exaggerated by a factor of 4 in the included
images, for clarity.

as an atomic beam splitter, and T is the atomic travel
time between beam splitters [3]. Written this way, our
acoustic interferometer acts as a device that measures
how far a feature of azimuthal size λ/L ∼ 1/m rotates
over a time T ∼ 1/Γ.

III. MEAN-FIELD NUMERICS

The short lifetime of acoustic modes in our appara-
tus makes evaluating the limits and efficacy of the three-
mode model of Eq. 3, and our sensing scheme in gen-
eral, difficult. Thus, we explore the feasibility of our
scheme in the absence of anomalous damping by simu-
lating it numerically. These results validate the essential
points of our proposal, namely that interferometers based
on collective excitations within gaseous superfluids sup-
press the impacts of common sources of systematic bias
and, being irrotational, provide an absolute non-rotating
frame of reference.

We modeled our system using the Gross-Pitaevskii
(GP) equation, which we discretized via a sym-
metric split-step Fourier method [41, 42] on a
Nx×Ny×Nz=64×64×8 grid and with an adaptive tem-
poral step size, giving spatial accuracy to infinite order
for length scales above ∼0.6 µm and local temporal ac-
curacy to O(∆t4), with ∆t the contemporaneous step
size. Error thresholds were chosen such that accumu-
lated errors throughout a typical simulated experiment
were negligible.

Each simulated experiment began by finding the
ground state of 105 87Rb atoms in a non-rotating poten-
tial, including an m-fold repulsive propeller and a sim-
ulated 3-beam optical dipole trap, possibly with static
inhomogeneity, via evolution in imaginary time. From
this starting point, we excited acoustic oscillations by
suddenly removing the m-fold propeller and propagating
the system in real time, rotating the simulated lab at
a rate Ω0. We implemented the rotation of the lab by
rotating the trapping potentials, including any static in-
homogeneity, with respect to the non-rotating frame of

0
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FIG. 7. Sample simulated data (no atom shot noise) with an
initial excitation along an m=3 principal axis at two different
values of frequency splitting ∆f3. The rotation rate in both
datasets is Ω0=0.1 Hz and the confining traps are the same
except for differing 5-fold (V5) and 6-fold (V6) perturbations
of h× 11 Hz (small ∆f3) and h× 59 Hz (large ∆f3).

the simulation.

We chose a non-rotating ground state as our start-
ing point because of its compatibility with the split-step
Fourier method. For small rotation rates, the differ-
ence between rotating and non-rotating ground states
is small. This difference manifests itself in our simula-
tions as an additional acoustic oscillation that we would
not expect to be present in our experimental apparatus.
These acoustic oscillations can be observed on their own
by running simulated experiments in which the propeller
pattern is not turned off immediately. Owing to its ir-
rotational nature, the superfluid is not dragged by the
rotating propeller pattern.

To produce data analogous to the images from our ex-
perimental apparatus, we saved snapshots of the sim-
ulated condensate column density, integrated along the
axial dimension, at various times. To understand and
verify our assumptions about the role of atom shot noise,
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we derived noisy measurements of the condensate column
density from these snapshots by adding Gaussian noise
at a level consistent with the atom shot noise limit for
images including 2×104 atoms. We extracted Am from
both the noisy and noiseless snapshots in the rotating
lab frame (Fig. 6), mirroring the experimental procedure
and analysis presented in Section II.

In our simulations, we chose to focus on excitations of
an m=3 propeller in a trapping potential with parame-
ters similar to those of our experimental apparatus, but
with additional variable 5-fold and 6-fold angular pertur-
bations of the trapping potential. The simulated light
sheet, modeled numerically as if formed by a focused
Gaussian light beam, naturally includes a moderate 2-
fold inhomogeneity.

The sample data shown in Fig. 7 demonstrate im-
portant qualitative features of the sensing scheme and
the three-mode model (Eq. 3). For small ∆f3 (small 6-
fold perturbation in trapping potential, V6), the rotation
Ω0=0.1 Hz causes an excitation that is initially along
one principal axis to rotate into the orthogonal axis at
a rate of 3Ω0. When ∆f3 is large (large V6), the exci-
tation remains pinned along its initial axis. The offset
in Re[A3] in the data for large ∆f3 is due to the larger
5-fold trap perturbation, V5, which gives a small static
3-fold perturbation when combined with the 2-fold per-
turbation of the simulated light sheet (one of the three
optical trapping beams, as described in Sec. I).

Our analysis scheme based on the three-mode model,
applied to the results of our full numerical simulation, is
able to extract the mechanical parameters of the oscil-
lator, including the mode frequency splitting, as well as
the rotation rate. Figure 8 shows the results of fitting
the three-mode model to 300 snapshots over 793 ms at
each of 5 angles of a 3-fold propeller. All model parame-
ters were fit simultaneously, with error bars determined
by a delete-one jackknife procedure [43]. Errors obtained
via this procedure were consistent with errors obtained
directly from fits.

The extracted rotation rates are well-calibrated for a
large range of rotation values. Considering first the sen-
sitivity at low rotation rates, we find that small rotation
rates can be measured absolutely, without bias drift or
pinning. Here, the situation is different than for ring-
laser gyroscopes, where, at low rotation rates, the opti-
cal field becomes “locked-in” by scattering defects that
couple counter-propagating modes of light. In contrast,
the scalar Bose-Einstein condensate used in this work is
superfluid. One implication of such superfluidity is that
the fluid is not set in motion due to the slow rotation of
weak perturbations [44], such as the potential perturba-
tion that we impose (in our potentially rotating frame)
with the projected propeller pattern. A second implica-
tion is that, due to its irrotational nature, the gaseous
superfluid forms initially in a non-rotating state, even if
the container in which it is forming is undergoing slow ro-
tation, a phenomenon known as the Hess-Fairbank effect
[20] that has been observed also for superfluid gases [21].
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FIG. 8. (a) Frequency splitting, (b) rotation rate Ω, and
(inset) Ω−Ω0 residuals of the m=3 mode extracted from sim-
ulated data with (open circles) and without (closed circles)
atom shot noise. Error bars apply to the open circle data
points. The filled gray area delineates the uncertainty in pa-
rameters extracted from the noiseless data and represents the
limits of the three-mode description of the full mean-field dy-
namics in the simulated trap and with the simulated exci-
tation, both of which were set to match real experimental
parameters. The three-mode model distinguishes between ro-
tation and frequency splitting, and can extract both from the
same data stream. The measured 2π∆f3/3=0.13 is close to
the value 0.10 expected based on the static trap perturbation
V6 (Eq. 2). (c) The standard deviation of Ω and Am extracted
from noisy snapshots is consistent with the expected fit-free
atom shot noise limit (Eq. 4).

Thus, while the present experiments have not confirmed
this claim, we would expect on theoretical grounds that
a superfluid acoustic rotation sensor as explored in this
work will retain linear sensitivity to rotation even at low
rotation rates.

It is interesting to note that in a non-zero tempera-
ture gas, the normal fraction of the gas would indeed
be entrained by rotating perturbations in the ring even
at low rotation rates where the superfluid would not be
entrained. In the hydrodynamic regime, this non-zero
temperature gas would support two, nearly uncoupled
sound modes: first sound, which occurs primarily within
the superfluid component, and second sound, which oc-
curs within the normal component [45]. Since these two
sound modes would generally propagate at very different
velocities, it should be possible to disentangle the two
acoustic responses and extract a reliable rotation rate in
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this situation as well.
For large rotation rates, the measured rotation rate be-

gins to deviate slightly from the actual rotation rate in
our models. This deviation, which appears first around
1 Hz rotation rates in our calculations, occurs above the
critical rotation rate for creating a single vortex in the
ring-shaped condensate. At this high rotation rate, our
numerical model would not be expected to match the ac-
tual performance of such a rotation sensor because the
starting point for our models is a non-rotating initial
state. Measurements of such high rotation rates would
need to account for the net flow in a condensate with an
integer number of quanta of circulation.

Uncertainty in the values of parameters of the three-
mode model persist, even in the absence of noise, as in-
dicated by the filled gray areas in Fig. 8. This residual
uncertainty indicates the degree to which the three-mode
model accurately describes the temporal evolution of the
acoustic excitation in the mean-field limit. Our simula-
tions have shown that the three-mode model works best
for low-amplitude excitations wherein the excitation pro-
peller excites only the lowest order of the desired m-fold
perturbation.

IV. CONCLUSION

For a trapped atom sample to reach sensitivities com-
petitive to free-space interferometers, short wavelengths
(higher m), large atom numbers, long propagation times,
and very selective excitation are required. In our current
setup, both atom number and m are limited by the small
size of our ring. However, rings have been demonstrated
with ≈ 104 greater enclosed area [22]. Further, collective
modes of BECs have been observed with temperature-
limited quality factors ten times greater than those re-
ported here [45, 46]. Fundamental zero-temperature
damping of these modes, Beliaev damping, should allow
for subhertz damping rates for wavelengths a few times
greater than the healing length [47].

More importantly, we emphasize that collective exci-
tation interferometry has applications beyond rotation
sensing with phonons. Other collective excitations and
geometries could be employed in a diverse range of sen-
sors. For example, magnons in a ferromagnetic spinor
BEC are predicted to show free-particle behavior and
could form the basis of a compact, short-range interfero-
metric magnetic sensor.
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