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Modifications of Casimir-Polder interactions due to confinement inside a cylindrical cavity and due to cur-
vature in- and outside the cavity are studied. We consider a perfectly conducting cylindrical shell with a single
particle (atom or macroscopic sphere) located next to its interior or exterior surface, or two atoms placed inside
the shell. By employing the scattering approach, we obtain the particle-cavity interaction and the modification
of the two-particle interaction due to the cavity. We consider both retardation and thermal effects. While for the
atoms a dipole description is sufficient, for the macroscopic sphere we sum (numerically) over many multipole
fluctuations to compute the interaction at short separations. In the latter limit we compare to the proximity
approximation and a gradient expansion and find agreement. Our results indicate an confinement induced sup-
pression of the force between atoms. General criteria for suppression and enhancement of Casimir interactions
due to confinement are discussed.
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I. INTRODUCTION

Fluctuation-induced interactions between polarizable parti-
cles such as the London force [1] and its retarded companion,
the Casimir-Polder force [2], play an ubiquitous role in funda-
mental physics, chemistry and applied technologies including
nanotechnology and ultra-cold atomic systems [3–5]. A quan-
titative understanding of such forces is a key parameter in the
design of new experiments and technological applications.

An important line of research addresses the dependence of
these interactions on geometry and shape of the polarizable
objects. Examples include the effect of surface curvature [6],
sharp edges and tips [7], orientation dependence [8], and con-
finement [9, 10]. The non-additivity of fluctuation induced
forces complicates the study of these effects. To overcome
this problem, a multiscattering formalism for Casimir forces
has been developed [11–15] and applied successfully [16–21],
including the case of a sphere outside a cylinder [22, 23].

In this paper we use the scattering approach to investi-
gate the Casimir forces between particles (atoms or a metal-
lic sphere) placed inside a cylindrical cavity. In particular,
our goal is to study how curvature and confinement modify
the fluctuation-induced interactions between an atom and a
curved surface and between atoms confined in perfectly con-
ducing cylindrical cavities. Our results apply to both the zero
temperature and the classical high temperature limit.

We find that in all cases, the interaction is considerably de-
creased compared to that in free space and decays exponen-
tially over the scale of radius of the cylinder. This is mainly
due to the fact that the fluctuation-induced forces are not pair-
wise additive. We obtain both a large and a short distance
expansion for the force between an atom that is placed either
inside or outside a cylindrical cavity.

Mahanty and Ninham studied the interaction between
two atoms but confined between two parallel perfect metal
plates [24] and found that at zero temperature the interaction
energy was reduced from the free space case with an expo-
nential decay in the non-retarded limit, and increased in the
retarded case with a change from h−7 to L−2h−5 when h is
much bigger than the distance L between the plates. For the
same geometry, an exponential decay was also found at any
finite temperature [25]. An exponential reduction of the inter-
action between the atoms has been also observed when they
are confined in a rectangular waveguide and their distance is
large compared to the diameter of the waveguide [26]. Con-
trary to that, a recent study of two atoms placed inside a trans-
mission line consisting of two concentric metallic cylinders
demonstrated a huge amplification of the interaction between
the atoms due to the one-dimensional character of propagating
fluctuations in this geometry [27].

All these studies confirm the importance of understanding
the mechanism that determines the effect of confinement on
the fluctuation-induced interactions. It seems that a massive
fluctuation mode leads to an exponential decay of the associ-
ated interaction energy. In waveguides, massive modes are re-
alized by evanescent modes due to the existence of finite cut-
off frequencies for these modes. The study performed in this
paper shows an exponential reduction of the interaction con-
firming that all modes in our cylindrical shell similar to those
in the rectangular waveguide of Ref. [26] are massive. How-
ever, for two parallel conducting plates, there exists a massless
mode only for TM polarization [28]. Since this propagating
mode contributes for two particles with electric polarizability
only in the retarded limit, the interaction is not exponentially
suppressed but enhanced in this limit. Hence the situation re-
sembles that of the transmission line.



2

We find that the interaction of atoms (or objects described
by their electric and/or magnetic dipolar polarizabilities) close
to cylindrical surfaces can be written as a small curvature
expansion around the plate-atom case, in addition, the close
similarity of the interior and exterior results suggest that they
can be described by an analytical formula in the curvature of
the surface. Going beyond the small particle limit, we con-
sider the interaction of a macroscopic perfect metal sphere
with the wall of a confining cylindrical shell. We find that
the force on an object at short distances from the confining
walls is modified by curvature and the force between two par-
ticles at large distances (compared to the confinement scale)
is different from the force in free space. The comparison of
our numerical results with a gradient expansion of the inter-
action demonstrates nice agreement at small separations. For
the interaction between two atoms that are placed on the axis
of a confining cylindrical shell we derive exact results in the
asymptotic limit of large separations both at zero and high
temperatures.

Understanding the modifications in the Casimir force re-
sulting from confinement could explain the rate of chemical
reactions contained in carbon nanotubes [29], and could shed
the light on processes leading to an increase or a reduction of
the Casimir force in these systems.

The remainder of the article is organized as follows: In
Sec. II we briefly review the multiscattering approach used
to obtain Casimir interactions. In Sec. III we analyze the re-
tarded and non-retarded Casimir interaction between an atom
and a perfect metal cylindrical cavity, both in the high and
low temperature limits. Interior and exterior cases are consid-
ered. In Sec. IV A the proximity force approximation (PFA)
for a perfect metal sphere inside a perfect metal cylindrical
cavity is given. In Sec. IV B, the Casimir interaction for the
latter geometry is computed numerically and compared to the
PFA and a gradient expansion. In Sec. V, the confinement of
two atoms is studied by computing their interaction along the
axis of a perfect metal cylindrical cavity. We conclude with
a discussion of our results, and a summary of relevant matrix
elements is given in App. A.

II. SCATTERING APPROACH

We employ the scattering approach [11, 12] to compute the
Casimir interactions. This approach relates the interaction be-
tween objects to their electromagnetic scattering properties.
The Casimir free energy at temperature T is given by

E = kBT

∞∑

n=0

′

log det[I −N (κn)], (1)

where κn = 2πnkBT/~c are Matsubara wave numbers. The
prime indicates that the zero Matsubara frequency contribu-
tion has a weight of 1/2. At zero temperature, the primed
sum is replaced by an integral along the imaginary frequency
axis, yielding the Casimir energy

E0 =
~c
2π

∫ ∞

0

dκ log det[I −N (κ)]. (2)

The high temperature or classical limit is reached when the
distance between the interacting objects becomes much larger
than the thermal wavelength λT = ~c/(kBT ). The Casimir
free energy is then given by the zero Matsubara frequency
term of Eq. (1),

Ecl =
kBT

2
log det[I −N (0)] . (3)

Following the notation of [9, 12], the blocks forming the ma-
trix N for a geometry consisting of a finite number of objects
are given by

(I −N )αβ = δαβ + (1− δαβ)TαXαβ , (4)

where α and β label the interacting bodies. Tα is the T-matrix
of object α (either the cavity or an object inside), and it en-
codes all information about shape and material composition
of the object. We are interested in a situation where objects
are entirely enclosed within the cavity formed by an external
object which will be a cylindrical shell. The T-matrix of the
external object relevant to this situation of internal scattering
is different from the T-matrix of the same object for external
scattering. The latter case is relevant to objects placed out-
side the cylinder. For perfectly conducting boundary condi-
tions, the T-matrix for internal scattering is the inverse of the
T-matrix for external scattering. The translation matrices Xαβ
describe the interaction of the fluctuating multipole moments
on object α and β. They contain all information about the rel-
ative position and orientation of the objects. If Xαβ connects
two separate objects (both either inside or outside of a cavity),
we have Xαβ = Uαβ , where the matrix Uαβ relates regular
waves to outgoing waves [12]. When Xαγ connects a body
α to the external cavity γ = C (C will denote the cavity in
the following) enclosing it, we have XαC = VαC where the
matrix VαC connects regular waves (with respect to the origin
of coordinates) of the object α to regular waves of the cavity
C [12]. Finally, if XCβ connects the enclosing cavity C with
a body β placed in its interior, we have XCβ =WCβ , relating
now regular waves of the cavity C to regular waves of β, with
Wij
Cβ = V† ijβC

Ci
Cj

where the generalized indices i, j label the
multipole waves including polarization, and Ci are normal-
ization constants [12]. For the configuration of one object S
inside or outside the cavity C, the matrix N is given by

N = TSXSCTCXCS . (5)

The T-matrix of object S and the cavity C are usually given in
different vector multipole basis. Therefore, we have to apply
a change of basis to one of the T-matrices in order to apply
the above formula. Since here the cavity is a cylindrical shell
and the particle S has spherical symmetry (atom or sphere),
we shall use the conversion matrices Dl,m,P,n,kz,Q of spheri-
cal vector waves φl,m,P into cylindrical vector waves φn,kz,Q
defined by [22]

φl,m,P =
∑

n∈Z

∑

Q=M,N

∫ ∞

−∞

dkz
2π

Dl,m,P,n,kz,Q φn,kz,Q , (6)

where Q denotes electric (N ) or magnetic (M ) polarizations.
By the use of these conversion matrices, the T-matrix of object
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S (given in spherical wave basis) can be transformed to the
cylindrical vector basis as [12]

TS nkz P,n′ k′z P
′ =

∑

l,m,Q

∑

l′,m′,Q′

CcP
CsQ

D†nkz P,lmQ

×TS lmQ,l′m′Q′Dl′m′Q′,n′ k′z P
′ , (7)

where we have used CcM = − 1
2π = −CcN and CsM = κ =

−CsN to obtain CcP /C
s
Q = (2πκ)−1 (1− 2δP,Q) [12] (see

also App. A). Now the matrix N for a compact object inside
a cylindrical cavity can be expressed in spherical vector wave
basis as

Nl′m′,lm =
1

4π2κ
TS l′m′,lm

∫ ∞

−∞
dkzDlm,nkz (8)

×VSC nkz,n′k′z
TC n′k′z,n

′′k′′z
V†
CS n′′k′′z ,ñk̃z

D†
ñk̃z,lm

,

with summation over repeated indices. Note that the polariza-
tion indices are not explicitly shown. Details about the ma-
trices used in Eq. (8) can be found in App. A. The energies
defined by Eqs. (1), (2) and (3) are finite for all positions of
the internal object inside the cylinder. Therefore, a regulariza-
tion is not needed, in contrast to the interaction of two exterior
objects where the energy for infinite distance is usually sub-
tracted.

III. CASIMIR ENERGY OF AN ATOM AND A METALLIC
CYLINDER

In this section we calculate the Casimir energy of an atom
that is placed outside or inside an infinitely long perfect metal
cylindrical cavity. We obtain analytical results in asymptotic
regimes, and numerical results for intermediate distances. Our
results are based on two assumptions: (1) The atom is de-
scribed by its electric and magnetic dipolar polarizabilities αE
and αM , respectively, and has no higher multipole polarizabil-
ities, and (2) the polarizabilities are small compared to all ge-
ometric length scales, i.e., α1/3

P � d,Rc, `, being d, Rc and
` the distance from the atom to the center of the cylinder, the
radius of the cylinder and the distance from the atom to the
cylindrical surface respectively (the lenght of the cylinder L
is always assumed to be much larger than the rest of lengths
of the system). These assumptions are frequently made in the
literature, leading to the Casimir-Polder interaction between a
flat surface and an atom [2]. The second assumptions justifies
to consider only one scattering at the atom so that the energy
is linear in αP , and hence we keep only the linear term in

log det [I −N ] = −Tr [N ] +O(N 2) . (9)

The first assumption implies that the trace runs only over dipo-
lar waves (l = 1), yielding

Tr [N ] =
1

4π2κ
TS 1,m,P ;1,m′,P ′D1,m′,P ′;n,kz,P ′′

×XSC, n,kz,P ′′;n′,k′z,Q
TC n′,k′z,Q;n′′,k′′z ,Q

′

×XCS, n′′,k′′z ,Q
′;ñ,k̃z,Q′′D

†
ñ,k̃z,Q′′;1,m,P

, (10)

where summation over all discrete indices and integration
over all wave vectors along the z-axis is assumed. Here TS
represents the atom (for the T-matrix of an atom, see App. A.)
In the following we shall apply these general results to a per-
fectly conducting cylindrical cavity.

A. Retarded Casimir-Polder energy of an atom inside a
cylinder

1. Zero temperature limit

The Casimir energy at zero temperature of the atom placed
at a distance d < Rc from the axis of the cylindrical shell of
radius Rc can be written as

E0 = − ~c
R4
c

(
fE0 (δ)αE + fM0 (δ)αM

)
, (11)

where δ = d/Rc. The dependence on δ is determined by the
following auxiliary functions

IPα,m(δ) =

∫ ∞

0

dt tα
∑

n∈Z
I2n+m(tδ)TC n,P ;n,P (t), (12)

with the Bessel function In and where TC is the T-matrix
that describes the scattering inside the perfectly conducting
cylindrical shell where the integration variable t stands for the
rescaled expression

√
κ2 + k2z . The diagonal matrix elements

are given by (see App. A)

TC n,M ;n,M (t) = −K
′
n(t)

I ′n(t)
, (13)

TC n,N ;n,N (t) = −Kn(t)

In(t)
. (14)

The amplitudes fE0 (δ) and fM0 (δ) are then given by

fE0 (δ) =
1

4π

(
IM3,1(δ)− IN3,1(δ)− 2IN3,0(δ)

)
, (15)

fM0 (δ) = − 1

4π

(
IM3,1(δ)− IN3,1(δ) + 2IM3,0(δ)

)
. (16)

Using the uniform asymptotic expansion for Bessel functions
as employed in [30], we obtain for small atom-surface dis-
tance ` = Rc − d the expansion

fE0 =
3

8π

(
Rc
`

)4

+
13

60π

(
Rc
`

)3

+
311

1680π

(
Rc
`

)2

+ · · · ,
(17)

fM0 = − 3

8π

(
Rc
`

)4

− 17

60π

(
Rc
`

)3

− 431

1680π

(
Rc
`

)2

+ · · · .
(18)

The leading term agrees with the Casimir-Polder interaction
between an atom and a planar surface [2]. The sub-leading
terms describe curvature corrections. The first correction term
for the E polarization has been obtained in Ref. [30].
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Figure 1. (Color online). Amplitudes of the interior Casimir-Polder
interaction between an atom and a cylindrical shell as function of δ =
d/Rc. Shown are the limiting analytical results for short distances
(dotted curves, see Eqs. (17), (18)), and when the atom is close to the
axis of the cylinder (dashed curves, see Eqs. (19), (20)). The thick
curves correspond to the full numerical result for fE

0 (δ) (Eq. (15))
and fM

0 (δ) (Eq. (16)).

When the atom is close to the center of the cylinder (δ �
1), one can expand the functions IPα,m(δ) for small δ and per-
form the integral over t and infinite sum over n numerically.
The result is

fE0 (δ) = 0.594032 + 3.67884 δ2 +O(δ4) , (19)

fM0 (δ) = −0.805032− 4.15129 δ2 +O(δ4) . (20)

Note that for atoms without magnetic response (αM = 0
and αE > 0), the Casimir-Polder interaction is attractive,
while for (fictive) atoms without electric response (αE = 0
and αM > 0), the interaction is repulsive. This is in agree-
ment with the interaction between an atom and a flat surface.
Hence, surface curvature does not change the sign of the in-
teraction.

The analytical results for the atom placed either close to the
cylindrical surface or close to its axis are shown in Fig. 1 to-
gether with numerical results valid for all distances δ. This
comparison shows that the two limiting results provide an ac-
curate estimate of the interaction over a wide range of separa-
tions.

2. High temperature limit

When d � λT , the Casimir energy can be approximated
by its high temperature limit, given by Eq. (3). For an atom
inside a cylindrical cavity, this expressions reduces to

Ecl = −
kBT

2
Tr [N (0)] , (21)

which can be written as

Ecl = −
kBT

R3
c

(
fEcl (δ)αE + fMcl (δ)αM

)
, (22)

The amplitudes fEcl (δ) and fMcl (δ) can be expressed in terms
of IPα,m(δ) defined in Eq. (12) as

fEcl (δ) = −
1

π

(
IN2,1(δ) + IN2,0(δ)

)
, (23)

fMcl (δ) = −
1

π

(
IM2,1(δ) + IM2,0(δ)

)
. (24)

Using again the uniform asymptotic expansion for Bessel
functions, we obtain the asymptotic behavior of IPα,m(δ) when
the atom is close to the surface of the cavity. This yields the
amplitudes for `� Rc,

fEcl =
1

4

(
Rc
`

)3

+
1

8

(
Rc
`

)2

+
1

8

(
Rc
`

)
+ · · · , (25)

fMcl = −1

4

(
Rc
`

)3

− 1

4

(
Rc
`

)2

− 1

4

(
Rc
`

)
+ · · · . (26)

The leading terms describe the atom-planar surface interac-
tion, and the additional terms are curvature corrections.

When the atom is close to the axis of the cylindrical cavity,
a small δ expansion and subsequent numerical summation and
integration yields the amplitudes

fEcl (δ) = 1.00274 + 4.00376 δ2 +O(δ4) , (27)

fMcl (δ) = −1.79579− 5.06599 δ2 +O(δ4) . (28)

We have also evaluated numerically the amplitudes of
Eqs. (23) and (24). The results, and the approximations for
small ` and small δ are shown in Fig. 2.
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Figure 2. (Color online). Equivalent of Fig. 1 for the classical limit.
Shown are the analytical results for short surface distances ` (dotted
curves, see Eqs. (25), (26)), and when the atom is close to the axis
of the cylinder (dashed curves, see Eqs. (27), (28)). The thick curves
represent the full numerical result for fE

cl (δ) (Eq. (23)) and fM
cl (δ)

(Eq. (24)).

B. Non-retarded London energy of an atom inside the cylinder

So far we have considered the retarded limit where the dis-
tance d � d10 is much bigger than the retardation length
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d10 = c/ω10 set by the transition frequency of a two-state
atom (see App. A for its polarizability). Next we shall assume
the opposite limit where d � d10 which can be realized to
leading order by taking the limit c → ∞. The resulting inter-
action is known as London force. In the following we consider
finite temperatures so that to leading order in d/d10 one has

ELT = − lim
c→∞

kBT

∞∑

n=0

′

Tr [N (κn)] . (29)

Here for need to substitute for the polarizability of the atom
the frequency dependent expression of Eq. (A10). Then the
matrix N (κn) depends on the combinations dκn, Rcκn and
d10κn = 2πnkBT/(~ω10). The first two combinations scale
as 1/c and hence tend to zero whereas the latter obviously re-
mains finite for c → ∞. Hence the non-retarded interaction
is given by the Matsubara sum taken over two times the clas-
sical interaction energy Ecl of Eq. (22) with αP replaced by
αP /[1+(2πnkBT/(~ω10))

2]. The sum over n can be carried
out easily, and one obtains the following result for the London
interaction valid for all temperatures

ELT (δ) =
~ω10

2kBT
coth

(
~ω10

2kBT

)
Ecl(δ). (30)

This shows that the effect of geometry (curvature) in the non-
retarded limit is fully determined by the geometry dependence
in the classical limit. Note that, in the zero and high tempera-
ture limits of the London energy we have

EL0 (δ) =
~ω10

2kBT
Ecl(δ), ELcl(δ) = Ecl(δ). (31)

C. Retarded Casimir-Polder energy of an atom outside a
cylinder

1. Zero temperature limit

The Casimir potential at zero temperature of an atom out-
side a perfectly conducting cylinder at a distance d from the
cylinder axis can be written as

E0 = − ~c
R4
c

(
gE0 (δ)αE + gM0 (δ)αM

)
, (32)

where δ = d/Rc. The dependence on δ is determined by the
integrals

KPα,m(δ) =

∫ ∞

0

dt tα
∑

n∈Z
K2
n+m(δt)TC n,P ;n,P (t) , (33)

where TC is the diagonal T–matrix that described the scatter-
ing outside the cylinder. The matrix elements are given by

TC n,M ;n,M (t) = − I ′n(t)
K ′n(t)

, (34)

TC n,N ;n,N (t) = − In(t)

Kn(t)
. (35)

Then the amplitudes gE0 (δ) and gM0 (δ) are given by

gE0 (δ) =
1

4π

(
KM3,1(δ)−KN3,1(δ)− 2KN3,0(δ)

)
, (36)

gM0 (δ) = − 1

4π

(
KM3,1(δ)−KN3,1(δ) + 2KM3,0(δ)

)
. (37)

Using again the uniform asymptotic expansion for Bessel
functions, we find for small atom-surface distance ˜̀= d−Rc
the expansion

gE0 =
3

8π

(
Rc
˜̀

)4

− 13

60π

(
Rc
˜̀

)3

+
311

1680π

(
Rc
˜̀

)2

+ · · · ,
(38)

gM0 = − 3

8π

(
Rc
˜̀

)4

+
17

60π

(
Rc
˜̀

)3

− 431

1680π

(
Rc
˜̀

)2

+ · · · .
(39)

which is consistent with [30]. Comparison with Eqs. (17),
(18) shows that the interior and exterior cases are related by
Rc → −Rc. While an interior atom sees negative surface
curvature, an exterior atom experiences positive curvature.

In the large distance limit, d� Rc, we obtain the following
asymptotic amplitudes

gE0 =
1

3π ln(d/Rc)

(
Rc
d

)4

, (40)

gM0 = − 1

6π ln(d/Rc)

(
Rc
d

)4

, (41)

yielding for the Casimir potential

E0 = −~c(2αE − αM )

6π d4 ln(d/Rc)
. (42)

Numerical and analytical results are compared in Fig. 3,
where the convergence of the numerical data to the various
limits is shown.

2. High temperature limit

We consider now high temperatures so that d � λT . Sim-
ilar to the interior case, the Casimir potential can be written
as

Ecl(rc) = −
kBT

R3
c

(
gEcl(δ)αE + gMcl (δ)αM

)
. (43)

The functions gEcl(δ) and gMcl (δ) can be written in terms of the
functions KPα,m(δ) as

gEcl(δ) = −
1

π

(
KN2,1(δ) +KN2,0(δ)

)
, (44)

gMcl (δ) = −
1

π

(
KM2,1(δ) +KM2,0(δ)

)
. (45)
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Figure 3. (Color online). Amplitudes of the exterior Casimir-Polder
interaction between an atom and a cylindrical shell as function of
1/δ = Rc/d. Shown are the limiting analytical results for short
distances (dotted curves, see Eqs. (38), (39)), and when the atom
is far away from the cylinder (dashed curves, see Eqs. (40), (41)).
The thick curves correspond to the full numerical result for gE0 (δ)
(Eq. (36)) and gM0 (δ) (Eq. (37)).

The asymptotic expansion of Bessel functions yields again the
asymptotic behavior of KPα,m when the atom is close to the
surface of the cavity. In this limit we obtain

gEcl =
1

4

(
Rc
˜̀

)3

− 1

8

(
Rc
˜̀

)2

+
1

8

(
Rc
˜̀

)
+ · · · , (46)

gMcl = −1

4

(
Rc
˜̀

)3

+
1

4

(
Rc
˜̀

)2

− 1

4

(
Rc
˜̀

)
+ · · · . (47)

This results is again related to the corresponding one for the
interior case in Eqs. (25), (26) by Rc → −Rc.

In the large distance limit, d� Rc, we find the asymptotic
expressions

gEcl =
π

8 ln(d/Rc)

(
Rc
d

)3

, (48)

gMcl = −63π

128

(
Rc
d

)5

, (49)

which yield the Casimir potential

Ecl = −
kBTπαE

8d3 ln(d/Rc)
. (50)

Note that the leading asymptotic interaction is dominated by
the electric response of the atom only. The results of all full
numerical computation of the interaction at all distances is
shown in Fig. 4 together with the analytically studied limits.

D. Non-retarded London energy of an atom outside the
cylinder

In the non-retarded limit with d� d10 for the exterior case
of an atom outside the cylinder exactly the same relations as
in the interior case hold, see Eqs. (30), (31).
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)3
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)3

gEcl(δ → 1)
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−1→ 0)
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(
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−1→ 0)

M
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E

Figure 4. (Color online). Equivalent of Fig. 3 for the classical limit.
Shown are the analytical results for short surface distances ˜̀ (dotted
curves, see Eqs. (46), (47)), and when the atom is far away from
the cylinder (dashed curves, see Eqs. (48), (49)). The thick curves
represent the full numerical result for gEcl(δ) (Eq. (44)) and gMcl (δ)
(Eq. (45)).

IV. CASIMIR ENERGY OF A METAL SPHERE INSIDE A
METAL CYLINDER

A. Proximity force approximation

In this section we come back to an interior situation. In-
stead of an atom, we place a macroscopic metallic sphere in-
side the cylinder. We assume that both the cylinder and the
sphere are perfectly conducting, and have radii Rc and Rs,
respectively. The sphere–center to cylinder–axis separation is
d ≤ Rc − Rs. Before computing the exact interaction in the
next section, we consider here the proximity force approxima-
tion (PFA). In general, the PFA energy EPFA for two surfaces
is given by

EPFA =

∫
dAE‖(h) , (51)

where E‖(h) is the energy per unit area for two parallel plates
of distance h. In the above expression the integration is per-
formed along one surface with h the local distance to the other
surface. After integration, the result is expanded for small dis-
tances, and only the leading order is retained. To this order,
the precise direction along which h is measured, is unimpor-
tant.

Assuming the origin at the axis of the cylinder (oriented
along the x-axis), the position of a surface element on the
cylinder is (xc, yc = Rc sin(φc), zc = Rc cos(φc)), and
the position of a surface element on the sphere is (xs =
Rs sin(θs) cos(φs), ys = Rs sin(θs) sin(φs), zs = d +
Rs cos(θs)). The distance between the two surface elements
then is

h = zc − zs . (52)

The center-to-axis distance d is related to the minimal surface-
to-surface distance ` between the sphere and the cylinder by
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d = Rc − (`+Rs). Hence Eq. (52) can be written as

h = `+Rs [1− cos(θs)]−Rc [1− cos(φc)] . (53)

Next we express φc in terms of θs and φs, using yc = ys,

sin(φc) =
Rs
Rc

sin(θs) sin(φs) . (54)

Using Eq. (54) in Eq. (53) and making use of the fact that
at short separations, the surface elements of the sphere and
cylinder for which θs � 1 and φc � 1 contribute most to the
interaction, the local distance h can be approximated by

h(θs, φs) ≈ `+
Rsθ

2
s

2

[
1− Rs

Rc
sin2(φs)

]
. (55)

We express Eq. (51) in terms of surface coordinates of the
sphere,

EPFA = R2
s

∫ 2π

0

dφs

∫ π

0

dθs sin θsE‖(h) , (56)

For small θs we use sin θs ≈ θs and change the integration
variable θs to H which is defined by the right hand side of
Eq. (55) so that

θs dθs =
dH

Rs
[
1− Rs

Rc
sin2(φs)

] . (57)

This yields

EPFA = Rs

[∫ 2π

0

dφs

1− Rs
Rc

sin2(φs)

]∫ ∞

`

dH E‖(H) ,

(58)
where we have moved the upper integration limit for H to
infinity since this does not change the leading behavior of the
integral for small `. The integration over φs can be carried out
easily and we obtain the PFA energy

EPFA =
2πRs√
1− Rs

Rc

∫ ∞

`

dH E‖(H) . (59)

In particular, for perfect conductors, we obtain

EPFA,0 = −~cRs
`2

π3

720
√
1− Rs

Rc

(60)

for zero temperature, and

EPFA,cl = −kBT
Rs
`

ζ(3)

4
√
1− Rs

Rc

(61)

in the classical high temperature limit with d� λT .
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Figure 5. (Color online) Numerical result for the zero temperature
Casimir energy (normalized to PFA) for a sphere inside a cylinder
for different ratios of the radii, ranging from rs = Rs/Rc = 0.1
(bottom blue) to rs = 0.9 (top green) in steps of 0.1, as a function
of `/Rc < 1 − rs. The curves terminate at the positions where the
sphere is located at the axis of the cylinder (`/Rc = 1 − rs). The
straight lines originating from unity represent the first correction to
PFA, see Eq. (62).

B. Numerical result

Now we compute the interaction for the geometry of the
previous section numerically at all distances, using the scat-
tering approach. Again, we consider zero temperature and the
classical high temperature limit. We obtain the Casimir en-
ergy numerically from the matrix N defined in Eq. (8) using
Eqs. (2), (3). The T-matrix elements for a perfectly conduct-
ing cylinder and sphere are given in App. A. In order to per-
form the numerical calculations, we have restricted the vector
spherical multipoles to l ≤ 20 in the zero temperature case
and to l ≤ 30 in the high temperature case. The cylindrical
multipoles are limited to |n| ≤ 500. The results are shown
in Fig. 5 (T = 0) and Fig. 6 (classical limit) as function of
`/Rc < 1−Rs/Rc for different radii of the sphere. The data
for the numerically computed Casimir energy are normalized
to the PFA [see Eqs. (60), (61)].

The multipole expansion for Casimir interactions works
best at large separations, and an increasing number of mul-
tipoles is required when the surfaces of the bodies approach
each other. This is clearly visible in the numerical data that
should converge to unity for ` → 0 when normalized to the
PFA but fail to do so below `/Rc . 0.05. However, for
`/Rc & 0.05 we expect our numerical results to be reliable,
and they clearly show strong deviations from the PFA when
the sphere is moved towards the axis of the cylinder (reached
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Figure 6. (Color online) Same as Fig. 5 for the classical high tem-
perature limit.

for `/Rc = 1 − Rs/Rc). The sign of the corrections to the
PFA depend on the ratio of the radii, rs = Rs/Rc, in both the
zero and the high temperature limit.

Corrections to the PFA can be computed in some cases by
a derivative expansion [6]. This expansion can be used in the
limit where the radii of curvature of the surfaces are much
larger than their shortest distance, i.e., in the present geometry
for Rs, Rc � `. By using the expansion for perfect conduc-
tors at T = 0, we obtain for the Casimir interaction at small
`� Rc,

E0 = EPFA,0

[
1 +

(
−1− 3

2
rs + rs

√
1− rs +

2β + (2− 3β)rs + βr2s
1− rs

)
1

rs

`

Rc
+ . . .

]
(62)

with β = (2/3)(1 − 15/π2)[6]. The first correction to the
PFA vanishes for rs = 0.4881 where it changes sign which is
consistent with the numerical results in Fig. 5. The numerical
results approach the prediction of the derivative expansion at
small surface-to-surface distance ` better for small rs. Pre-
sumably, for larger rs more multipoles need to be included in
the numerical evaluation to obtain sufficient accuracy at short
distances. In the classical limit, there exists no derivative ex-
pansion for perfect metals due to a non-analytic behavior of
the kernel for small momenta [31].

V. CASIMIR INTERACTION OF TWO ATOMS INSIDE A
CYLINDRICAL CAVITY

It is widely known that Casimir interactions are not pair-
wise additive: The energy of a system of a given number of
objects is not the sum of the Casimir energies of all pairs.
As a consequence, new phenomena can appear, as the non–
monotonicity of the Casimir force for two cylinders [32],
and for spheres or atoms in the presence of a perfect metal
plate [33]. Similar effects can be expected for the interac-
tion of objects inside cavities due to the confinement of field
fluctuations. In particular, it is known that the Casimir force

between two atoms which are confined between two dielec-
tric parallel plates increases several orders of magnitude [34].
When the dielectric plates are replaced by perfect metal plates,
the effect is even more pronounced: At zero temperature, the
Casimir potential of the atoms decays no longer ∼ d−7 as in
free space but ∼ d−5 [24]. In the high temperature limit, the
Casimir potential was found to decay exponentially [25]. It is
expected that the confinement effects increase with the degree
of spatial confinement so that a cavity, e.g., a cylindrical shell
should produce more pronounced consequences.

In this section we study the Casimir potential for two atoms
inside a perfectly conducting cylindrical shell. We assume
that the atoms have both electric and magnetic dipole polariz-
abilities. The Casimir energy of this 3-body problem is given
by Eq. (1) with the block matrix

I −N =




I −TA1XA1A2 −TA1XA1C

−TA2XA2A1 I −TA2XA2C

−TCXCA1 −TCXCA2 I


 ,

(63)
where the matrix labels A1, A2 and C stand for atom 1, atom
2, and the cylindrical shell. For example, the matrix XCA1

de-
scribes the translation between the cylindrical shell and atom
1. The determinant of this matrix can be rearranged using the
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relations

det

[
A B
C D

]
= det [A] det

[
D − C A−1B

]

= det [D] det
[
A−BD−1 C

]
. (64)

The Casimir energy at zero temperature can then be written as

E3 =
~c
2π

∫ ∞

0

dκ log {det [I −NA1C ] det [I −NA2C ] det [I −RA2A1 ]} (65)

where

NA1C = TA1
XA1CTCXCA1

, (66)
NA2C = TA2

XA2CTCXCA2
, (67)

RA2A1
= TA1

(XA1A2
+ XA1CTCXCA2

) (I −NA2C)
−1 TA2

(XA2A1
+ XA2CTCXCA1

) (I −NA1C)
−1

. (68)

The first two matrices describe the interaction of each atom with the cavity, and the third matrix describes the interaction
between the two atoms, taking into account the presence of the cavity. In the absence of the cavity, the latter matrix reduces to
RA2A1

= TA1
XA1A2

TA2
XA2A1

which describes two atoms in free space.
It is convenient to express the matrixRA2A1

≡ R in spherical multipole basis which reads

Rlm,l′′m′′ = TA1 lm,lmŨA1A2 lm,l′m′(d,X12)TA2 l′m′,l′m′ ŨA2A1 l′m′,l′′m′′(d,X21), (69)

where here and in the following repeated indices are summed over. Here d is the distance between the atoms and the axis of the
cylindrical cavity, and ŨAαAβ lm,l′m′(d,Xαβ) are the modified translation matrices for the translation by the vector Xαβ ≡ ±hẑ
along the cylinder axis from atom α to atom β. They are defined by

ŨAαAβ lm,l′m′(d,Xαβ) =
(
UAαAβ lm,l′′m′′(Xαβ) +Dlm,nkzVAαC nkz,n′kzTC n′kz,n′kzV†CAβ n′kz,n′′kz

D†n′′kz,l′′m′′
Cc

Cs

)

×
(
I −NAβC

)−1
l′′m′′,l′m′ , (70)

where NAβC = TAβXAβCTCXCAβ describes the Casimir in-
teraction of an atom with the cylindrical cavity, and the con-
stants Cc and Cs are defined below Eq. (7). The translation
matrices U are defined in App. A. Note that the polarization
indices and the integral over kz are not shown explicitly.

In the following, we are interested in the interaction be-
tween the two atoms (and not the change of energy when the
atoms are moved away from the cylinder axis). This interac-
tion is given by the last determinant of Eq. (65) and hence by
the matrix R. Under the two assumptions formulated in the
beginning of Sec. III, we need to retain only the contribution
linear inR so that the Casimir energy is given by

ET = kBT

∞∑

n=0

′

Tr
[
R̃(κn)

]
, (71)

where R̃ is defined by the (symbolic) expression

R̃ = TA2

(
UA2A1

+DVA2CTCV†CA1
D†
)

× TA1

(
UA1A2

+DVA1CTCV†CA2
D†
)
, (72)

that is the simplification of R correct to linear order in the
polarizabilities of the atoms. The matrix R̃ has four contribu-
tions that can be understood as distinct scattering processes.

The two terms containing U describe direct scattering between
the two atoms not involving the cylindrical cavity. The other
two terms containing TC correspond to indirect scattering be-
tween the atoms with a reflection at the cylindrical cavity.

In the following, we consider the zero and high temperature
classical limit of the interaction between the atoms that are
located on the cylinder axis and have separation h. In these
two limits, the Casimir interaction energies can be written as

E0 = − ~c
4πR7

c

[
eEE0 (η)αE1 α

E
2 + eMM

0 (η)αM1 α
M
2 +

+eEM0 (η)
(
αE1 α

M
2 + αM1 α

E
2

)]
, (73)

Ecl = −
kBT

R6
c

[
eEEcl (η)αE1 α

E
2 + eMM

cl (η)αM1 α
M
2

]
, (74)

respectively, with η = h/Rc. Here αPj are the dipolar elec-
tric (P = E) and magnetic (P = M ) polarizabilities of the
atoms. Note that there are no terms proportional to αEi α

M
j

in the high temperature limit. Below, we shall give analytical
and numerical results for the amplitude functions e0 and ecl
in various limiting cases.
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A. Retarded limit

We first consider the situation where the distance between
the atoms is much bigger than the retardation length, h� d10.
This corresponds to the so-called Casimir–Polder or retarded
limit.

1. Zero temperature

Indeed, when thermal effects are unimportant and the dis-
tance h� Rc, the atoms interact as in free space, and we ob-
tain the usual Casimir–Polder potential for two atoms at zero
temperature, corresponding to

eEE0 (η) = eMM
0 (η) =

23

η7
, (75)

eEM0 (η) = − 7

η7
. (76)

In the opposite limit where h � Rc � d10 the atoms expe-
rience the confinement by the cylindrical shell, leading to an
exponential decay of their interaction. For η � 1, we obtain
the limiting amplitude functions

eMM
0 =

√
π9j′1,1

21Y ′1
4
(j′1,1)

8
(
j′1,1

2 − 1
)2

e−2j
′
1,1η

η1/2
= 286.20

e−2j
′
1,1η

η1/2
,

(77)

eEE0 =
3
√
π9j′1,1

17Y ′1
4
(j′1,1)

32
(
j′1,1

2 − 1
)2

e−2j
′
1,1η

η5/2
= 63.32

e−2j
′
1,1η

η5/2
,

(78)

eEM0 = −8
√
2π2j′1,1

4
Y ′1

2
(j′1,1)

j′1,1
2 − 1

e−j
′
1,1η

η5
= −189.59e

−j′1,1η

η5
,

(79)

where j′1,1 = 1.84118 is the lowest zero of the derivative of
the Bessel functions of first kind, J ′1(x), and Y ′1(x) is the
derivative of a Bessel function of second type. The electro-
magnetic fluctuations inside the confining cylinder are effec-
tively massive with a mass∼ Rc that produces the exponential
decay of the interaction for h � Rc. We have evaluated the
amplitude functions e0(η) for intermediate values of η numer-
ically. The results are shown in Fig. 7 for the three possible
combinations of the polarizations. Shown in the plots are also
the limiting analytical results of Eqs. (75), (76), (77), (78),
(79). One can clearly observe the crossover between the two
limiting expressions for h� Rc and h� Rc.

2. High temperature limit

Next, we consider the retarded regime in the high temper-
ature classical limit. In this case, the electric and magnetic

eEE
0 (η)
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Figure 7. (Color online) Log–log plot of the numerical results for
the functions e0(η) as a function of η = h/Rc for the three combi-
nations of polarizations (solid curves). The dashed curves represent
the large distance limits (η � 1) given by Eqs. (77), (78) and (79),
and the dotted curves correspond to the short distance limits (η � 1)
given by Eqs. (75) and (76)).

polarizations do not couple, as indicated already in Eq. (74).
For short distances, h� Rc, we recover the classical limit of
the Casimir–Polder potential, corresponding to

eEEcl (η) = eMM
cl (η) =

3

η6
. (80)
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In the large distance limit, h � Rc � d10, the potential
decays again exponentially due to the confinement,

eEEcl =
π4j60,1Y

4
0 (j0,1)

8
e−2j0,1η = 159.23e−2j0,1η , (81)

eMM
cl =

π4j′1,1
10
Y ′1

4
(j′1,1)

16
(
j′1,1

2 − 1
)2 e−2j

′
1,1η = 59.50e−2j

′
1,1η , (82)

where j0,1 = 2.40483 is the lowest zero of the Bessel function
of the first kind J0(x).

To obtain information about intermediate distances, we
have evaluated the amplitude functions ecl(η) also numeri-
cally. The results are shown in Fig. 8, together with the an-
alytical results for large and small distances. The plots show
that the limiting analytical results merge at η of order unity
and yield an accurate description of the interaction between
the atoms for the entire range of separations.

eEE
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Figure 8. (Color online) Log–log plot of the numerical results for the
functions ecl(η) as a function of η = h/Rc for the two combina-
tions of polarizations (solid curves). The dashed curves represent the
large distance limits (η � 1) given by Eqs. (81) and (82), and the
dotted curves correspond to the short distance limits (η � 1) given
by Eq. (80)

.

B. Non–retarded limit

Finally, we consider the non–retarded limit where h, Rc �
d10 but η = h/Rc is arbitrary. In this limit, the interaction be-
tween the atoms is usually referred to as London force. For-
mally, this case corresponds to an infinite velocity of light,
c → ∞. Here we consider arbitrary temperatures T . Fol-
lowing the steps carried out in Sec. III B, we can carry out the
Matsubara sum and obtain the London potential

ELT (η) = f

(
~ω10

kBT

)
Ecl(η), (83)

where the coefficient function f(t) is given by

f(t) =
t

4

t+ sinh(t)

cosh(t)− 1
(84)

andEcl(η) is the high temperature limit of the Casimir energy
given by Eqs. (74), (80). Similar to the interaction between a
single atom and a cylinder, the non-retarded interaction at fi-
nite temperature is related to the classical limit of the retarded
interaction. Note that in the zero and high temperature limit
of the London potential we have

EL0 (η) =
~ω10

4kBT
Ecl(η) , (85)

ELcl(η) = Ecl(η) . (86)

VI. DISCUSSION

We have studied how curvature and in particular confine-
ment can effectively modify Casimir interactions between an
atom and a curved surface and between atoms confined in
perfectly conducting cylindrical cavities. For the interaction
between a single atom and a cylindrical shell we have devel-
oped both large and short distance expansions that apply in
the zero and high temperature limits, and for an interior and
exterior atom. The expansions agree nicely with a full nu-
merical evaluation at arbitrary atom-surfaces distances. Our
results are relevant to understanding the scattering of atoms
at curved surfaces, e.g., nanotubes. We have considered both
the retarded and non-retarded limits. For the latter, we have
shown that it is simply related to the classical (high tempera-
ture) limit of the Casimir-Polder potential.

A problem with a higher degree of complexity is the in-
teraction of a macroscopic spherical particle with a confining
cylindrical shell. We have considered the limit of perfect con-
ductivity for both the particle and the shell. By computing
the interaction numerically from a large number of multipole
moments, we were able to compare to the proximity force ap-
proximation (PFA) and its correction as predicted by a gradi-
ent expansion. We found nice agreement, confirming that the
gradient expansion makes reliable predictions also for interior
problems.

We have shown that the Casimir-Polder interaction of two
atoms is modified when the atoms are confined by perfectly
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conducting cylindrical shell, and their distance is comparable
or larger than the radius of the shell. This is due to the fact
that Casimir interactions are not pairwise additive. We have
considered the limits of zero and high temperature, both in
the retarded and non-retarded cases. In all situations, the in-
teraction is substantially reduced compared to free space and
decays exponentially over the scale of the radius of the shell.
Although we assumed a perfectly conducting cylindrical shell,
we expect that our conclusion remain qualitatively unchanged
for general dielectric materials.

The impact of boundary effects on the force between a pair
of atoms at zero temperature have been studied originally by
Mahanty and Ninham [24], showing a reduced force in the
non-retarded limit and an increased force in the retarded limit.
At any finite temperature, an exponentially reduced force was
found [25]. More recently, there have been studies of the
Casimir-Polder interaction for an atom inside a cylindrical
cavity [30, 35], and a compact object inside a spherical cavity
[9]. Recent studies of the modification of the force between
two atoms inside quasi one-dimensional structures have dis-
played an exponential reduction of the interaction for a rectan-
gular waveguide [26] and a huge amplification of the interac-
tion for two concentric metallic cylinders[27]. The observed
exponential decay could be explained in terms of evanescent
modes and related to existing prediction in the literature.

It seems that confinement leads to reduction or amplifi-
cation of inter-molecular fluctuation forces and has impor-
tant consequences for the (non-)additivity of these forces,
and hence the electromagnetic response of confined gases.
Clearly, all modes in our cylindrical shell, and also in the
rectangular waveguide of Ref. [26] are massive, explaining
an exponential reduction of the interaction. Since this propa-
gating mode contributes for two particles with electric polar-
izability only in the retarded limit, However, the interaction
between two particle between two parallel conducting plates
is not exponentially suppressed but enhanced in the retarded
limit as in this regime there exists a massless mode for TM
polarization [28] similar to the situation of the transmission
line. It would be interesting to establish corresponding results
for non-equilibrium effects in confined geometries.
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Appendix A: Matrix elements

Here we provide explicit expressions for the elements of
the various matrices of the scattering approach for imaginary
wave numbers k = iκ.

1. Conversion matrices

The elements of the conversion matrices from spherical
vector multipoles to cylindrical vector multipoles are [22]

DlmM,nkzM = Clm

√
κ2 + k2z
κ

Pml
′
(
−ikz

κ

)
δnm, (A1)

DlmE,nkzM = Clm
κ√

κ2 + k2z
imPml

(
−ikz

κ

)
δnm,

(A2)

DlmM,nkzE = −DlmE,nkzM , (A3)
DlmE,nkzE = DlmM,nkzM , (A4)

where

Clm = (−1)l−m 4π√
l(l + 1)

√
2l + 1

4π

(l −m)!

(l +m)!
. (A5)

2. T–matrix of a perfect metal sphere

For a perfect sphere of radius Rs, the T–matrix elements
are well known. In the spherical wave basis they are given in
terms of the Bessel functions Il and Kl by [12],

TS lmM,l′m′M = −δll′δmm′
π

2

Il+ 1
2
(κRs)

Kl+ 1
2
(κRs)

, (A6)

TS lmN,l′m′N = −δll′δmm′
π

2

lIl+ 1
2
(κRs)− κRsIl− 1

2
(κRs)

lKl+ 1
2
(κRs) + κRsKl− 1

2
(κRs)

,

(A7)

and the elements coupling unlike polarizations vanish.

3. T–matrix of an atom

The T–matrix of a two-state atom can be expressed in terms
of its dipolar polarizability as a diagonal matrix, whose non–
vanishing elements are

TS 1,m,M ;1,m′,M = −δm,m′
2κ3

3
αMM
1 , (A8)

TS 1,m,N ;1,m′,N = −δm,m′
2κ3

3
αEE1 , (A9)
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where the electric and magnetic polarizabilities at imaginary
frequency κ are given by

αEE1 =
αE

1 + d210κ
2
, (A10)

αMM
1 =

αM
1 + d210κ

2
, (A11)

and d10 = c/ω10 with the transition frequency ω10.

4. T–matrix of a perfect metal cylinder

We need the T-matrix of a perfect metal cylinder for both
exterior and interior scattering. For the case of exterior scat-
tering, the non-vanishing elements are given by

TC nkzN,n′k′zN
= −δ(kz − k′z)δnn′

In(Rcp)

Kn(Rcp)
, (A12)

TC nkzM,n′k′zM
= −δ(kz − k′z)δnn′

I ′n(Rcp)
K ′n(Rcp)

, (A13)

where p =
√
k2z + κ2 and Rc is the radius of the cylinder.

For the case of interior scattering the elements are obtained
by inversion of the elements for the exterior case,

TC nkzN,n′k′zN
= −δ(kz − k′z)δnn′

Kn(Rcp)

In(Rcp)
, (A14)

TC nkzM,n′k′zM
= −δ(kz − k′z)δnn′

K ′n(Rcp)
I ′n(Rcp)

. (A15)

5. Cylindrical translation matrices

The translation matrices that relate regular cylindrical
waves to regular cylindrical waves with respect to a displaced
origin are diagonal in the polarization with the non-vanishing
elements given by [12]

VSC nkz,n′k′z
= (−1)n+n′

In−n′(d
√
k2z + κ2)e−i(n−n

′)θSC

× e−ikzXSC,zδ(kz − k′z), (A16)

V†CS, nkz,n′k′z
= (−1)n+n′

In−n′(d
√
k2z + κ2)e−i(n−n

′)θCS

× eikzXCS,zδ(kz − k′z), (A17)

where θCS = θSC (mod 2π). The elements of the matrix
relating regular to outgoing waves (relevant to exterior scat-
tering between two objects A1 and A2) are given by

UA1A2 nkz,n′k′z
= (−1)n′

Kn−n′(d
√
k2z + κ2)e−i(n−n

′)θA1A2

× e−ikzXA1A2,zδ(kz − k′z). (A18)

6. Spherical translation matrices

It turns out that it is useful for the computations presented in
the main text to express the translation matrices for spherical
waves in terms of those for cylindrical waves, using the con-
version matrices DlmQ,n kz P . The elements of the spherical
translation matrix can then be written as

UA1A2 lmQ,l̃m̃Q̃ =
∑

n,n′,P

∫ ∞

−∞

dkz
2π

∫ ∞

−∞

dk′z
2π

DlmQ,n kz P

× UA1A2 nkz,n′ k′z
D†
n′ k′z P,l̃m̃Q̃

CcP
Cs
Q̃

. (A19)

Taking into account that the cylindrical translation matrix is
diagonal in kz , we can carry out the integral over k′z . Finally,
the translation matrices in spherical waves can be found in
[12].
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