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We study the 2e−2e+ equal-mass charge-neutral four-body system in the adiabatic hyperspherical
framework. The lowest few adiabatic potentials are calculated for zero orbital angular momentum,
positive parity, and charge conjugation symmetries. Propagating the R-matrix, the low-energy s-
wave scattering lengths of the singlet-singlet and triplet-triplet spin configurations are calculated.
Lastly, we calculate the S-matrix for energies above the ionic threshold to estimate the transition
rates between the single ionic fragmentation channel and the lowest few dimer-dimer fragmentation
channels.

PACS numbers:

I. INTRODUCTION

Started by Wheeler’s earlier studies [1], polyelectronic
systems continue to be an active area of research [2–13].
The particle-antiparticle mixtures in particular [14] are
inherently unstable due to annihilation, but are funda-
mental, e.g., the high rates of Ps annihilation at the
galactic bulge [15] or precision tests of CPT violation via
antihydrogen [14, 16]. Moreover, there have been many
advancements towards a gamma-ray laser based on the
development of a BEC of spin-polarized Ps [17–21] and
the experimental observation of the Ps2 molecule [22].

Using the adiabatic hyperspherical framework, many
charged few-body systems have also been investigated.
From Macek’s pioneering work [23], the three-body
Coulomb problem has been extensively studied [24–30]
and reviewed (see Refs. [27, 31] and references within).
There have been notable studies of four-body charged
systems as well [32–34], and even a first look at the equal-
mass five-body system [35].

We examine the 2e−2e+ equal-mass charge-neutral
four-body system using the adiabatic hyperspherical
framework [36, 37]. The adiabatic Hamiltonian is solved
utilizing a basis of explicitly correlated Gaussians at
a fixed hyperradius[38–40]. The evaluation of matrix
elements is facilitated using a Fourier transform tech-
nique [35]. The hyperradial R-matrix is propagated and
the low-energy s-wave scattering lengths are calculated.
Also, from the S-matrix we estimate the transition prob-
abilities between the ionic channel and the lowest few Ps2
dimer-dimer channels.

The rest of the paper is organized as follows. Sec-
tion II defines the Hamiltonian and the basis set used
to solve the adiabatic Hamiltonian. Section III analyzes
the adiabatic potential curves, that is, the solutions to
the adiabatic Hamiltonian. Section IV describes how the
low-energy elastic scattering lengths are calculated and
compares the results to benchmark calculations from the
literature. In Sec. V, the S-matrix is calculated to esti-
mate the transition probabilities between the lowest few
dimer-dimer fragmentation channels and the single ionic
fragmentation channel. Last, Sec. VI concludes.

II. THEORETICAL BACKGROUND

Consider the system of two electrons and two
positrons in three dimensions interacting via the two-
body Coulomb potential. The Hamiltonian H in atomic
units (~ = me = 1) reads

H =− 1

2

4
∑

j=1

∇2
rj

+
∑

i<j

qiqj
|ri − rj |

(1)

where rj is the location of particle j. For concreteness,
q1 = q2 = +1 and q3 = q4 = −1. The center of massHCM

and relative Hrel contributions separate, H = HCM +
Hrel. Our focus is on the relative Hamiltonian,

Hrel = − 1

2µ

3
∑

j=1

∇2
ρj

+ VC(ρ1,ρ2,ρ3), (2)

where VC contains the pair-wise Coulomb interactions as
a function of the three relative Jacobi vectors ρj , j =
1, 2, 3. All Jacobi vectors are scaled such that they are
analogous to three equal-mass “particles” of mass µ. We
take µ = 2−2/3 such that the coordinate transformation
is unitary.
The relative Hamiltonian Hrel is recast in hyperspheri-

cal coordinates in terms of eight hyperangles denoted by
Ω and a single length, the hyperradius R. The relative
Hamiltonian is then a sum of the hyperradial kinetic en-
ergy TR, the hyperangular kinetic energy TΩ, and the
interaction potential,

Hrel = TR + TΩ + Vint(R,Ω), (3)

where

TR = − 1

2µ

1

R8

∂

∂R
R8 ∂

∂R
. (4)

The exact form of the hyperangular kinetic energy TΩ
depends on the choices of the Jacobi vectors and of the
hyperangles. The exact form is not needed here, but
additional detail can be found in Ref [37].
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The solution ΨE(R,Ω) to Eq. (3) is expanded in terms
of the radial functions R−4FEν(R) and the channel func-
tions Φν(R;Ω),

ΨE(R,Ω) = R−4
∑

ν

FEν(R)Φν(R;Ω). (5)

The channel functions at a fixed hyperradius R form a
complete orthonormal set over the hyperangles,

∫

dΩ Φ∗

ν(R;Ω)Φν′(R;Ω) = δνν′ , (6)

and are the solutions to the adiabatic Hamiltonian
Had(R,Ω),

Had(R,Ω)Φν(R;Ω) = Uν(R)Φν(R;Ω), (7)

where

Had =
Λ

2 + 12

2µR2
+

C(Ω)

R
. (8)

Here, Λ
2 is the square of the grand angular momen-

tum operator and C(Ω) is the hyperangular part of the
Coulomb interaction.
After applying Eq. (3) on the expansion Eq. (5) and

projecting from the left onto the channel functions, the
Schrödinger equation reads
(

− 1

2µ

d2

dR2
+ Uν(R)− E

)

FEν(R) (9)

− 1

2µ

∑

ν′

(

2Pνν′(R)
d

dR
+Qνν′(R)

)

FEν′(R) = 0.

The hyperspherical Schrödinger equation Eq. (9) is solved
in a two step procedure. First, Had(R,Ω) is solved para-
metrically in R for the adiabatic potential curves Uν(R).
In a second step, the coupled set of one-dimensional equa-
tions in R are solved. In Eq. (9), Pνν′ and Qνν′ represent
the coupling between channels, where

Pνν′(R) =

〈

Φν

∣

∣

∣

∣

∂Φν′

∂R

〉

Ω

(10)

and

Qνν′(R) =

〈

Φν

∣

∣

∣

∣

∂2Φν′

∂R2

〉

Ω

. (11)

The brackets indicate that the integrals are taken only
over the hyperangle Ω with the hyperradius R held fixed.
The eigenfunctions Φν(R;Ω) ofHad(R,Ω) are simulta-

neous eigenstates of the total orbital angular momentum
L, the parity π, and the spin of the identical positrons
S+ and identical electrons S−. Moreover, because of the
equal masses and charges, the eigenfunctions are also
eigenstates of the charge conjugation operator Ĉ. The
Φν(R;Ω) are expanded using a non-orthogonal basis of
correlated Gaussians [38–40],

|Φν〉 =
∑

j

Ĉ±Ŝ|A(j)〉|χ〉, (12)

TABLE I: Permutations used in the basis functions Eq. (12)
labeled by the charge conjugation and spin. SS (TT) means
singlet-singlet (triplet-triplet).

C+SS C+TT C
−
SS C

−
TT

1 + + + +

(12) + − + −
(34) + − + −
(12)(34) + + + +

(13)(24) + + − −
(3142) + − − +

(1324) + − − +

(14)(23) + + − −

where Ŝ is a symmetrization operator that permutes the
space and spin labels of identical particles. In particu-
lar, Ŝ = [1 − (12)][1 − (34)], where (ij) is the two-cycle
operator that exchanges particles i and j. The three-
cycle operator (ijk), for example, denotes the permuta-
tion i → j, j → k, and k → i. In practice, to project
out the parts of the functions that are either even (+) or
odd (−) under charge conjugation, we apply the operator

Ĉ±, Ĉ± = 1± Ĉ, where Ĉ = (13)(24).

In general, under permutation the spin functions |χ〉
would transform to a different spin configuration. How-
ever, this work only considers the singlet-singlet (SS) or
triplet-triplet (TT) spin configurations. In this case, the
effect of permutations on the spin functions leaves them
unchanged except possibly for an overall minus sign. The
combined operator Ĉ±Ŝ involves eight permutations. Ta-
ble I indicates all of the permutations and their effective
signs that are considered in this work. The first column
denotes the permutation while the first row denotes the
system considered.

The functions |A(j)〉 are

|A(j)〉 = exp

(

−1

2
x
TA(j)

x

)

∣

∣u
T
x

∣

∣

2K
. (13)

Here, x is an array of (column) Jacobi vectors, xT =
{x1,x2, . . . ,xN}. All Jacobi vectors exist in three di-
mensions, such that the jth Jacobi vector reads x

T
j =

{xj,1, xj,2, xj,3}. A(j) is an N × N symmetric positive
definite coefficient matrix that describe the correlations.
The matrix A(j) contains N(N + 1)/2 independent vari-
ational parameters. The N -dimensional global vector
u determines the linear combination of Jacobi vectors,
where the integer K is a nodal parameter. These basis
functions describe only natural parity states [π = (−1)L]
with zero orbital angular momentum L, though it is well-
known how to extend this basis to include unnatural par-
ity [40].
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FIG. 1: (Color online) Adiabatic potential curves for Lπ =
0+ and charge conjugation eigenvalue +1 shown as effective
quantum numbers [see Eq. (14)] vs

√
R. Panels (a) and (b)

are for (S+, S−
) = (0, 0) and (1, 1), respectively. The thin

solid lines show the known asymptotic behavior through order
R−3. The asymptotically ionic channel in (a) is the dash-
dash-dotted line. The dimer-dimer asymptotic thresholds are
labeled by the angular momentum of the excited Ps.

III. ADIABATIC POTENTIAL CURVES

This paper is concerned with states of L = 0 angular
momentum and positive parity π. Our matrix element
calculations utilize a technique that reduces all matrix
element evaluations to 1-D Fourier transforms [35]. Us-
ing this basis, the lowest few adiabatic potentials are
calculated for the 2e−2e+ system and shown in Figs. 1
and 2. To put all adiabatic potentials on the same
scale, the curves are plotted as effective quantum num-
bers nν(R) [28, 30] as functions of the square root of
the hyperradius R. This scaling is motivated by the fact
that, at low energy, all curves except the asymptotically
ionic channel break up into two Ps dimers at large hyper-
radius. At the low energies considered here, one of these
Ps dimers is always in the ground state in the asymptotic
limit. Thus, based on the asymptotic thresholds energies,
we define

nν(R) = [−4Uν(R)/EH − 1]−1/2 (14)
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FIG. 2: (Color online) Adiabatic potential curves for Lπ =
0+ and charge conjugation eigenvalue −1 shown as effec-
tive quantum numbers vs

√
R. Panels (a) and (b) are for

(S+, S−
) = (0, 0) and (1, 1), respectively. The thin solid lines

show the known asymptotic behavior through order R−3. The
asymptotically ionic channel in (a) is the dash-dotted line.
The dimer-dimer asymptotic thresholds are labeled by the
angular momentum of the excited Ps.

Figure 1 shows the eigenstates of Ĉ corresponding to
eigenvalue +1 for (a) the SS and (b) the TT spin con-
figurations. In general, the potentials of the TT case are
more repulsive since the Pauli exclusion principle keeps
the identical particles further apart. Moreover, only in
the SS case does the ionic channel appear. In a dia-
batic picture, this ionic channel, with threshold energy
−0.262EH [nν(∞) = 4.56], crosses dimer-dimer channels
with nν(∞) ≤ 4, each crossing becoming less sharp (less
diabatic) for crossings at lower energy.

Figure 2 shows the eigenstates of Ĉ corresponding to
eigenvalue −1 for (a) the SS and (b) the TT spin configu-
rations. Again, we observe the potentials of the TT case
are more repulsive that the potentials of the SS spin con-
figuration. Panel (a) shows the diabatic-like ionic chan-
nel, which is absent in panel (b). Moreover, the dash-
dash-dotted line of panel (a) has a local minimum around
√

R/a0 ≈ 6.5. Though not visible on the scale shown,
this is due to an avoided crossing with the next highest
channel. Though the curves begin to be less converged
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in this region, it is a true feature and not an artifact.
Taking into account the other adiabatic potentials (not
shown), even though unconverged, they hint that this is
just the first of many avoided crossings at large R and
appear to map out a diabatic curve that asymptotically
approaches−0.25EH, that is, the energy where one dimer
has completely dissociated.
The asymptotic limits up through orderR−3 are shown

as thin solid lines at large R in both Figs. 1 and 2.
This asymptotic behavior can be calculated by asymp-
totically expanding the adiabatic Hamiltonian in powers
of R−1 [37] and using degenerate perturbation theory.
This yields, for the dimer-dimer channels shown,

Uν(R → ∞) ≈ −1

4
+

−1

4n2

+
1

4µR2

[

3l(l+ 1)− n2 − 2− 28n5δl0
(n2 − 1)4

(

n− 1

n+ 1

)2n ]

+
1

3µ3/2R3

211n7δl1
(n2 − 1)5

(

n− 1

n+ 1

)2n

, (15)

where the two terms involving Kronecker deltas only con-
tribute if n > 1.
The number of asymptotic channels can be understood

by examining the asymptotic wave functions [37]. For
the dimer-dimer thresholds, ignoring the spin part of the
wave function, the unsymmetrized asymptotic wave func-
tion is effectively a product of two scaled hydrogenic ra-
dial wave functions and a coupled set of spherical har-
monics whose angles are defined by the Jacobi vectors
ρj ,

|Φ(R → ∞)〉 ≈ |n1l1〉1|n2l2〉2|ρ̂1ρ̂2ρ̂3〉, (16)

where |nl〉j represent the hydrogenic wave function along
the jth Jacobi vector and

|ρ̂1ρ̂2ρ̂3〉 =
(−1)l3√
2l3 + 1

∑

m

〈l1m1l2m2|l3m3〉×

Yl1m1
(ρ̂1)Yl2m2

(ρ̂2)Y
∗

l3m3
(ρ̂3). (17)

The sum is over all projection quantum numbers, Y are
spherical harmonics, and 〈·〉 is a Clebsch-Gordan coeffi-
cient.
The Jacobi vector ρ1 defines the first dimer, ρ2 defines

the second dimer, and ρ3 defines the inter-dimer distance.
Applying the symmetrization operator Ŝ yields

Ŝ|Φ(R → ∞)〉 ≈|n1l1〉1|n2l2〉2|ρ̂1ρ̂2ρ̂3〉
+ (−1)l3 |n2l2〉1|n1l1〉2|ρ̂2ρ̂1ρ̂3〉 (18)

since the terms arising from P12 and P34 are exponen-
tially negligible. This can be understood since, if ex-
pressed in a single Jacobi basis, these operators cause the
Jacobi vectors to pick up components along ρ3. In the
asymptotic limit, ρ3 scales with the hyperradius R and
thus the hydrogenic wave function causes the exchange
term to vanish exponentially. The functions Eq. (18) are

eigenstates of the charge conjugation projection operator
Ĉ±,

Ĉ±Ŝ|Φ(R → ∞)〉 =
[

1± (−1)l1+l2
]

Ŝ|Φ(R → ∞)〉.
(19)

If one dimer is in the ground state, then the asymptotic
wave function vanishes for Ĉ+ if the other dimer is in
an odd partial wave. On the other hand, the asymptotic
wave function vanishes for Ĉ− if the other dimer is in an
even partial wave.
In this way, in a diabatic picture the adiabatic poten-

tials can be labeled by how they approach the asymp-
totic thresholds (shown as thin solid lines at large R). In
Fig. 1(b), for example, solid, dashed, dash-dotted, dash-
dash-dotted, dotted, and dash-dot-dotted lines are for
1s1s, 1s2s, 1s3s, 1s3d, 1s4s, and 1s4d Ps-Ps channels,
respectively. In Fig. 1(a), the labeling is shifted due to
the inclusion of the ionic channel, such that the ionic
channel is the dash-dash-dotted line while solid, dashed,
dash-dotted, dotted, dash-dot-dotted, and solid lines are
for 1s1s, 1s2s, 1s3s, 1s3d, 1s4s, and 1s4d Ps-Ps chan-
nels, respectively. In Fig. 2(b), solid, dashed, and dash-
dotted lines are for 1s2p, 1s3p, and 1s4p Ps-Ps channels,
respectively. In Fig. 2(a), the labeling is shifted due to
the inclusion of the ionic channel, such that the ionic
channel is the dash-dotted line while solid, dashed, and
dash-dash-dotted lines are for 1s2p, 1s3p, and 1s4p Ps-Ps
channels, respectively.
Our current scheme suffers from convergence issues in

the asymptotically large R region for states other than s-
wave. This is visible in the dotted and upper solid lines of
Fig. 1(a), the dash-dash-dotted and dash-dot-dotted lines
of Fig. 1(b), as well as the dash-dotted line of Fig. 2(b).
Even more, the potentials that asymptotically approach
the 1s4f threshold in Fig. 2 are even less converged, not
appearing within the figure on the scale shown. In prac-
tice, the adiabatic potentials are smoothly matched to
the known asymptotic behavior.

IV. LOW ENERGY ELASTIC SCATTERING

This section describes the low energy elastic scatter-
ing properties for those systems shown in Fig. 1, that
is, the s-wave scattering lengths for the TT and SS spin
configurations. The inverse log-derivative R-matrix is
propagated from small hyperradius out to some match-
ing distance Rm, where it is matched to the asymptotic
form of the hyperspherical wave functions. For short-
range interaction potentials, the couplings and adiabatic
potentials fall off sufficiently fast such that a sufficiently
large matching point Rm leads to converged results. For
the long-range Coulomb interaction, however, we find it
better to match the R-matrix at many different points
and then extrapolate to infinite matching point.
As an example, Fig. 3 shows the tangent of the s-wave

phase shift as a function of the inverse of the match-
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FIG. 3: (Color online) Tangent of the phase shift δ as a
function of the matching distance Rm for low-energy elas-
tic scattering of the (S+, S−

) = (0, 0), Lπ = 0+ system us-
ing the four lowest channels. Panels (a) and (b) are for a
scattering energies of Escatt = 0.01EH and 0.001EH , respec-
tively. The dashed line of the insets shows a linear fit over
a0/Rm = 0− 0.003.

ing point for the SS system. The TT system is qual-
itatively similar. Panel (a) is for a scattering energy
Escatt = 0.01EH above the 1s1s threshold, while panel
(b) is for a scattering energy Escatt = 0.001EH. The os-
cillations in tan δ as a function of Rm begin at R ≈ 25a0,
that is, beyond the distance where there is an appreciable
potential well. However, it is the long-range nonadiabatic
coupling, which between s-wave dimer-dimer states goes
as Pνν′(R → ∞) ≈ R−1 at large distance, that leads to
the oscillating behavior. This has been verified by ar-
tificially turning off these couplings beyond some large
distance and observing that the oscillations cease.

In addition to the oscillating behavior, tan δ ap-
proaches the infinite matching point linearly when plot-
ted as a function of R−1

m . In practice, we fit to this linear
behavior, making the range of the fit extend over many
wavelengths to average out the oscillations. The insets
of Fig. 3 show such fits. The oscillations have a smaller
wavelength as the scattering energy increases, such that
the fits to the tan δ with the lowest scattering energy have
a larger uncertainty.

Figure 4 shows the energy-dependent s-wave scattering
lengths, a = − tan δ/k, where k is the scattering momen-
tum, as a function of the scattering energy Escatt, where

3
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FIG. 4: (Color online) Low-energy s-wave scattering length
a vs scattering energy Escatt for (a) the SS configuration and
(b) the TT configuration. Circles, squares, diamonds, and
triangles are for 1−4 included channels, respectively. Crosses
represent extrapolating to infinite number of channels, based
on the data for 2−4 included channels. Upper and lower thin
solid lines are quadratic and linear fits, respectively, of the
extrapolated data.

Escatt is the energy above the lowest dimer-dimer thresh-
old of −0.5EH . Circles, squares, diamonds, and triangles
show the show the SS s-wave scattering length aSS includ-
ing one, two, three, or four lowest channels. The crosses
are an extrapolation to an infinite number of channels
based on the data for including the lowest two through
four channels. The thin lines show linear and quadratic
fits to the extrapolated data set using the five points of
lowest scattering energy. In Fig. 4(b), a similar analysis
is done for the TT scattering length aTT. The analysis
estimates the scattering lengths to be aSS = 8.7(2)a0 and
aTT = 3.2(1)a0.
The scattering estimates provided agree well with oth-

ers (see Table II), but are systematically large when com-
pared to the accurate stochastic variational method [41,
42]. This systematic error at low scattering energy arises
from a number of sources. As already mentioned, the
oscillations in tan δ obscure the underlying linear behav-
ior if the R-matrix is not propagated to sufficiently large
distance. The more probable cause is that at low scatter-
ing energy the scattering data is very sensitive to small
changes in the realistic potentials, that is, the adiabatic
potentials Uν(R) with diagonal Qνν(R) correction. In
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TABLE II: The s-wave scattering length in atomic units for
some calculations of Ps-Ps scattering.

Method Singlet Triplet

CCA [43]a 7.46 1.56

CCA [44]b 9.32 2.95

HECG (present)* 8.7(2) 3.2(1)

Oda et al. [45]c 8.26 3.02

Platzmann and Mills [17] ≈ 5.7 ≈ 1.9

QMC [46]d 9.148(42) 3.024(58)

QMC [47]e & 9.148(42) 2.900(34)

Superseded SVM [41, 42]f 8.443 2.998

a For basis set Ps(1s)Ps(1s, 2s, 2p).
b For basis set Ps(1s, 2s, 2p̄, 3d̄) Ps(1s, 2s, 2p̄, 3d̄); bar de-
notes pseudostate.

c Model: long-range van der Waals potential with short-
range hard core, constrained to fit Ps2 binding energy.

d Polynomial fit to phase shift.
e Same data as [46], but fit to effective range theory. Singlet
value unknown, but deduced to be slightly larger than
in [46].

f Error bars beyond digits shown.
* See text for the description of the error estimate.

practice, where possible, an inverse power-law fit is per-
formed on the large-R tails of the realistic potentials as
this matches the expected behavior at large distance.
However, in some cases a nonadiabatic coupling occurs
in the region where the inverse power-law asymptotics
would be expected, obscuring this behavior. Thus, in-
stead of a power-law fit, we find a Lorentzian-like tail to
be a more appropriate large R fit to the realistic poten-
tial. Nevertheless, since the realistic potentials are a vari-
ational upper bound to the true potentials, the scatter-
ing data at low scattering energy is systematically higher
than expected. A fit of the zero-energy s-wave scattering
lengths using the scattering data at higher energy would
provides an estimate much closer to accepted values, but
is not provided here.

We estimate the error by fitting the N -channel scat-
tering data to quadratic and linear polynomials, extrap-
olating to zero scattering energy. An example is shown
in Fig. 4 for the inifite channel approximation (crosses).
This provides error estimates for each fixed-channel cal-
culation. The difference between the 4-channel calcula-
tion and infinite-channel approximation are used to then
estimate an overall error.

The scattering lengths reported in Table II are not
the experimentally relevant scattering lengths. Those re-
ported are for the singlet-singlet or triplet-triplet sym-
metries of the identical electrons and positons. For ex-
periment, it is the spin of the Ps atoms that is relevant.
It is a straightforward calculation to switch between the
two coupling schemes; see, e.g. Refs. [47] or [42].

V. CHARGE REDISTRIBUTION

This section describes the charge redistribution, that
is, the probability of transferring from a dimer-dimer
channel to the ionic channel that occurs in only the sys-
tems with SS symmetry. The probabilities are given by
the squared absolute value of the S-matrix elements. The
S-matrix is calculated after propagating the R-matrix to
a large distance. Similar to the approach shown in Fig. 3,
each element of the S-matrix is extrapolated to matching
to the asymptotic solutions at R → ∞.

In the following, for positive charge conjugation sym-
metry, only the lowest four channels are included in the
calculations [the solid, dashed, dash-dotted, and dash-
dash-dotted lines of Fig. 1(a)]. The dimer-dimer channels
fragment into one ground state s-wave Ps and one excited
state s-wave Ps. No d-wave [dotted and upper solid lines
of Fig. 1(a)] or the highest s-wave [dash-dot-dotted line of
Fig. 1(a)] fragmentation channels are included. Beyond
the crossing with the third dimer-dimer channel, the ionic
channel is made continuous up to the ionic threshold of
−0.262EH, where all crossings with the neglected dimer-
dimer channels are assumed to be fully diabatic. For the
negative charge conjugation symmetry, only the lowest
three channels are included in the calculations [the solid,
dashed, and dash-dotted lines of Fig. 2(a)]. The asymp-
totically dimer-dimer channels fragment into one ground
state s-wave Ps and one excited state p-wave Ps. No f -
wave [not shown in Fig. 2(a)] or the highest p-wave [dash-
dash-dotted line of Fig. 2(a)] fragmentation channels are
included. Beyond the crossing with the second dimer-
dimer channel, the ionic channel is made continuous up
to the ionic threshold of −0.262EH, where all crossings
with the neglected dimer-dimer channels are assumed to
be fully diabatic.

Figure 5 shows some of the squared absolute values
of the off-diagonal S-matrix elements for the SS system
with (a) positive and (b) negative charge conjugation
symmetry. In panel (a), solid (|S14|2), dashed (|S24|2),
and dash-dotted (|S34|2) lines show the transition prob-
abilities to transition from the three lowest dimer-dimer
channels to the ionic channel. The charge transfer is most
efficient from the ground dimer-dimer channel and is less
efficient as the excited Ps increases in principle quan-
tum number. This can be understood since the avoided
crossing is largest between the ground and first excited
states. Thus, any flux coming in on the ground state is
efficiently transferred to the higher channels as opposed
to simply exciting one of the Ps atoms, whereas flux com-
ing in on the first excited state is more efficiently given
to the ground state rather than transferring to the ionic
channel. The crossing of the third dimer-dimer channel
is almost fully diabatic, hence there is no efficient charge
transfer from this state to the state of the Ps ion and a
free charge. This trend of the crossings becoming more
diabatic as the energy increases supports our approach
of neglecting the more excited dimer-dimer channels.
In Fig. 5(b), solid (|S13|2) and dashed (|S23|2) lines
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FIG. 5: (Color online) Charge redistribution probabilities as
a function of scattering energy for SS and (a) negative or
(b) positive charge conjugation symmetry. All curves are for
dimer-dimer to ionic transitions and are labeled by the dimer-
dimer threshold. The ionic threshold is −0.262EH .

show the transition probabilities to transition from the
two lowest dimer-dimer channels to the ionic channel.
Overall, the charge transfer is not as efficient in compar-
ison to the case of positive charge conjugation symme-
try. This can be understood since there is only one wide
avoided crossing, but it is not as wide as in the case of
positive charge conjugation symmetry. The second curve
crossing is already mostly diabatic, suppressing much of
the probability to transfer to the ionic channel.

VI. CONCLUSION AND OUTLOOK

This paper calculates the lowest adiabatic potential
curves as a function of the hyperradius R for the 2e+2e−

system for zero orbital angular momentum, positive par-
ity, and different charge conjugation symmetries. Using
these hyperradial channels, low-energy elastic scattering
properties are determined by propagating the R-matrix.
The long-range couplings from the Coulomb interactions
are overcome by matching to the asymptotic hyperradial
functions at many different points. The observed behav-
ior in the tangent of the phase shift and the calculated S-
matrix elements, as a function of inverse matching point,
is linear with damping oscillations. The resulting s-wave
scattering lengths are larger than other values in the liter-
ature, but nevertheless converge well as a function of the
number of included channels and provide reasonable esti-
mates of the scattering properties. The transition prob-
abilities are expected to be good estimates, but could be
improved by including more channels.

The ability to treat the ionic and dimer-dimer frag-
mentation channels on an equal footing is one of the
strengths of the adiabatic hyperspherical method. Fu-
ture studies will extend this system to include inelastic
scattering properties and different orbital angular mo-
mentum states. Moreover, the masses and charges of the
particles are tunable parameters. It would be interesting
to study e.g. the change in the potential curves and tran-
sition amplitudes as a function of the mass of the positive
charge transitioning from the Ps2 to the H2 system. Ex-
plicitly including hydrogenic wave functions in the basis
could also help the convergence issues at large hyperra-
dius. These topics will be the focus of future studies.

VII. ACKNOWLEDGEMENTS

Support by the National Science Foundation through
Grant No. PHY-1306905 and by the US Deptartment
of Energy, Office of Science through Grant No. DE-
SC0010545 is gratefully acknowledged.

[1] J. A. Wheeler, Ann. NY. Acad. Sci. 48, 219 (1946).
[2] Y. K. Ho, Phys. Rev. A 33, 3584 (1986), URL http:

//link.aps.org/doi/10.1103/PhysRevA.33.3584.
[3] D. B. Kinghorn and R. D. Poshusta, Phys. Rev. A 47,

3671 (1993), URL http://link.aps.org/doi/10.1103/

PhysRevA.47.3671.
[4] D. Bressanini, M. Mella, and G. Morosi, Phys. Rev. A 55,

200 (1997), URL http://link.aps.org/doi/10.1103/

PhysRevA.55.200.
[5] D. M. Schrader, Phys. Rev. Lett. 92, 043401 (2004), URL

http://link.aps.org/doi/10.1103/PhysRevLett.92.

043401.
[6] S. Bubin and L. Adamowicz, Phys. Rev. A 74,

052502 (2006), URL http://link.aps.org/doi/10.

1103/PhysRevA.74.052502.
[7] S. Bubin, M. Stanke, D. Kȩdziera, and L. Adamowicz,
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