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A first principles study of the dynamics of 6Li(2S)+6Li174Yb(2Σ+)→6Li2(1Σ+)+174Yb(1S) reac-
tion is presented at cold and ultracold temperatures. The computations involve determination and
analytic fitting of a three-dimensional potential energy surface for the Li2Yb system and quantum
dynamics calculations of varying complexities, ranging from exact quantum dynamics within the
close-coupling scheme, to statistical quantum treatment, and universal models. It is demonstrated
that the two simplified methods yield zero-temperature limiting reaction rate coefficients in reason-
able agreement with the full close-coupling calculations. The effect of the three-body term in the
interaction potential is explored by comparing quantum dynamics results from a pairwise potential
that neglects the three-body term to that derived from the full interaction potential. Inclusion of
the three-body term in the close-coupling calculations was found to reduce the limiting rate coef-
ficients by a factor of two. The reaction exoergicity populates vibrational levels as high as v = 19
of the 6Li2 molecule in the limit of zero collision energy. Product vibrational distributions from
the close-coupling calculations reveal sensitivity to inclusion of three-body forces in the interaction
potential. Overall, the results indicate that a simplified model based on the long-range potential is
able to yield reliable values of the total reaction rate coefficient in the ultracold limit but a more rig-
orous approach based on statistical quantum or quantum close-coupling methods is desirable when
product rovibrational distribution is required.

PACS numbers: 34.50.Cx, 34.50.Lf, 8220.-w, 82.20.Xr

I. INTRODUCTION

Over the past several decades chemistry research has
made large strides forward in the description of chemical
reactions occurring in environments as diverse as com-
bustion, the earth’s atmosphere, and interstellar media
where temperature and pressure vary over multiple or-
ders of magnitude [1, 2]. Here, crossed molecular beam
experiments have been instrumental in verifying and vali-
dating theoretical models of the reactions [3–5] that range
from classical trajectory calculations, semiclassical theo-
ries and explicit quantum dynamics methods. The dif-
ferent theoretical approaches have been extensively re-
viewed in the literature [6–9]. However, these studies
were mostly restricted to temperatures above 1 K where
typically many angular momentum partial waves con-
tribute to the overall rate coefficients. Only recently has
it become possible to investigate chemical reactions be-
tween small molecules at temperatures well below 1 mK
[10, 11] where quantum effects and threshold phenom-
ena begin to dominate the collisional outcome. These
novel capabilities pave the way to explore the fundamen-
tal principles of molecular reactivity at the very quan-
tum limit, where a single collisional partial wave or
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mechanical-orbital angular momentum can dominate in
the reaction. In fact, in many cases the collision has zero
orbital angular momentum (except in collisions of iden-
tical fermions for which the lowest allowed partial wave
is a p-wave), and thus has no centrifugal barrier.

While numerous theoretical predictions of ultracold
chemical reactions have been reported since 2001 [12–
15], controlled study of a chemical reaction with ultracold
molecules started with the successful creation of a near
quantum-degenerate gas of 40K87Rb molecules in their
absolute ro-vibrational ground state at a temperature of
a few hundred nanoKelvin by two JILA groups [10]. In
this experiment an ensemble of ultracold fermionic 40K
atoms and bosonic 87Rb atoms were bound together by
transferring population from a Feshbach molecular state
to the absolute ground state using a single optical Ra-
man transition. Since these molecules were created in an
optical trap they can collide among each other and with
residual ultracold atoms and undergo chemical reaction,
essentially at the single partial wave level.

The first measurement of the reaction rate coefficient
between ultracold KRb molecules and K atoms was made
at JILA [11]. The atom-molecule reaction rate coeffi-
cient was surprisingly high (on the order of 10−10 cm3/s)
even at temperatures below 1 µK. Quantum defect the-
ory (QDT) calculations [16, 17] showed that the reaction
is nearly universal suggesting that the long-range van-
der-Waals interaction plays a prominent role in the reac-
tion dynamics. Recently, ultracold 87Rb133Cs molecules
in their rovibrational ground state were produced at
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Innsbruck University [18]. These RbCs molecules are
collisionally stable as atom exchange reactions to form
homonuclear dimers are energetically forbidden [19].

They found that the former obeys the universal regime
whereas departures from universality was noted for the
latter. Explicit measurement of the reaction rate coeffi-
cient for the Li+CaH→ LiH+Ca reaction was recently re-
ported by Singh et al. at 1 K [20]. In this case, the buffer
gas cooling method was employed for the CaH molecule
that limits the translational temperatures to about 1 K.

A number of experimental groups around the world
are working to create other alkali-metal and/or alkaline-
earth molecules [21–25] in their stable ground states using
a combination of magneto-association via Feshbach res-
onances and two-photon Raman photoassociation. Some
of these molecules can undergo exothermic reactions, oth-
ers are endothermic and need to be activated, for example
by transfer to excited vibrational levels.

Both ultracold molecular experiments and theoretical
modeling of collisions between alkali-metal and alkaline-
earth molecules have focussed in total or integrated reac-
tion rates. The next logical step is to measure and calcu-
late final state resolved distributions. On the theory side
this means using approaches that go beyond a “simple”
universal QDT. In fact, a detailed understanding of the
reaction mechanism and product rovibrational distribu-
tion requires a rigorous quantum treatment. While it is
possible to combine such treatments with QDTs to yield
full rovibrationally resolved reaction rate coefficients as
demonstrated recently for the D+H2 → HD+H reaction
[26], additional efforts are needed for complex systems
composed of alkali-metal and alkaline-earth metal sys-
tems.

Over the years researchers have identified several issues
that can be used as guidelines to set up improved simula-
tions. Chemical processes have been categorized by the
presence or absence of a reaction barrier. Barrier-less
reactions are often described by capture theory, which
suggests that their dynamics is principally controlled by
the long-range potentials [27]. On the other hand, for
some systems tunneling or coupling to a single scattering
resonance or long-lived collisional complex dominates the
reaction and advanced multi-channel QDT based on sta-
tistical interpretations may be applied [28, 29]. It is also
important to understand the relative influence of the two-
and three-body terms of the potential energy surfaces
(PESs) on the collision dynamics. The three-body terms
are influential when all three atoms are close together
and fast moving, whereas two-body potentials dominate
at long range, where at least one atom is far away. Nat-
urally, one would like to understand whether these con-
cerns affect reactions at very low temperatures. Using
approximate quantum calculations based on knowledge
of the long-range interactions, Mayle et al. [30, 31] pre-
dict that narrow resonances might dominate molecular
collisions as a function of an applied electric field.

Finally, we note that in collisions between three- or
more atoms there can exist intersecting PESs with the

same symmetry, i.e. conical intersections [19, 32]. They
are known to significantly affect reactions under the cer-
tain circumstances. For ground-state alkali-metal trimers
intersecting PESs exist at the C2v symmetry [19]. More-
over, at ultracold temperatures a full quantum dynamics
calculation might need to include coupling between po-
tential surfaces due to the hyperfine interactions between
electronic and nuclear spins of the reactants. Several
excellent reviews on chemical reactions of molecules at
ultracold temperatures [15, 33] discuss these and some
other questions.

The goal of this paper is to take an initial step toward
addressing some of the questions raised above. In partic-
ular, we would like to compare the performance of uni-
versal models and statistical quantum-mechanical (SQM)
approaches for ultracold reactions to a numerically ex-
act quantum mechanical (EQM) method formulated in
hyperspherical coordinates. We apply these approaches
to the alkali-rare-earth LiYb molecule colliding with a
Li alkali-metal atom at collisional energies E/k from 0.1
µK to 1 K, where k is the Boltzmann constant. These
molecules can be created by photo/magnetoassociation
from ultracold Li and Yb atoms and are the subject of
on-going ultracold experiments [21, 34].

Quantum mechanical description of this reaction is
challenging but simpler than alkali-metal system as
there are no conical intersections. Nevertheless, there
are two trimer potential surfaces, one with zero to-
tal electron spin and one with spin one, that dissoci-
ate to the LiYb(2Σ+)+Li(2S) channel. The spin-zero
trimer potential also dissociates to the Li2(1Σ+

g )+Yb(1S)
arrangement, while that with spin one dissociates to
the Li2(3Σ+

u )+Yb(1S) arrangement. Within our non-
relativistic framework and ignoring hyperfine interactions
with nuclear spins these potential surfaces do not interact
and lead to independent electronic structure and scat-
tering calculations. Starting from the lowest vibrational
state of the LiYb(2Σ+) molecule the reaction can only
proceed on the singlet trimer potential as the shallow
Li2(3Σ+

u ) potential is not energetically accessible.

For this paper we assume that the system is prepared in
the singlet trimer potential and compute the correspond-
ing reaction rate coefficients. In an actual experimental
realization, however, we must consider the orientation of
the electron spin of the LiYb molecule relative to that of
the Li atom. For example, when the electron spins are
aligned the system is not reactive and thus stable. In
a completely mixed gas, where all spin orientations are
present, the predicted rate coefficient is only 25% of the
value given in this paper.

Despite these simplicities, a full quantum calculation
of this reaction on the singlet trimer potential is a com-
putationally demanding task due to the high density of
states of both LiYb and Li2 molecules. For this reason,
we restrict the EQM treatment to total angular momen-
tum quantum number J = 0 (s-wave scattering in the
initial LiYb channel) and adopt a J-shifting method [35]
to evaluate temperature dependent rate coefficients. We
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hope to be able to transfer our insights from these studies
to more complex systems composed of alkali metal and
non-alkali metal atom systems.
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FIG. 1: Energetics of the LiYb+Li→Li2+Yb reaction. The
j = 0 vibrational levels of the X2Σ+ potential of the reactant
6Li174Yb molecule are shown on the left as horizontal red
lines. The j′ = 0 vibrational levels of the X1Σ+

g potential of
the product 6Li2 molecule are shown on the right as horizontal
blue lines. The zero of energy is located at the v = 0, j =
0 level of the 6Li174Yb molecule. (Energies are divided by
Planck’s constant h and the speed of light c.) The inset shows
a blowup of the energy levels near the v = 0 level of 6Li174Yb.
For clarity the rotational progressions are not shown.

The paper is organized as follows. Section II describes
our calculation of the singlet ground-state LiYbLi trimer
potential including a description of the interpolation be-
tween the ab initio points and the smooth connection to
the long-range form of the potential. Section III describes
a separate electronic-structure calculation of the disper-
sion potential between a LiYb molecule at its equilibrium
separation and a Li atom. The dispersion coefficient is
evaluated in terms of an integral over the dynamic po-
larizability of LiYb and Li as a function of imaginary
frequencies [17, 36]. This coefficient is used in deter-
mining the reaction rate coefficients within the universal
QDT treatment. Section IV describes the EQM, SQM,
and universal calculations for the isotopes 6Li and 174Yb.
We present the results of these models in Sec. V. We
also show a comparison of rate coefficients based on the
full trimer potential and the pair-wise potential. Finally,
state-to-state reaction rate coefficients derived from the
SQM and EQM methods are analyzed and discussed.
Summary and conclusion are presented in Sec. VI.

II. TRIMER POTENTIAL ENERGY SURFACE

The chemical reaction between a LiYb molecule and a
Li atom is illustrated by the pathway

Li(1)Yb + Li(2)→ [LiYbLi]→ Li2 + Yb , (1)

where initially the short-ranged, strong bond between the
first Li(1) atom and the Yb atom weakens as the second
Li(2) atom approaches. An intermediate three particle
“collision complex” [LiYbLi] is formed. Finally, during
the next stage of the reaction a short-range bond between
Li(1) and Li(2) is formed and the Yb atom moves away
quickly. The energetics of this reaction is shown in Fig. 1.
The interaction potential of this reaction depends on
three independent variables: the molecular bond lengths
RLi(1)Yb, RLi(2)Yb, and RLi(1)Li(2) for the separation be-
tween Li(1) + Yb, Li(2) + Yb, and the two Li atoms,
respectively.

The PES is an important part of the quantum dy-
namics calculations. No prior calculations exist on the
PES for the LiYb+Li reaction. We have computed the
multi-dimensional singlet ground-state potential surface
of the “collision complex” by solving the Schrödinger
equation for the electron motion with the nuclei held
in fixed positions. Such calculations are computation-
ally expensive as the energies of many molecular ge-
ometries are needed. We use the ab initio coupled-
cluster method with single, double, and perturbative
triple excitations (CCSD(T)) of the computational chem-
istry package CFOUR[37]. The trimer potential is im-
proved by first subtracting the pair-wise, dimer potentials
obtained at the same level of electronic structure theory.
The remainder is the non-additive three-body potential
V (3)(RLi(1)Yb, RLi(2)Yb, RLi(1)Li(2)). Earlier studies for
the quartet potential of homonuclear and heteronuclear
alkali-metal trimers [38–40] showed that non-additive ef-
fects are significant. An improved trimer potential is
then created by adding the accurate experimental Li2
ground state potential [41] and an ab initio theoretical
LiYb potential determined with a larger basis set [42]
to the three-body potential. No spectroscopic measure-
ment of the LiYb potential exists at this time. This ad-
justment leads to the correct treatment of the long-range
with at least one atom far away from the others. In sec-
tion V we will compare reaction rate coefficients in the
low-temperature regime based on the full trimer poten-
tial surface and to a pairwise-additive potential (which
ignores the three-body potential).

For the coupled-cluster calculations we applied the
aug-cc-pCVTZ basis set for the Li atom [43], whereas
we chose a basis set constructed from the (15s 14p 12d
11f 8g)/[8s 8p 7d 7f 5g] wave functions of Dolg and Cao
[44, 45] for the ytterbium atom. This ytterbium basis
relies on a relativistic pseudopotential that describes the
inner orbitals up to the 3d10 shell. Only, the 2s valence
electrons of Li and 4f10 and 6s2 valence electrons of Yb
are correlated in the ab initio calculation. The ab ini-
tio non-additive part of the trimer potential is fit to the
generalized power series expansion of Ref. [46] given by

V (3)(RLi(1)Yb, RLi(2)Yb, RLi(1)Li(2)) = (2)
m∑
i,j,k

dijkρ
i
Li(1)Ybρ

j
Li(2)Ybρ

k
Li(1)Li(2) ,
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where the scaled length ρAB = RABe
−βABRAB . The pow-

ers i, j, and k satisfy the conditions i + j + k ≤ m,
i+ j+k 6= i 6= j 6= k for m > 0 to ensure that the poten-
tial goes to zero when one of the internuclear separations
is zero [46]. The coefficients dijk and βAB serve as linear
and non-linear fit parameters, respectively, and are deter-
mined iteratively. Symmetry under interchange of the Li
atoms ensures that dijk = djik and βLi(1)Yb = βLi(2)Yb.
For m = 8 we obtain a root-mean-square (rms) devia-
tion smaller than δV (3) = 0.0004833 a.u. for all 591 data
points. The optimal 13 linear dijk and two non-linear
βAB coefficients are listed in Table I.

The advantage of the separation of the full potential
into an additive and non-additive part is that the two-
body pair-wise potentials can be replaced by either a
more-advanced, high-precision electronic structure calcu-
lation or by an “experimental” potential that reproduces
the binding energies of all-observed dimer ro-vibrational
levels. In this paper we use the spectroscopically-
accurate X1Σ+

g potential for Li2 [41] and our previously

determined ab initio X2Σ+ potential for LiYb [42]. Both
pair-wise potentials were expanded to large internuclear
separation using the best-known van der Waals coeffi-
cients [47, 48]. The diatomic vibrational energies com-
puted using these pair-wise potential curves are shown in
Fig. 1. It is seen that the LiYb(v = 0, j = 0)+Li reaction
can populate vibrational levels as high as v = 19 of the
Li2 molecule at collision energies in the ultracold regime.
A cut through our improved three-dimensional PES as
a function of the LiYb and Li2 bond lengths with the
atoms restricted to a linear geometry is shown in Fig. 2.
The reactant and product states are situated in the pair-
wise potential wells when either RLi(1)Li(2) or RLiYb is
large. We find that the optimized geometry, where the
potential has its absolute minimum, occurs at this linear

TABLE I: Parameters dijk and βAB for the non-additive
component of the three-body potential of LiYbLi as defined
in the text. We have βLiYb = 0.7110242142956382 and
βLiLi = 0.2079741859771922. Coefficients are in atomic units
of the Hartree energy Eh and Bohr radius a0.

i j k dijk

1 0 1 −0.3791234233645178

1 1 0 −12.07092112030131

1 1 1 6.778574385332172

2 0 1 0.9609698323047215

2 1 0 18.08003175501403

0 1 2 0.4946458265430991

2 1 1 −27.85537833078476

1 1 2 2.029448131083818

2 0 2 −0.8786730695382046

2 2 0 104.7435507501138

3 0 1 0.07103760674735782

3 1 0 39.61820620689986

0 1 3 −0.1402545726485475
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FIG. 2: A three-dimensional view of the PES in atomic units
for the reaction Li(1)Yb + Li(2) → [LiYbLi] → Li2 + Yb as
a function of bond lengths RLiYb and RLi(1)Li(2). The angle
between RLi(1)Li(2) and RLi(2)Yb is fixed at 180o. The zero of
energy corresponds to the three separated atoms. Topograph-
ical contours of equal energies are shown on the base of the
figure. From inside out their energies are −0.04Eh, −0.03Eh,
−0.02Eh, and −0.0075Eh, respectively.

geometry with the three atoms on a line with the two Li
atoms to one side (the same equilibrium configuration as
N2O, for example). It occurs when RLi(1)Yb = 7.00a0,
RLi(2)Yb = 12.25a0, and RLi(1)Li(2) = 5.25a0, respec-
tively. In fact, the bond between the Li atoms is so strong
that the Yb atom cannot get in between them and the Li-
Li separation is close to that for the corresponding dimer
potential. The atomization energy, the energy difference
between the absolute minimum and three free atoms is
Va = 0.045241 a.u.(9929.0 cm−1). The dissociation en-
ergy from the optimized geometry and the limit LiYb +
Li is Vd1/(hc) = 0.0368949 a.u.(8097.5 cm−1), while that
to the Li2+ Yb limit is Vd2/(hc) = 0.007188 a.u.(1577.6
cm−1).

The energy of the three-body non-additive Li2Yb po-
tential at the equilibrium geometry is 401.0 cm−1 and,
thus, the non-additive contribution weakens the bond by
5%. Furthermore, in the absence of the non-additive con-
tribution the pair-wise potential has a depth of 10460.0
cm−1 and equilibrium separations RLi(1)Yb = 6.64a0 and
RLi(1)Li(2) = 5.07a0, shifted relative to the full trimer po-
tential. A much smaller weakening was obtained for the
rare-gas trimers [49, 50], while the non-additive three-
body part of the potential has the opposite effect on the
binding in systems of spin-polarized alkali-metal atoms,
such as Li, Na, K, Rb, and Cs [39]. In fact, the full
trimer potentials are between 30% to four times deeper
than their pair-wise potentials.
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III. ATOM-DIMER DISPERSION POTENTIALS

In this section we determine the long-range dispersion
potential for a polar LiYb molecule in the lowest vibra-
tional level (v = 0) of the X2Σ+ potential and a lithium
atom. We evaluate its isotropic and anisotropic contri-
bution. Later these coefficients will be used to evaluate
universal reaction rates in Sec. IV C.

We calculate the atom-molecule van-der-Waals coeffi-
cients by integrating and summing the product of the
LiYb and Li dynamic polarizability tensor αij(iω) over
imaginary frequencies iω and components i and j [36].
For polar molecules, which have a non-zero permanent
dipole moment, there are contributions to the polariz-
ability from ro-vibrational transitions within the ground-
state potential as well as those to excited electronic po-
tentials. The contribution from transitions within the
ground state is only important when the permanent
dipole moment is large. For example, Ref. [17] showed
that the ground-state contribution dominates for a heavy
v = 0, j = 0 RbCs molecule and is small but non-
negligible for the lighter KRb. The LiYb molecule has
a very small permanent dipole moment of 0.011ea0 [42]
at equilibrium separation Re = 6.71a0 and transitions to
the electronically excited states dominate. Here, e is the
charge of the electron.

The importance of excited electronic states in the cal-
culation of the polarizability of vibrational ground state
of LiYb allows us to make a simplification. We can ne-
glect vibrational averaging and only have to determine
the polarizability and thus the dispersion coefficients at
Re. Formally, the isotropic and anisotropic dispersion
coefficients are [17, 36]

C iso
6 =

3

π

∫ ∞
0

dω ᾱLiYb(iω,Re) ᾱ
Li(iω) (3)

and

Caniso
6,20 =

1

π

∫ ∞
0

dω∆αLiYb(iω,Re) ᾱ
Li(iω) , (4)

respectively, where for both atom and molecule ᾱ =
(αxx + αyy + αzz)/3 and ∆α = αzz − (αxx + αyy)/2
in terms of the diagonal x, y, and z components of the
polarizability tensor. For the molecule the components
are in the body-fixed frame with z along the internuclear
axis and αxx = αyy.

The diagonal dynamic polarizabilities αLiYb
ii (ω,Re) are

first calculated as a function of real frequency ω using
the coupled-cluster method of CFOUR with single and
double excitations (CCSD) [51]. The Li and Yb basis sets
are the same as in the calculation of the trimer surface
described in Section II. We then fit

αMol
ii (ω,Re) =

∑
k

Ak
1− (ω/ηk)2

(5)

with parameters Ak and ηk. The Ak and ηk are related
to the oscillator strength and transition frequency be-

tween ground and exited state k, respectively. We ana-
lytically continue to imaginary frequencies and perform
the integral over frequencies to determine the dispersion
coefficients.

Finally, we find that the isotropic C iso
6 coefficient for

the v = 0 X2Σ+ LiYb molecule colliding with Li atom
is 3086Eha

6
0, which applies to any rotational state j,

as the dominant contributions to this value are due to
excited-electronic potentials. The anisotropic Caniso

6,20 co-

efficient is 776Eha
6
0 and is only relevant for the rotating

molecules with j > 0. We verified that the contribu-
tion to C6 from transitions within the ground state, to
a good approximation is given by d4

e/[(4πε0)26Be] [52],
where Be = 1.05 × 10−6Eh or Be/(hc) = 0.230 cm−1

is the 6Li174Yb rotational constant at Re and ε0 is the
electric constant, is negligible. The van der Waals length
RvdW = (2µC iso

6 /~2)1/4/2 for the isotropic dispersion po-
tential is 45.0a0 for 6Li174Yb and 6Li.

IV. QUANTUM DYNAMICS THEORY

In this and the following section we describe and com-
pare the predictions of three scattering approaches of dif-
ferent levels of complexity. We begin with a description
of each approach. In all three formalisms the effects due
to the weak hyperfine and magnetic-field-induced Zee-
man interactions of the Li atoms as well as any electric-
field-induced level shifts of the polar LiYb molecule are
omitted. For ground-state LiYb + Li collisions this im-
plies that we only need to model couplings between the
relative orbital angular momenta of the three atoms. In
fact, the sum of these orbital angular momenta, the total
angular momentum J and its space-fixed projection M ,
are conserved. Parity under spatial inversion, labeled by
p = ±1, and particle exchange symmetry for identical
particles within a diatomic molecule labeled by q = ±1
are also conserved quantities. Here, q = ±1 = (−1)j

′
,

corresponds to even and odd rotational levels j′ of Li2
[53]. The symmetries of the Hamiltonian ensure that the
reaction rates are independent of M .

A. Exact quantum-mechanical method

The formalism for atom-diatom reactive scattering is
well developed [8, 53–58]. Only a brief account rele-
vant to the present context is provided here. We use
the approach developed by Pack and Parker [57] based
on the adiabatically adjusting principle axis hyperspher-
ical (APH) coordinates (ρ, θ, φ). This single-set of co-
ordinates is convenient for the description of an atom-
diatom chemical reaction as it evenhandedly describes
all three arrangement channels, τ , in an A+BC system.
On the other hand, one needs three sets of mass-scaled
Jacobi coordinates (Sτ , sτ , γτ ) for describing chemical
reaction [57]. Here, Sτ is the atom-molecule center-of-
mass separation, sτ is the diatom separation, and γτ
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is the angle between Sτ and sτ . The hyper radius ρ
is ρ =

√
S2
τ + s2

τ , while expressions for the hyper an-
gles θ and φ are given in Ref. [57]. Outside the region
of strong interactions, where the three-body term has
nearly decayed to zero, the three sets of Delves hyper-
spherical coordinates (DC), (ρ, θτ , γτ ) are used where
θτ = arctan (sτ/Sτ ) [54, 55]. The hyper radius in DC is
the same as in APH but its hyper angles are defined dif-
ferently and depend on the arrangement channel. In our
approach, we adopt the APH coordinates (ρ, θ, φ) in the
strong interaction region (inner chemically important re-
gion) and the DC (ρ, θτ , γτ ) in the outer region. Finally,
asymptotic boundary conditions are applied in Jacobi co-

ordinates to evaluate the scattering matrix SJ,pqf←i(E) for
conserved J , p, and q. The indices i and f describe the
initial and final scattering channels and E is the initial
collision energy.

In the inner region, where APH coordinates are used,
the Hamiltonian for a triatomic system is

H = − ~2

2µρ5

∂

∂ρ
ρ5 ∂

∂ρ
+

Λ̂2

2µρ2
+ V (ρ, θ, φ) , (6)

where µ =
√
mAmBmC/(mA +mB +mC) is the three

body reduced mass, Λ̂ is the grand angular momentum
operator [59], and V (ρ, θ, φ) is the adiabatic potential
energy surface of the triatomic system. The total trimer
wave function in this region for a given J , M , p, and q is
expanded as [59–61]

ΨJM,pq = 4
√

2
∑
t

1

ρ5/2
ΓJ,pqt (ρ)ΦJM,pq

t (Ξ; ρ) , (7)

where the sum t is over five-dimensional (5D) surface

functions ΦJM,pq
t (Ξ; ρ) with Ξ = (θ, φ, α, β, η), where

α, β, and η are Euler angles that orient the trimer

in space. The other terms, ΓJpqt (ρ), are ρ-dependent
radial coefficients. The orthonormal surface functions
ΦJM,pq(Ξ; ρ) depend parametrically on hyper radius ρ.
For each ρ the surface functions are eigen solutions of
the Hamiltonian ~2Λ̂2/(2µρ2) + V (ρ, θ, φ). To evalu-

ate the 5D surface functions ΦJM,pq
t (Ξ; ρ), we expand in

terms of primitive orthonormal basis functions in Ξ given
by dlµ,ν(θ)(eimφ/

√
2π)D̃J

ΩM (α, β, γ), where dlµ,ν(θ) is ex-

pressed in terms of Jacobi polynomials P
(µ−ν,µ+ν)
l−µ (cos θ)

[59], D̃J
ΩM are normalized Wigner rotation matrices, and

Ω is the projection of J on the body-fixed axis.
The basis function labels µ, ν, l and m can be integral

or half-integral depending upon the value of total angu-
lar momentum J , Ω, and inversion parity p.[59] We intro-
duce lmax and mmax where µ ≤ l ≤ lmax and |m| ≤ mmax.
The parameters lmax and mmax control the size of the
basis sets in θ and φ. A hybrid discrete variable repre-
sentation (DVR) in θ and a finite basis representation
(FBR) in φ are used to solve the eigenvalue problem in-
volving the surface function hamiltonian. An implicitly
Restarted Lanczos Method (IRLM) of Sorensen [62] and

Sylvester algorithm [63] are used for the diagonalization
of the DVR Hamiltonian which includes tensor products
of kinetic energy operators. Additionally, using a Sequen-
tial Diagonalization Truncation (SDT) technique [64, 65]
the hamiltonian matrix is kept to a reasonable size.

Outside the region of strong interaction, we use DC
and the total wave function is expanded in a complete
set of ρ dependent vibrational wave functions ΥJq

n (θτ ; ρ),
coupled angular functions YJM,pq

n , and radial functions
ΓJ,pq to yield

ΨJM,pq = 2
∑
n

1

ρ5/2
ΓJ,pqn (ρ)

ΥJ,q
n (θτ ; ρ)

sin 2θτ
YJM,pq
n (Ŝτ , ŝτ ) ,

(8)
where n denotes collective molecular quantum numbers,
{vτ , jτ , `τ}. The angles Ŝτ and ŝτ are related to Eu-

ler angles via dŜdŝ = dα sinβdβdη sin γdγ. The vibra-
tional wave functions ΥJq

n (θτ ; ρ) parametrically depend
on ρ and are computed using a one-dimensional Numerov
propagator in θτ [66]. The Hamiltonian in the DC has
the similar form as in APH except that the expression
for Λ̂2 has a different form [66] and the variables of the
three body PES are also different.

On substitution of ΨJM,pq into the time-independent
Schrödinger equation HΨJM,pq = EtotΨ

JM,pq one ob-
tains a set of coupled equations in ΓJ,pq(ρ). Using a
sector-adiabatic approach in ρ, where ρ is partitioned
into a large number of sectors, the surface functions are
evaluated at the center of each sector. Assuming that
the surface functions do not change within a sector, the
solution of the Schrödinger equation is obtained by prop-
agating the radial equations from a small value of ρ in
the classically forbidden region to a large asymptotic
value of ρ = ρmax. Here, we propagate the R-matrix
R(ρ) = Γ(ρ) (dΓ(ρ)/dρ)

−1
for each collision energy us-

ing the log-derivative method of Johnson [67]. Scatter-
ing boundary conditions are applied at ρmax to evaluate
the scattering S-matrix. Details of the numerical inte-
gration, mapping between basis functions in the APH
and DC coordinates, and asymptotic matching in Jacobi
coordinates are given in Refs. [59, 66].

The S-matrix elements are used to calculate the partial
reactive rate coefficient for a given J , p, and q,

KJ,pq
i (E) =

1

2ji + 1
vr
π

k2
r

∑
f

∣∣∣SJ,pqf←i(E)
∣∣∣2 , (9)

where the sum f is over all product (Li2) ro-vibrational
states (vf ,jf ). In the usual way, we have also aver-
aged over initial mji and summed over all the final
mjf . Here vr = ~kr/µA,BA is the incident relative ve-

locity and ~2k2
r/(2µA,BA) = E is the relative kinetic

energy in the incident channel with the reduced mass
µA,BA = mA(mB +mA)/(2mA +mB).

In order to construct the total reaction rate coefficient
the role of the nuclear spin I of the two identical 6Li
nuclei must be considered. Following Ref. [53] we define
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symmetrized rate coefficient

K̄J,pq
i (E) =

2I + 1 + q(−1)2I

2(2I + 1)
KJ,pq
i (E) , (10)

for a given p, q, and J and the total reaction rate coeffi-
cient becomes

Ki(E) =
∑
J

(2J + 1)
∑
p

K̄J,pq
i (E) . (11)

Since 6Li has nuclear spin I = 1, this leads to weight
factors 2/3 and 1/3 for even and odd 6Li2 rotational levels
jf , respectively.

The EQM calculations involve the numerical compu-
tation of the 5D hyperspherical surface functions in the
APH and DC and log-derivative propagation of the CC
equation in these coordinates, followed by asymptotic
matching to Li2 and LiYb ro-vibrational states in Jacobi
coordinates. We have restricted calculations for total an-
gular momentum J = 0. For the inner region ranging
from ρ = 6.0a0 to 33.89a0, the number of APH surface
functions in θ and φ are controlled by lmax and mmax. For
computational efficiency this hyperradial range was fur-
ther divided into the three regions 6.0a0 < ρ < 13.98a0,
13.98a0 < ρ < 20.00a0, and 20.00a0 < ρ < 33.89a0 with
lmax = 119, 179, 399 and mmax = 220, 280, 440, respec-
tively. For J = 0 this leads to 5D surface function ma-
trices of dimension 52 920, 100 980, and 352 400. For-
tunately, the dimensionality of these large matrices can
be significantly reduced by using the SDT procedure to
23 986, 42 769, 136 489, leading to considerable savings in
computational time. Furthermore, the explicit construc-
tion of these matrices is avoided by using an efficient
sparse matrix diagonalization methodology (IRLM).

Finally, a logarithmic spacing in ρ is adopted with
88, 122 and 175 sectors, respectively. We compute
950 lowest energy surface functions for J = 0, leading
to an equivalent number of coupled channel equations.
Asymptotically, these channels correspond to different
ro-vibrational levels of LiYb and Li2 molecules. Among
these, 636 are open channels and remaining 314 are closed
channels.

Delves coordinates are used in the outer region com-
prised of ρ = 33.89a0 to ρmax = 107.48a0. A logarithmic
spacing in ρ similar to that in the inner region is em-
ployed here. The number of basis functions in this re-
gion is controlled by an energy cutoff which is taken to
be 0.9 eV relative to the minimum energy of the asymp-
totic Li2 diatomic potential. As discussed previously, a
one-dimensional Numerov method is used to compute the
adiabatic surface functions ΥJq

n (θτ ; ρ). Consequently, so-
lution of the adiabatic problem in the Delves coordinates
is fast compared to the APH part. The computational
time for the log-derivative propagation of the radial equa-
tions is comparable to that in the inner region. We have
verified that convergence of the scattering matrices was
reached at ρmax = 107.48a0 by comparing with results
obtained at ρmax = 118a0.

At ρ = ρmax, we match the DC wave functions to ro-
vibrational levels of the LiYb and Li2 molecules defined
in Jacobi coordinates. This includes vibrational levels
v = 0 − 4 for LiYb and v′ = 0 − 22 for Li2. For LiYb,
rotational quantum numbers up to j = 54, 47, 38, 27 and
3 are incorporated in the vibrational levels v = 0−4 and
for Li2 rotational quantum numbers up to j′ =101, 98,
95, 92, 90, 88, 85, 82, 79, 76, 73, 70, 66, 63, 60, 56, 52,
48, 43, 39, 33, 27 and 17 are included in vibrational levels
v′ = 0− 22, respectively.

B. Statistical quantum-mechanical method

The SQM has been developed to treat complex-forming
atom-diatom reactions [28, 29, 68]. The method has been
successfully employed in recent investigations of the low
energy dynamics of the D++H2 → DH + H+ reaction
[69–71]. In particular, statistical predictions were found
in almost perfect agreement with both experimental and
quantum mechanical rate coefficients down to 11 K.

It assumes that the process proceeds via the formation
of an intermediate three-body species between reactants
and products with a sufficiently long lifetime. Conse-
quently, the state-to-state reaction probability P Jf←i(E),
for conserved total angular momentum J and total en-
ergy E can be approximated by the product of the proba-
bility pJi (E) of the complex to be formed from the initial
reactant channel i and the fraction pJf (E)/

∑
c p

J
c (E) of

complexes fragmenting into the final product channel f
(with Li2 ro-vibrational state v′j′Ω′) as follows:

P Jf←i(E) =
pJi (E)pJf (E)∑

c p
J
c (E)

. (12)

The sum over c in Eq. (12) runs over all energetically
open states, Ec ≤ E, on both reactant and product chan-
nels at the total angular momentum J . To further sim-
plify the SQM simulations we have used the centrifugal
sudden (CS) approximation [68], where channel states are
uniquely specified by the rovibrational quantum numbers
v and j and projection Ω, where Ω is the body-fixed pro-
jection of the diatomic rotational angular momentum ~ on
the atom-diatom axis. For a collision energy of E/k = 0.1
K we have verified that a proper treatment of the Coriolis
coupling between Ω states does not significantly modify
the predicted rate coefficient.

The capture probabilities in each separate chemical ar-
rangement τ are calculated as

pJc (E) = 1−
∑
c′

|SJc′←c(E)|2 , (13)

by solving the corresponding closed-coupled channel
equations in radial Jacobi coordinate Rτ [28, 68] by
means of a time-independent log-derivative propagator
[72] between Rc, where the complex is assumed to form,
and the asymptotic separation Rmax.
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Finally, the total reaction rate coefficient for the ro-
vibrational level vj of the LiYb molecule is given by

Kvj(E) =
∑
v′j′

Kv′j′,vj(E) , (14)

where the vj → v′j′ state-to-state rate coefficient is

Kv′j′,vj(E) =
1

2j + 1

∑
JΩ

∑
Ω′

vr(2J + 1)
π

k2
r

|SJv′j′Ω′,vjΩ(E)|2 ,

(15)
with |SJv′j′Ω′,vjΩ(E)|2 = P Jf←i(E) and the sums over the

body-fixed projections Ω′ and Ω, as well as J and its
space-fixed projection. The state-to-state rate is aver-
aged over the 2j + 1 degenerate space-fixed projections
of ~ of the initial ro-vibrational level.

C. Universal model

The universal model (UM) is a further simplification
of the reaction valid for the rotation-less v = 0 and
j = 0 LiYb molecule and ultracold collision energies.
The model is based on a modification of the approach
developed in Refs. [73, 74]. For sufficiently large sep-
arations R > Ru between a rotation-less LiYb molecule
and Li coupling to other ro-vibrational states is negligible
and the long-range interaction potential is an attractive
isotropic van-der-Waals potential −C iso

6 /R6. Similar to
the SQM we assume a scattering wavefunction that satis-
fies complete absorbing boundary conditions at the uni-
versal capture radius Ru. For these approximations to be
valid the universal radius needs to satisfy the conditions
Ru � RvdW and C iso

6 /R6
u ∼ 2Be, where Be is the rota-

tional constant of the v = 0 LiYb molecule. As an aside
we note that the second condition ensures that Ru � Rc,
as expected. The coefficient C iso

6 has been determined in
Sec. III.

Under these assumptions the scattering of a rotation-
less molecule with an atom is described by the single-
channel potential −C iso

6 /R6 + ~2J(J + 1)/(2µR2), since
for a j = 0 molecule the total angular momentum J
of the trimer equals the relative orbital angular momen-
tum between the atom and dimer. The corresponding
Schrödinger equation with short-range boundary condi-
tions is numerically solved for R > Ru and the total
reaction rate coefficient for collision energy E is given by

Kuniv
v=0,j=0(E) =

∑
J

(2J + 1)vr
π

k2
r

(
1− |SJel(E)|2

)
, (16)

where SJel(E) is the elastic S-matrix element found by
fitting the solution to in- and out-going spherical waves.
Due to the absorbing boundary condition at R = Ru we
have |SJelastic(E)| < 1.
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FIG. 3: Top panel) The EQM reaction rate coefficient for the
collision of the v = 0, j = 0 ro-vibrational level of 6Li174Yb
with a 6Li atom as a function of relative collision energy E for
total angular momentum J = 0. Lower panel) The thermally-
averaged reaction rate coefficient summed over total angular
momenta J using the J-shifting approach as a function of
temperature T . In both panels black and blue lines corre-
spond to rate coefficients to form even and odd rotational
levels of the 6Li2 product molecule, respectively. Solid and
dashed lines are rate coefficients from calculations using the
full trimer and the additive pair-wise potential, respectively.

V. RESULTS AND COMPARISON

In this section we describe and discuss our results based
on the three computational methods. We start with the
EQM calculations. The upper panel of Fig. 3 shows the
J = 0 EQM reactive rate coefficient for 6Li174Yb(v =
0, j = 0)+6Li collisions as a function of the incident ki-
netic energy. Results are presented for even and odd
rotational levels of diatomic Li2 as well as for full three-
body and additive pairwise potentials. The J = 0 results
correspond to s-wave scattering in the incident channel
and only s-waves contribute for energies below 100 µK.
The rate coefficients for the two potentials are similar
for E/k > 10−3 K, while significant differences are seen
for lower energies with the zero-temperature rate coeffi-
cients differing by a factor of two. We also observe that
the onset of the Wigner-threshold regime, where the rate
coefficient approaches a constant for E → 0, is shifted
to slightly lower energies for the pairwise potential. This
may be due to the slightly different bound-state spectrum
of the Li2Yb complex for the two PESs.

For collision energies E/k > 10−3 K, non-zero angu-
lar momenta J need to be included. However, for our
system this is not computationally feasible in the EQM
approach. Instead, we adopt a J-shifting approxima-
tion [35], which was shown to work reasonably well for
barrier-less reactions involving non-alkali metal atom sys-
tems. Details can be found in Ref. [60, 61]. In the lower
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FIG. 4: The J = 0 state-to-state EQM reaction rate coefficient as a function of initial relative collision energy E and vibrational
state of the 6Li2 product molecule. Left panel correspond to the results based on the calculation with full trimer potential,
whereas the right panel shows rate for the additive pair-wise potential.

panel of Fig. 3 we show the thermally-averaged reactive
rate coefficients for full trimer and pairwise PES as a
function of temperature evaluated using the J-shifting
approach. Since the scattering calculation was only per-
formed for collision energies up to 1 K, the Boltzmann
average over collision energies limit the evaluation of the
rate coefficient to temperatures up to 0.1 K. Results are
presented for both even and odd rotational levels of the
Li2 molecule. For the full trimer potential, the rate
coefficients in the zero-temperature limit for the even
and odd Li2 rotational levels are 2.61×10−10 cm3/s and
1.11×10−10 cm3/s, while for the pairwise potential they
are 5.33×10−10 cm3/s and 2.49×10−10 cm3/s, respec-
tively.

The EQM calculations allow the study of state-to-state
reaction rates and, in particular, the distribution over
the vibrational and rotational levels of the 6Li2 molecule.
Figure 4 plots the J = 0 rate coefficients to form 6Li2 vi-
brational states (summed over all open rotational states)
as a function of collision energy. The left and right pan-
els correspond to the case when the full three-body and
pair-wise potentials have been used, respectively. For
both cases vibrational levels as high as v′ = 19 are pop-
ulated. The level v′ = 15 is the most populated level for
the calculation with the full trimer potential, although
vibrational levels v′=1, 2, 3, and 9 are also comparably
populated, indicating a broad range of vibrational excita-
tion for the 6Li2 product. On the other hand vibrational
levels from v′=1 to v′=4 have a highest rate of popu-
lation for the calculation with the pair-wise potential.
Their rate coefficients are twice as high as those of the
other vibrational levels.

Figures 5 and 6 show the J = 0 rate coefficients to
form even and odd j′ levels in the v′ = 15 vibrational
level of 6Li2, respectively. In each figure the top and bot-
tom panel correspond to collision energies E/k = 10−4

K and 1 K, respectively, and rotational levels as high
as j′ = 44 are populated. Differently colored bars corre-
spond to predictions for the full three-body and pair-wise
potentials. For collision energies below 0.01 K (primarily

the Wigner threshold regime), the relative distribution is
independent of E.

For the full trimer potential the v′ = 15 rate coeffi-
cients in Fig. 5 are dominated by the two highest rota-
tional levels, j′ = 42 and 44. In other words, rotational
levels, where the relative kinetic energy between the Li2
dimer and Yb is smallest, are produced. On the other
hand, the calculations with the pair-wise potential show
the levels j′ = 22, 32, and 42 are most populated. At
E/k = 1 K a broader range of rotational levels is popu-
lated with the highest population for j′ = 0 and 26 for
the full trimer potential and j′ = 0, 32 and 38 for the
pair-wise potential. Similar results have been observed
for other barrier-less reactions involving non-alkali metal
atom systems such as OH+O and O(1D)+H2 [60, 61].

Figure 6 shows results for the rotational distribution
of the odd j′ levels in the v′ = 15 vibrational level. At
E/k = 10−4 K calculations for the full trimer potential
reveal that the j′ = 21 and 41 levels are most popu-
lated, whereas for the pairwise potential these are the
j′ = 3 and 39 levels. At E/k = 1 K the population of
j′ = 35, 37, 39 and 41 dominates for the trimer potential
and j′ = 19 and j′ = 33 levels for the pair-wise po-
tential. Overall, the highly-excited rotational levels are
more populated than the lower rotational levels. This is
partly driven by the anisotropy of the interaction poten-
tial and a compromise between conservation of internal
energy and rotational angular momentum.

We now turn to describe the results obtained with
the SQM method. In this study, the calculation for
the LiYb+Li reactant arrangement was performed for
Rc = 7a0 and a variable Rmax depending on the energy
under consideration, but with a largest value of 100a0,
whereas for the Li2+Yb product arrangement, those radii
are 11.1a0 and 69.5a0, respectively. The selection of
these values is made after numerical tests to guarantee
the convergence of both individual capture, pJi (E), and
total, P Jf←i(E), reaction probabilities. The SQM calcu-
lations in the reactants arrangement involves only the
LiYb ground vibrational state and rotational states up
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FIG. 5: The EQM reaction rate coefficient as a function of the
even rotational quantum number of the v′ = 15 vibrational
level of the 6Li2 molecule. The total angular momentum is
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of a calculation with the full trimer potential and additive
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FIG. 6: The EQM reaction rate coefficient as a function of
the odd rotational quantum number of the v′ = 15 vibrational
level of the 6Li2 molecule. The total angular momentum is
J = 0. Upper and lower panels show the rate coefficient for an
initial collision energy of E/k = 10−4 K and 1 K, respectively.
The black and red bars in both panels correspond to results
of a calculation with the full trimer potential and additive
pair-wise potential, respectively.

to j = 16, whereas in the product arrangement rovi-
brational states of the Li2 molecule extend up to v′ = 16
and j′ = 95. Comparisons made at E/k ∼ 0.1 K revealed
that no significant differences are found between the CS
approximation and a proper treatment of the Coriolis
coupling term within the coupled-channel framework.

Figure 7 shows the SQM reaction rate coefficient to
produce vibrational level v′ = 0 − 17 of 6Li2 as a func-
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FIG. 7: The state-to-state SQM reaction rate coefficient for
vibrational states v′ of 6Li2 as a function of relative collision
energy. The left panel corresponds to the results restricted
to total angular momentum J = 0 and right panel shows the
rate coefficients summed over all J . The results are based on
the full trimer potential.

tion of collision energy E. The left panel shows the rate
for J = 0, while the right panel includes sum over all
J . The full trimer potential has been used in these cal-
culations. The figure shows that the SQM calculation
predicts rate coefficients that decrease with increasing
v′. This contrasts the EQM data, which predict a far
more complex v′ dependence. This may be attributed
to not accurately including the three-body forces in the
SQM calculations. Experimental measurement of these
state-to-state reaction rates are clearly needed. Ground
state LiYb molecule does not exist yet.

The rotational dependence of the rate coefficient from
SQM for three vibrational levels v′ is shown Fig. 8. The
number of j′s that can be populated follows from en-
ergy conservation and decreases with increasing v′. For
small v′ the j′ dependence is fairly smooth and gently ap-
proaches zero for larger j′, while for higher v′ more struc-
ture is predicted showing a maximum near the largest j′

that are energetically accessible. For example, for v′ = 15
rotational states around j′ = 40 are most populated.
These trends coincide with those predicted by EQM for
the full trimer potential.

For ultracold molecular reactions the universal model
has been very successful in qualitatively and sometimes
quantitatively describing the observed reaction rates
[16, 17]. It solely depends on the dispersion coefficient
between LiYb(v=0) and Li and can only predict the to-
tal rate coefficient. In Fig. 9 we compare the UM rate
coefficients for 6Li+6Li174Yb(v = 0, j = 0) reaction with
those of our other two calculations. For comparison pur-
pose, the EQM results include contributions from both
even and odd rotational levels of Li2. Results for both
full trimer and pair-wise potential are given where ap-
propriate.
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From the figure it is clear that results from different
calculations with different potentials and varying degrees
of approximations begin to merge for energies or tem-
peratures above 10−3 K. Hence, the rate coefficient is
largely insensitive to model and potential for collision
energies above a mK. Rate coefficients from the SQM
and UM models attain constant values for temperatures
below 10−5 K in accordance with the Wigner threshold
behavior. However, for the EQM results, this regime is
attained only at about 10−5 K, presumably due to con-
tributions from short-range interactions. This may also
explain why the SQM results on the pair-wise additive
and full trimer potentials yield comparable results. The
SQM approach neglects most of the region of the poten-
tial between reactants and products where the interme-
diate complex is assumed to form. It is this region where
specific features of the full potential are introduced but
not fully taken into account in the SQM approach. The
EQM results from the pair-wise additive and full trimer
potentials show a factor of two difference in the ultracold
regime, indicating sensitivity of results to fine details of
the interaction potential. This is also evident from the
product-resolved rate coefficients presented in Figs. 4, 5
and 6.

VI. CONCLUSION

We have investigated the chemical reaction between
an ultracold LiYb molecule and an ultracold Li atom.
This type of system was totally unknown in terms of
its short- and long-range electronic potential surface as
well as its scattering properties and reactivity. In this
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tion of collision energy, restricted to total angular momentum
J = 0 (left panel) and the thermally-averaged rate coefficient
summed over total angular momenta J as a function of tem-
perature (right panel). The blue, red, and green curves corre-
spond to the exact (EQM), statistical (SQM), and universal
quantum-defect model (QDT), respectively. Solid and dashed
lines for the EQM and SQM calculations correspond to cal-
culations based on the full trimer potential and the pair-wise
additive potentials, respectively. We used C6 = 3086Eha

6
0 in

the UM.

paper we reported on the first calculation of the ground-
state electronic surface of the LiLiYb tri-atomic complex.
We found that this collisional system possesses a deep
potential energy surface that has its absolute minimum
at a linear geometry with an atomization energy of 9929.0
cm−1 and accommodates many bound and quasi-bound
states that are accessible in ultracold collisions making
quantum dynamics simulations extremely challenging.

In addition, we performed a separate calculation of
the long-range van der Waals potential between a Li
atom and the LiYb molecule in the v = 0 vibrational
level based on the dynamic polarizability of Li and LiYb.
These van der Waals coefficients were used to estimate
the universal reaction rate coefficient.

We explored the reactivity of this system at the quan-
tum level using three different computational methods.
These include an exact quantum mechanical method
based on a rigorous close-coupling approach in hyper-
spherical coordinates that uses a minimal amount of as-
sumptions. The EQM method predicts both total and
state-to-state reaction rate coefficients, which we hope
will stimulate the development of state-selective detec-
tion of the product molecules in ultracold reactions. This
is one of the major challenges for ultracold chemistry in
going beyond integrated reaction rate constants. The
high accuracy of the reaction rates comes at the expense
of model complexity and computational time.

We also explored two approximate quantum-
mechanical methods to describe the reaction rate
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and capture the main features of the complex dynamics.
One is the so-called statistical method, which assumes
that the reactivity from reactants to products is con-
trolled by the formation of a long-lived intermediate
complex. The long-range scattering is described by
separate coupled-channel calculations in Jacobi coordi-
nates for the reactant (LiYb+Li) and product (Li2+Yb)
arrangements. This model makes predictions for state-
to-state rate coefficients as well. Finally, we used the
universal QDT model in the reactants arrangement,
which assumes that at a carefully chosen separation
between LiYb(v = 0, j = 0) and Yb there is unit
probability of a reaction. Reflection only occurs on the
entrance-channel van der Waals potential. Consequently,
this model does not depend on details of the strong
short-ranged chemical interactions and only the total
reaction rate coefficient can be calculated.

The total reaction rate coefficient as calculated from
the three models agree for collision energies (or temper-
atures) above 10−3 K. Only for smaller collision energies
and, in particular, in the Wigner threshold regime it dif-
fers by a factor of two. It was surprising for us to see
that in the Wigner threshold regime the universal model
predicts a rate that lies between the EQM and SQM val-
ues. In the language of the universal model this suggests
that there is a significant probability that flux is returned
from the short-range region. The incoming and outgoing
fluxes can then interfere. In EQM calculation these fluxes
interfere in such a way that the reaction rate coefficient
is significantly enhanced, whereas in the statistical model
it is reduced. The disagreement between EQM and SQM
in the Wigner threshold regime suggests that the under-
lying SQM assumption of a complex-forming dynamics
for the reaction must be relaxed.

Both EQM and SQM calculations have been performed
with the full three-body potential as well as the pair-wise

potential. We conclude that only in the Wigner thresh-
old regime with collision energies well below 10−3 K the
EQM model is sensitive to the presence of the three-body
contribution. On the other hand the SQM model shows
no such sensitivity due to its neglect of three-body forces
in the chemically important region.

In fact, the non-additive three-body potential has a
stabilizing effect on our system. This might be specific
to the used PES. The opposite effect was found in the the-
oretical analyses of non-additive three-body interactions
for the lowest A2B quartet states (with A, B = Li, Na, K,
Rb, or Cs) [40]. Furthermore, Ref. [38] investigated vi-
brational relaxation in collisions between spin-polarized
Na atoms and vibrationally excited Na2 molecules us-
ing either the additive or non-additive trimer potentials.
They found that the rate coefficient increases (almost by
an order of magnitude) when the non-additive three-body
term is added.
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