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The MCTDHF method has shown promise in calculating electronic dynamics in molecules driven
by strong and high energy lasers. It must incorporate restricted configuration spaces (meaning that
a particular combination of Slater determinants is used, instead of full configuration interaction)
to be applied to big systems. Two different ansatzes are used to determine the essential term in
the equations. The first ansatz is the Lagrangian variational principle. The explicit, complete
MCTDHF equations of motion, satisfying that principle, for arbitrary configuration spaces, are
given. The property that a restricted configuration list must satisfy in order for the Lagrangian and
McLachlan variational principles to give different results is identified. The second ansatz keeps the
density matrix block diagonal among equivalent orbitals, in a generalization of the method of G.
Worth, J. Chem. Phys. 112, 8322 (2000). The methods perform well in calculating the dynamics of
Be and BC2+ subject to ultrafast, ultrastrong lasers in severely truncated Hilbert spaces, although
they exhibit differing degrees of numerical stability as implemented.

PACS numbers: 31.15.-p,

I. INTRODUCTION

The multiconfiguration time-dependent Hartree-Fock
(MCTDHF) method has been pursued [1–18] with the
goal of calculating nonpertubative electronic dynamics of
molecules in strong fields, in support of experiments using
ultrafast laser pulses. The method without permutation
symmetry, MCTDH, has been applied with great success
over the past two decades to the problem of nuclear dy-
namics of molecules on coupled Born-Oppenheimer po-
tential energy surfaces [19–25], and there is now a mature
effort to apply the method for bosons, MCTDHB [26–31],
to problems involving cold atoms in particular.
Because the MCTD(H/HF/HB) methods find use in

different physical contexts, the realities accessory to
their numerical implementation are considerably differ-
ent. However, the working equations for MCTDHF and
MCTDHB are simply those of MCTDH, accounting for
the permutation symmetry of the wave function. All
of these methods describe the wave function as a time-
dependent linear combination of properly symmetrized
time-dependent product basis functions; for MCTDHF
these basis functions are Slater determinants.
When total spin S is a good quantum number, lin-

ear combinations of determinants that are eigenvectors
of Ŝ2 are used as N -electron basis functions. These spin
adapted linear combinations are called “configurations.”
Otherwise, “configuration” means “Slater determinant.”
The difference between MCTDHF and time-dependent

configuration interaction is that in MCTDHF, not only
are the coefficients multiplying the configurations time-
dependent, but so are the configurations themselves.
MCTDHF is time-dependent multiconfiguration self-
consistent field.
For four electrons,

|1236(t)〉 ≡ ã†1(t)ã
†
2(t)ã

†
3(t)ã

†
6(t)|0〉 (1)

is the Slater determinant in which the 1st, 2nd, 3rd, and
6th spin orbitals are occupied; ã† and ã create and an-
nihilate spin orbitals. It might be combined with |1245〉
to to create a singlet or triplet configuration. The MCT-
DHF wave function ansatz may be written in general as
a sum of such determinants,

|Ψ(t)〉 =
∑

a

Aa(t) |~na(t)〉 . (2)

For time-dependent configuration interaction, the Slater
determinants |~n〉 have no time dependence. In that case,

Ψ is linear in its parameters ~A and large-scale linear
algebra methods can be used for its propagation. The
introduction of time dependence into the orbitals, with
MCTDHF, makes the problem highly nonlinear.
The term “full configuration interaction” (“full CI”)

means that all possible Slater determinants that may
be formed from a given set of spatial orbitals are in-
cluded in the basis set. In practice, the term is used
even when symmetries of spin and space are accounted
for. The number of configurations used in an explicit
full configuration interaction calculation becomes pro-
hibitive with modern technology for spaces with large (10
or more) electrons in tens of orbitals. We have recently
published [32] a converged calculation of stimulated X-
Ray Raman in the NO molecule at 1017 W cm−2 using
392040 Slater determinants. This is the limit of what we
can fit in memory on a single supercomputer node (64GB
memory) without using a slower, “direct CI” mode. The
largest full configuration interaction calculation we have
performed with the implementation [17] is on the Fluo-
rine atom, 19 orbitals, 5 million Slater determinants.
We use the term restricted configuration space to refer

to any departure from full configuration interaction. For
a configuration interaction calculation with a restricted
configuration space, some Slater determinants in the full
CI list are simply discarded. Other representations, such
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as coupled cluster or some treatments using the graphical
unitary group [33] also use a subset of the full configura-
tion space, as per an effective parameterization, and we
consider them to be restricted configuration space treat-
ments as well.
The total set of orbitals in general may be divided into

sets or “shells” of “equivalent” orbitals. Two orbitals are
equivalent if the N-electron Hilbert space is left invariant
by any unitary transformation of the pair. It is pos-
sible to have a restricted configuration space treatment
with no inequivalent orbitals (possibly, with Ref. [33]);
but any that explicitly treats different orbitals on differ-
ent footings, or that is sensitive to the resolution of the
orbitals within the space they span, like all that we con-
sider, and like the prescriptions used in quantum chem-
istry, will. For configuration interaction, the N-electron
Hilbert space is the list of configurations included in the
calculation. In general, with configuration interaction,
inequivalent orbitals belong to shells defined by different
restrictions on occupancy. A common ansatz for a re-
stricted configuration space within the field of quantum
chemistry is called restricted active space (RAS). CIS and
CISD, “configuration interaction with singles and dou-
bles,” are subsets of RAS. In RAS, there are four shells
of orbitals that can be ordered in terms of occupancy [34],

• 1) Doubly occupied

• 2) Total occupation number > n1

• 3) Arbitrary occupation

• 4) Total occupation number < n2

The simpler complete active space ansatz includes only
two shells, doubly occupied and full CI (and is therefore
also a subset of RAS).
All of the ansatzes for restricted configuration spaces

based on restricted active space (RAS) are motivated by
bound state quantum chemistry. The interest here is in
wave functions with current. The physical situations in-
terrogated by modern and next-generation ultrafast laser
experiments involve the excitation of multiple electrons
through multiple metastable and continuum electronic
states. It is desirable to have a fully general treatment of
restricted configuration spaces, so that the method may
be adapted to physical systems of interest (and so that
the machinery and equations may be used for representa-
tions using coupled cluster or matrix product states, for
instance). In particular, calculating dissociation prob-
lems, or problems such as interatomic Coulombic decay
in which the situation is one of weakly interacting frag-
ments, may require multiple different shells of orbitals on
equal footing, that cannot be ordered.
However, the restricted active space (RAS) ansatz may

suffice to calculate many phenomena of interest. Ion-
ization is present in experiments performed today that
involve high-energy or strong lasers and that measure in-
teresting nonperturbative electronic and nuclear dynam-
ics. Its presence means that the single-electron Hilbert

space is fundamentally high dimensional, i.e., that a large
number of orbitals will be required within the MCTDHF
ansatz to describe ionization into multiple channels of
even one but especially more than one simultaneously
outgoing electron. In this respect the use of straight or
exterior complex coordinate scaling [35–39] plays a major
role in reducing the numerical effort involved, allowing
the variational flexibility of the ansatz to optimize the
wave function near to the nuclei. For the calculation of
absorption and emission, the matrix elements are domi-
nated by the part of the wave function near the nuclei.
In contrast, the calculation of double ionization ampli-
tudes within the MCTDHF method would surely prove
challenging, not only due to the formal issues but also to
the inherent problem in the need to explicitly represent
the doubly ionized electronic wave function far from the
residual core by the MCTDHF expansion. For a double
ionization problem, a CISD configuration space would be
required, with a large number of orbitals in the “virtual,”
“doubles” space.

The MCTHDF equations of motion are most straight-
forward to implement if full configuration interaction is
used. The introduction of restricted configuration spaces
introduces both formal and numerical issues, neither of
which have yet been solved in general. In Ref. [40], a
method was used that avoided the inclusion of the orbital
rotation terms in the short-time propagation of the wave
function, because the attempts to do so in a numerically
stable way were unsuccessful.

In this paper we derive two methods for employing re-
stricted configuration spaces within MCTDHF. The task
is to define the rates and phases of rotations of orbitals
φ into one another. The rates and phases of rotation are
given by the Hermitian matrix g,

gαβ =

〈
φα

∣∣∣∣i
∂

∂t
φβ

〉
. (3)

Without a restricted configuration list, with full config-
uration interaction, there is no constraint on the matrix
g; it may be chosen Hermitian, but otherwise arbitrarily,
and is generally chosen to be zero.

For restricted configuration spaces, gαβ between equiv-
alent orbitals may be chosen zero, and what is required
is to derive gαβ for inequivalent α and β.

MCTDHF involves a particular choice of a parameter-
ized wave function, and the use of variational principles
to define equations of motion for parametrized wave func-
tions has motivated a large amount of study [41–49]. Two
variational principles, that which minimizes the norm of
the error in the time derivative of the wave function, due
to McLachlan [43], and that which conserves energy for
time-independent Hamiltonians [45], alternatively called
the time-dependent variational principle [45, 49] or the
Lagrangian variational principle [47], are equivalent in
the case of MCTDHF with full configuration interac-
tion. The two principles are collectively referred to as
the Dirac-Frenkel [41, 42] variational principle when they
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are equivalent, not in conflict. Discussion of these issues
can be found especially in Refs. [47, 48].

We are not alone in pursuing the use of restricted con-
figuration spaces within MCTDHF; there has recently
been a large amount of work on the subject [10–16].

Most of the current implementations of MCTDHF us-
ing restricted configuration spaces employ restricted ac-
tive space (RAS) representations [10, 13–16]. A discus-
sion of the use of complete active space (CAS) with MCT-
DHF is found in Section IV in Ref. [11]. In Refs. [11, 12]
the Lagrangian variational principle was applied to the
case of a wave function with fixed configuration coeffi-
cients. Refs. [13, 16] also proceed from an explicit state-
ment this principle and not the McLachlan principle.

Kvaal recently described [50] a method for time-
dependent coupled cluster that has been employed in
calculations of nuclear structure. The formulation and
related work is reviewed in Refs. [51, 52]. Other work
that also uses a Lagrangian variational principle includes
Ref. [53]. The issues regarding variational principles de-
scribed in this work have been confronted by these au-
thors. However, the solution to these issues derived in
Ref. [50] is different from ours. In Ref. [50], follow-
ing Arponen [54], a “bivariational” treatment is used in
which 〈Ψ| is considered independent of |Ψ〉. The space
of variational parameters is enlarged. This is arguably
a departure from the MCTDHF ansatz. Ref. [50] states,
“This relaxation of orthonormality of the orbitals is nec-
essary to ensure that the bivariational functional is com-
plex analytic if the orbitals are to be treated as vari-
ational parameters.” In Ref. [50] the variational space
was expanded to allow the equations to remain analytic;
here, we derive nonanalytic working equations, maintain-
ing the MCTDHF wave function ansatz.

With the exception of that coupled cluster work, the
two variational principles have not been clearly distin-
guished in the recent literature on MCTDHF. In partic-
ular, the conditions that the restricted configuration list
must satisfy in order for them to be different in MCT-
DHF have, to our knowledge, not yet been described.
An equation for the general case has been presented as
Eq. (21) in Ref [16], Eq.(32) in Ref. [13], and Eq.(65) in
Ref. [11]. However, explicit expressions for the elements
of the matrix g were derived only in a piecewise manner,
for the chosen restricted spaces.

We present working equations for the general case, for
either variational principle. For a restricted active space
(RAS) configuration list with MCTDHF, within the con-
figuration interaction representation, we show that the
two variational principles, McLachlan and Lagrangian,
are equivalent. For the configuration interaction rep-
resentation, with an arbitrary restricted configuration
space, if any single excitation α → β corresponds both
to one or more transitions from an included configuration
to an excluded, and to one or more from an excluded to
an included, then the principles are inequivalent.

We also investigate a method in which we abandon
the Dirac-Frenkel variational principle, and choose an-

other constraint to determine the evolution of the or-
bitals. We require that the density matrix be kept block
diagonal, with respect to the blocks of equivalent or-
bitals. Such a prescription has been used in electronic
structure [55]. This is a generalization of the method
of Ref. [40], MCTDH with selected configurations (S-
MCTDH); in that method, the density matrix is kept
fully diagonal.
The purpose of this effort is to permit the use of large

numbers of orbitals in the MCTDHF expansion. In con-
trast, the calculations in this paper use few orbitals. We
seek the most stringent test of the derived equations and
the numerical implementation. It would have been coun-
terproductive to attempt to converge the present calcu-
lations, which employ lasers of duration and intensity far
beyond the limits of present technology, whose effect is
the total destruction of the target system, with respect
to the number of orbitals. By truncating the one-electron
Hilbert space and using a powerful laser pulse, we force
the N-electron Hilbert space that the restricted configu-
ration list spans to evolve rapidly with time. We ensure
that there are parts of the one-electron Hilbert space that
rotate from one shell of equivalent shell of orbitals to an-
other, or to the excluded space, and back again, during
the course of the propagation. The full configuration
interaction calculation is substantially in error, and we
desire to best represent that wave function with a subset
of the already meager N-electron basis.
We begin in Sec. II by presenting the MCTDHF equa-

tions as they have been previously derived, with the ma-
trix g left undetermined. In Sections III and IV we
present the two different methods we have implemented
for determining the matrix g. The results are collected
in Sec. V and we conclude in Sec. VI.

II. WORKING EQUATIONS FOR MCTDHF

WITH FULL CONFIGURATION INTERACTION

The MCTDHF working equations have been formu-
lated previously [1–5]. They are equivalent to those of
MCTDH, the method without permutation symmetry,
the derivation of which is presented in e.g. Ref. [20, 21,
23], but in their notation they account for the antisym-
metry of the wave function and the single set of orbitals.
In all that follows, spin notation is suppressed for sim-
plicity. The subscripts on the creation and annihilation

operators, the α and β in a†βaα, label the spatial orbitals.

(To account for spin, consider the creation and annihi-
lation operators to be defined as 1×2 and 2×1 matrices,
row and column vectors, respectively. For example,

a†4 ≡
(
ã†7 ã†8

)
a3 ≡

(
ã5
ã6

)
〈~x|ã†5|0〉 = φ3(~x)⊗ |↓〉

(4)
In this paper these rank-two (2s + 1 = 2) creation and
annihilation operators always appear dotted together as

transition operators a†βaα.)
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MCTDHF begins with an expansion of the electronic
wave function in Slater determinants of time-dependent
orbitals, per Eq.(2). The orbitals are expanded in a set
of time-independent basis functions fj ,

φα(~r, t) =
∑

j

cjα(t)fj(~r) . (5)

The MCTDHF equations are derived from the Dirac-
Frenkel variational principle, which requires that the ex-
pectation value of H− i ∂

∂dt
be stationary with respect to

variations of the wave function on the left hand side:

∀iα

〈 ∂

∂ciα
Ψ(t)

∣∣∣H − i
∂

∂t

∣∣∣Ψ(t)
〉
= 0

∀a

〈 ∂

∂Aa

Ψ(t)
∣∣∣H − i

∂

∂t

∣∣∣Ψ(t)
〉
= 0

(6)

with the constraint that the orbitals remain orthonormal,

〈φα|φβ〉 − δαβ = 0 (7)

Where 〈|〉 is the Hermitian inner product.
For full configuration interaction, the wave function is

invariant with respect to rotations among the orbitals,
which may be compensated for by rotations among the
A-coefficients. The solution of Eq.(6) is therefore not
uniquely defined, and the matrix g is unconstrained and
may be chosen arbitrarily. The simplest way to proceed is
to set g to zero. For the orbitals one obtains the equation
of motion

i
∂

∂t
~cα =

∑

β

[
(1−P)

[
h
(1)δαβ +

∑

γ

ρ−1
αγW̃

γβ

]
+ gαβ

]
~cβ ,

(8)

where the projector P is the matrix representation of
the projection operator, P̂ =

∑
α |φα(t)〉〈φα(t)|, onto the

space spanned by the orbitals at time t,

Pj,j′ =
∑

α

cjα(t) cj′α(t)
∗ , (9)

so that 1−P projects on to the space orthogonal to that
spanned by the orbitals. Our convention is that boldface
symbols are matrices in either the orbital (~c) or configu-

ration ( ~A) basis, whereas regular font denotes scalars. In
Eq. (8), ραγ is the reduced one-electron density matrix
element for the wave function in Eq. (2),

ραβ =
∑

ab

A∗
aAb〈~na|a

†
α aβ |~nb〉 , (10)

and h
(1) contains the one-electron matrix elements. All

quantities in Eq. (8) are time-dependent except for the
identity and Kronecker delta. The reduced two-electron

operator W̃ is defined [2] by the reduced two-particle
density matrix, Γγsαl and the reduced potential, Wsl,

W̃
γβ =

∑

sl

ΓγsαlWsl(t) , (11)

Wsl(t) =

∫
φ∗
s(~r2, t)

1

|~r1 − ~r2|
φl(~r2, t)d~r2 . (12)

The equations of motion for the A-coefficients are

i
∂

∂t
~A = (H− τ ) ~A Ha,a′ = 〈~na|H |~na′〉

τa,a′ =

〈
~na

∣∣∣∣i
∂

∂t
~na′

〉 (13)

The matrix τ is assembled from g just as the one-
electron operator part of H is assembled from its orbital
matrix elements; so for full configuration interaction, if g
is chosen zero as usual, τ is zero.

III. RESTRICTED CONFIGURATION SPACES

WITH DIRAC-FRENKEL VARIATIONAL

PRINCIPLE CONSTRAINT

In this section we treat the problem of the variational
formulation of MCTDHF with restricted configuration
spaces, which should be viewed as the completion of
the true MCTDHF working equations. However, such
a prescription, continuing to use the Dirac-Frenkel vari-
ational principle to determine g, is not necessarily the
best. While one might lose the variational property of en-
ergy conservation or minimum norm instantaneous error,
there is nothing that says the accuracy of the final wave
function would not be superior with another ansatz. An-
other treatment might be more numerically stable. We
note that an ingenious MCTD(H/HF/HB) method has
been described [56] in which correlated components are
eliminated. The error suffers in the short term, but over
the long term yields superior wave functions.

A. Variational principles

As described in the introduction there is a large body
of work on the use of variational principles to propa-
gate parameterized wave functions [41–49]. With the in-
troduction of restricted configuration spaces into MCT-
DHF, there arises a distinction between the two main
variational principles. Considering a parameterized wave
function Ψ(~p(t)), with derivatives

|Ψi(~p)〉 ≡
∂

∂pi
|Ψ(~p)〉 (14)

The term “Dirac-Frenkel variational principle” [41, 42] is
understood to mean

∀i

〈
Ψi(~p(t))

∣∣∣∣H − i
∂

∂t

∣∣∣∣Ψ(~p(t))

〉
= 0 (15)
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As thereby written, for such a parameterized wave
function, it is the union of two variational principles [48],
the McLachlan variational principle [43], which mini-
mizes the norm of the error of ∂

∂t
Ψ,

∀i
∂

∂ṗi

∣∣∣H |Ψ(~p(t))〉 − i
∑

j |Ψj(~p(t))〉 ṗj

∣∣∣
2

= 0 (16)

ṗi ≡
∂
∂t
pi(t)

and the Lagrangian or the time-dependent variational
principle [45], which conserves the expectation value of
the energy for time-independent Hamiltonians.
For a parameterized wave function Ψ(~p(t)) the

McLachlan or minimum-norm variational principle is
equivalent to

∀i Im

〈
Ψi(~p(t))

∣∣∣∣H − i
∂

∂t

∣∣∣∣Ψ(~p(t))

〉
= 0 (17)

and the Lagrangian variational principle is equivalent to

∀i Re

〈
Ψi(~p(t))

∣∣∣∣H − i
∂

∂t

∣∣∣∣Ψ(~p(t))

〉
= 0 (18)

and thus the Dirac-Frenkel variational principle is the
union of the two variational principles.
However, either these variational principles are equiv-

alent, or they are in conflict and cannot be simultane-
ously satisfied. The eponym “Dirac-Frenkel” should be
used when the principles are equivalent; otherwise ei-
ther McLachlan or Lagrangian/TDVP should be spec-
ified. Discussion of these points can be found in e.g.
Refs. [47, 48]. In Ref. [48], it is stated that if for every
real-valued parameter pi there exists another real-valued
parameter pj such that

i
∂

∂pi
Ψ(~p) =

∂

∂pj
Ψ(~p) (19)

then the principles are equivalent. This requirement of
“complementarity,” Eq.(18) in that paper, is meant to
hold for variations of parameters that are consistent with
any other constraints that may have been placed on the
parameter set as a whole. The constraint of orthonor-
mality upon the orbitals in MCTDHF destroys the com-
plementarity between the real and imaginary parts of the
orbital coefficients. For full configuration interaction, ro-
tations among the orbitals can be accomplished by ro-
tating the configuration coefficients, so complementarity
is restored. One of the main findings of this work is that
if any single excitation α → β corresponds both to at
least one transition from an included configuration to an
excluded, and to at least one from an excluded to an
included, then the principles are inequivalent for MCT-
DHF with orbitals orthonormal under the Hermitian in-
ner product.
For the preparation of initial eigenfunctions using

imaginary time propagation – “cooling” or “relaxation”
– we use

∀i Re

〈
Ψi(~p(τ))

∣∣∣∣H +
∂

∂τ

∣∣∣∣Ψ(~p(τ))

〉
= 0 (20)

Thus, if the Lagrangian, energy-conserving variational
principle is chosen to propagate the wave function, an
eigenfunction cooled to a stationary state (g=0) will re-
main stationary under propagation. If the McLachlan,
minimum norm variational principle is chosen, the re-
laxed solution in general will not be stationary, g 6= 0,
when propagated forward in real time.
We have observed issues of symmetry breaking when

preparing eigenfunctions by relaxation using restricted
configuration spaces. We have not found mention of
these issues in the literature on multiconfiguration self-
consistent field methods in quantum chemistry. Symme-
try broken orbitals occur in trivial model systems. For
instance, if the two-electron interaction is made attrac-
tive, the simplest possible configuration interaction with
single excitations (CIS) calculation, using the configura-
tion list {|12〉, |14〉} for singlet H2, yields the same totally
symmetric real-valued wave function as that obtained us-
ing the generalized valence bond (GVB) configuration list
{|12〉, |34〉}, but with symmetry-broken complex valued
orbitals. We believe it is prudent to constrain the cooled
orbitals to be real-valued, although doing so may intro-
duce instabilities upon propagation. If orbitals are al-
lowed to be complex, in general, we suspect that this will
lead to complex-valued and symmetry broken eigenfunc-
tions, and have observed this to be so in model systems.
This issue is not pertinent to the eigenfunctions calcu-
lated for the present work; their orbitals were observed
to be real-valued upon convergence of the relaxation pro-
cedure.

B. Conventions

We have summarized the derivation of MCTDHF for
full configuration interaction in Sec. II. The remaining
task is to determine elements of the orbital rotation ma-
trix gαβ by taking variations of the orbitals within the
space they span. For full configuration interaction, g is
undetermined and may be set to zero. In no case is it
necessary to determine the diagonal elements, which may
be set to zero because the multiplication of an orbital by
a complex factor may always be compensated for by di-
viding Slater determinants that contain it by that factor.
As can be seen below, in the simplest cases, includ-

ing restricted active space (RAS), the Hermiticity of the
time derivative matrix gαβ need not be imposed, because
only the elements of gαβ above the diagonal, not those
below, are determined and so gαβ may be chosen Her-
mitian, without choosing between McLachlan and La-
grangian variational principles, satisfying both. In the
general case, if an excitation α → β may correspond
both to an excitation from the included space to the ex-
cluded, and to one from the excluded to the included,
the Hermiticity must be imposed as a constraint, and
the variational principles are inequivalent.
Included configurations are denoted |~na〉, and the ex-

cluded by |~xA〉; the union of these sets is full configura-
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tion interaction.

C. Derivation sufficient for restricted active space

As in the standard method, variations on the left hand
side with respect to configuration coefficients Aa

∂

∂Aa

|Ψ〉 = |~na〉 (21)

yield Eq. (13) via the stationary condition

∀a 0 =
∑

b

(
〈~na|H − i

∂

∂t
|~nb〉 − δab i

∂

∂t

)
Ab (22)

What remains is to take variations of the orbital coeffi-
cients ciα. To do so we first separate the time dependence
of the A-coefficient:

〈
δΨ

∣∣∣H − i
∂

∂t

∣∣∣Ψ
〉
=

∑

ab

A∗
aAb

〈
δ~na

∣∣∣H − i
∂

∂t

∣∣∣~nb

〉
− i

∑

ab

A∗
a

∂

∂t
Ab

〈
δ~na

∣∣∣~nb

〉

(23)

Using Eq. 22 and the definition of τ , the last term in
Eq.(23) can be manipulated,

i
∑

ab

A∗
a

∂

∂t
Ab 〈δ~na|~nb〉 =

∑

abc

A∗
aAc (Hbc − τbc) 〈δ~na|~nb〉

=
∑

abc

A∗
aAc 〈δ~na|~nb〉

〈
~nb

∣∣∣∣H − i
∂

∂t

∣∣∣∣~nc

〉

=
∑

ac

A∗
aAc

〈
δ~na

∣∣∣∣P
(N)

(
H − i

∂

∂t

)∣∣∣∣~nc

〉

−
∑

aBc

A∗
aAc 〈δ~na|~xB〉

〈
~xB

∣∣∣∣H − i
∂

∂t

∣∣∣∣~nc

〉

(24)

Again, we denote the configurations included in the cal-
culation |~n〉, and the excluded |~x〉. The projector P (N)

acts on all N degrees of freedom and projects onto the
full CI space,

P (N) =
∑

a

|~na〉〈~na|+
∑

A

|~xA〉〈~xA| (25)

We thereby arrive at the expression

〈
δΨ

∣∣∣H−i
∂

∂t

∣∣∣Ψ
〉

=
∑

ab

A∗
aAb

〈
δ~na

∣∣∣(1 − P (N))

(
H − i

∂

∂t

) ∣∣∣~nb

〉

+
∑

aBc

A∗
aAc 〈δ~na|~xB〉

〈
~xB

∣∣∣∣H − i
∂

∂t

∣∣∣∣~nc

〉

(26)

To proceed with the derivation, we must explicitly re-
solve the space of variations of Slater determinants 〈δ~n|
that are allowed, given the constraint of orthonormality
upon the orbitals. We must consider all linearly indepen-
dent variations of these Slater determinants consistent
with that constraint.
The derivation of the MCTDHF equations, as previ-

ously described [2], accounts for the the variations of the
orbitals that are orthogonal to the orbitals, and results
in Eqs. (8) and (13). In the case of full configuration
interaction the derivation is finished, because the ma-
trix of time derivatives g is undetermined and may be
chosen arbitrarily. Otherwise, one must account for the
variations of the orbitals that correspond to a unitary
transformation among the orbitals. Those variations are
defined in terms of a functional derivative. For a func-
tion f(~c1,~c2, ...) of the orbital coefficients, the functional
derivative is

δ

δαβ
f ≡ lim

ǫ→0

f(~c1, ...~cα−1,~cα + ǫ~cβ ...)

− f(~c1, ...~cα−1,~cα − ǫ~cβ...)

2ǫ
(27)

For the Slater determinant basis,

δ

δαβ
|~na〉 = a†βaα|~na〉 (28)

so that the stationary condition may be evaluated from
Eq.(26) as

∀αβ

〈 δ

δαβ
Ψ
∣∣∣H − i

∂

∂t

∣∣∣Ψ
〉
=

0 =
∑

aBc

A∗
aAc

〈
~na|a

†
αaβ |~xB

〉〈
~xB

∣∣∣∣H − i
∂

∂t

∣∣∣∣~nc

〉

(29)

With

∂

∂t
|~na〉 =

∑

γδ

a†γaδ|~na〉〈φγ |
∂

∂t
φδ〉 =

∑

γδ

a†γaδ|~n〉(−ig)γδ ,

(30)
and

QB ≡〈~xB |H |Ψ〉 =
∑

c

Ac 〈~xB |H |~nc〉

wBαβ ≡
〈
~xB |a

†
αaβ |Ψ

〉
=

∑

c

Ac

〈
~xB |a

†
αaβ|~nc

〉 (31)

Eq.(29) becomes

∀αβ
∑

γδ

(w†w)αβγδ (−igγδ) = −i(w†Q)αβ (32)

for propagation; for relaxation,

∀αβ
∑

γδ

(w†w)αβγδ (−igγδ) = −(w†Q)αβ . (33)
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We solve for the antihermitian matrix −ig and arrange
the factors of i in this manner in order to clarify the
exposition below. The matrix −ig is simply the matrix
of time derivatives 〈φi|

∂
∂t
|φj〉.

Certain components of this matrix equation may be
undetermined. Consider complete active space (CAS),
with doubly occupied core orbitals and full configuration
interaction in the remaining, “active” orbitals. Consider
the orbitals to be numbered such that the core orbitals
come first. For such a configuration basis, there are no
overlaps 〈~na|a

†
αaβ |~xB〉 to consider with α > β. We thus

have the equations 0 = 0 for the corresponding rows of
the matrix equation, which may be satisfied by any choice
of the corresponding gαβ. The matrix may be chosen
Hermitian, and one is finished. No difference has arisen
between the McLachlan and Lagrangian variational prin-
ciples; they are both satisfied.
In general, for configuration interaction, the criterion

that the restricted configuration list must satisfy in or-
der for the matrix g to be able to be chosen Hermitian
without accounting for the constraint of orthonormality,
making the two variational principles, McLachlan and
Lagrangian, equivalent is that for every pair of orbitals
α, β for which there exist an excluded configuration A
and included configuration a such that 〈~na|a

†
αaβ |~xA〉 is

nonzero, i.e., for which α → β corresponds to an excita-
tion from an included configuration to an excluded con-
figuration, there are no b and B such that 〈~xB |a

†
αaβ |~nb〉

is nonzero, i.e., β → α corresponds to no excitation from
an included configuration to an excluded configuration.
With restricted active space (RAS), for fermions, since

the restrictions on the configuration list are only func-
tions of orbital occupancy, and there is only one shell with
minimum occupancy into which electrons can be excited,
and only one shell with maximum occupancy from which
electrons can be excited, the McLachlan and Lagrangian
principles are equivalent. With RAS, as described in the
introduction, if α → β corresponds to an excitation from
included to excluded, then β is in shell 4 or α is in shell
1 or 2; furthermore β is not in shell 1 because shell 1 is
fully occupied in the included RAS configurations. In all
of these cases, β → α cannot connect an included config-
uration to an excluded one. Specifically: If β is in shell
4, then α is not; if α is in shell 2, then β is not, i.e. β
is not in shells 1 or 2; either way, the excitation β → α
violates none of the constraints on occupation number.
If α is in shell 1, there is no excitation β → α to consider.

D. Enforcing Hermiticity of g

In general, the Hermicity of g, gαβ = g∗βα, must be en-
forced, so that the orbitals remain orthonormal. Because
the Hermitian dot product (“bra-ket”) of two vectors is a
nonanalytic function of the coefficients in the bra vector,
the variational principles become inequivalent.
To account for the nonanalytic constraint we use real

arithmetic. Complex numbers are represented by two-

vectors of real numbers, z → {Re(z), Im(z)}, and opera-
tions upon them from the left, including multiplication by
complex numbers, are represented by 2x2 matrices [57].
So in a product abcd of complex numbers, consider d
to be a 2-vector and a, b, c to be 2x2 matrices. We will
write vectors with regular font and matrices with bold
font. With this convention, the product would be writ-
ten abcd. The conjugation operator ∗ is the Pauli matrix
σz. Explicitly,

1 ≡

(
1 0
0 1

)
i ≡

(
0 −1
1 0

)
∗ ≡

(
1 0
0 −1

)
(34)

Taking a complex-valued matrix equation AX = B, it
may be solved with real arithmetic as AX = B; the
complex numbers in A are translated to 2×2 matrices via
the definitions of 1 and i above, and the vectorsX and B
are now taken to be real vectors with twice their original
dimensions, e.g. A → {Re(A1), Im(A1),Re(A2), ...} [57].
Restricting Hermiticity of g reduces the number of un-

knowns in the system of linear equations. For propaga-
tion,

∀αβ
∑

γ<δ

[
(w†

w)αβγδ − (w†
w)αβδγ∗

]
(−igγδ)

= −i(w†Q)αβ

(35)

For relaxation, the left hand side has a factor of (−1) not
(−i). This equation may be simplified using the rectan-
gular matrix – defined only for γ < δ but both α < β
and α > β –

Tαβγδ = δαγδβδ1− δαδδβγ∗ (36)

yielding

∀αβ
∑

γ<δ

(w†
wT )αβγδ(−igγδ) = −i(w†Q)αβ (37)

We now have a greater number of equations than un-
knowns. To proceed with the Dirac-Frenkel derivation
we must account for the constraint of orthonormality of
the orbitals in considering the variations on the left hand
side. We do not permit orbitals to evolve as

φi(t+ δ) = φi(t) +
∑

j

ǫijφj (38)

with arbitrary ǫij ; to maintain orthonormality ǫij = −ǫ∗ji.
The allowed variations of the wave function within the
space spanned by the orbitals are thus

Ψ(t+ δ) = Ψ(t) + ǫ
(
a†αaβ − a†βaα

)
Ψ(t) (39)

and

Ψ(t+ δ) = Ψ(t) + iǫ
(
a†αaβ + a†βaα

)
Ψ(t) (40)
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with ǫ a real-valued infinitesimal. Defining

∣∣∣ δ

δ(αβ)r
Ψ
〉
≡

∣∣∣ δ

δαβ
Ψ
〉
−
∣∣∣ δ

δβα
Ψ
〉

=
(
a†αaβ − a†βaα

)
|Ψ〉

∣∣∣ δ

δ(αβ)i
Ψ
〉
≡ i

∣∣∣ δ

δαβ
Ψ
〉
+ i

∣∣∣ δ

δβα
Ψ
〉

= i
(
a†αaβ + a†βaα

)
|Ψ〉 ,

(41)

the statement of the Lagrangian, “time-dependent,” or
energy-conserving variational principle is thus

∀α<β Re
〈 δ

δ(αβ)r
Ψ
∣∣∣H − i

∂

∂t

∣∣∣Ψ
〉
= 0

∀α<β Re
〈 δ

δ(αβ)i
Ψ
∣∣∣H − i

∂

∂t

∣∣∣Ψ
〉
= 0

(42)

and the McLachlan or minimum norm error principle
takes the imaginary parts,

∀α<β Im
〈 δ

δ(αβ)r
Ψ
∣∣∣H − i

∂

∂t

∣∣∣Ψ
〉
= 0

∀α<β Im
〈 δ

δ(αβ)i
Ψ
∣∣∣H − i

∂

∂t

∣∣∣Ψ
〉
= 0

(43)

Placing the equations for variations ∂(αβ)r in the odd-
numbered rows of the resulting real valued matrix equa-
tion, and those for ∂(αβ)i in the even-numbered rows,
Eq. (42) is written

∀α<β

∑

γδ

Tγδαβ

(
Re 〈Ψ|(a†δaγ)(H − i ∂

∂t
)|Ψ〉

Im 〈Ψ|(a†δaγ)(H − i ∂
∂t
)|Ψ〉

)
=

(
0
0

)

(44)
and one then obtains the real-valued antisymmetric ma-
trix equation

∀α<β

∑

γ<δ

(T †
iw

†
wT )αβγδ(−igγδ) = (T †

w
†Q)αβ

(45)
for the Lagrangian, “time-dependent,” or energy-
conserving variational principle. Note that T and i do
not commute but i and w are both complex numbers and
so commute. Similarly, the McLachlan or minimum norm
error variational principle, Eq. (43), may be written as a
real-valued symmetric matrix equation as

∀α<β

∑

γ<δ

(T †
w

†
wT )αβγδ(−igγδ) = −(T †

iw
†Q)αβ

(46)
Eqs. (46) and (45) are the final working expressions used
here. They apply regardless of permutation symmetry.
The issue of integrating the MCTDHF equations is en-

tirely a numerical one. It is not clear a priori which
variational principle will perform better in actual calcu-
lations, especially as treated within an ad hoc mean field
implementation such as that used here [17].

It is not unreasonable to guess that some combina-
tion of the two methods may provide the most stable
result. While the McLachlan and Lagrangian variational
principles may not be simultaneously satisfied for gen-
eral restricted spaces, it is trivial to solve the overdeter-
mined system of linear equations that combines them,
Eq.(37), in a least-squares manner. Any justification as
a variational principle is surely lost in such an ad hoc
method. However, as will be demonstrated, Eq. (46) or
(45) may be underdetermined at times during a propa-
gation, and therefore must be regularized to be stable
for typical mean field time steps. By combining them
in an ad hoc manner, the hope is that when one is un-
derdetermined, the other is not, and therefore that the
ad hoc combination will result in well determined, stable
propagation.

We make an evenly weighted ad hoc combination of
the two variational principles by performing the least-
norm-error solution of Eq.(37) via singular value decom-
position. We also perform calculations in which find the
least-norm-error simultaneous solution of Eq. (46), and
Eq. (45) times a factor. In this method, one variational
principle is dominant, but the other is also included to
provide well determined propagation. With a factor of 1,
this is equivalent to using Eq.(37). For the calculations
shown in section VB, the best method is Lagrangian with
10% McLachlan.

IV. RESTRICTED CONFIGURATION SPACES

WITH DENSITY MATRIX CONSTRAINT

In this section we describe the implementation of the
constraint that the one electron density matrix be kept
block diagonal, an alternative to using the Dirac-Frenkel
variational principle to determine g. This ansatz has
been used in electronic structure [55]. It is reasonable
to think that it would perform well, because it means
that the orbitals that occur in a greater number of Slater
determinants are kept more highly occupied.

This method is a generalization of the method of
Ref. [40], MCTDH with selected configurations (S-
MCTDH); in that method, the density matrix is kept
fully diagonal, i.e., natural orbitals are propagated, and
the restricted configuration list is arbitrary. The corre-
sponding equations for g have been derived in Ref. [23].

If the density matrix begins block diagonal, it may
be kept block diagonal by constraining the derivatives of
the off-block-diagonal matrix elements to be zero. Since
〈~na|a

†
αaβ |~na′〉 is time-independent, the time derivative of

the density matrix

ραβ(t) = 〈Ψ(t)|a†α(t)aβ(t)|Ψ(t)〉 =
∑

aa′

A∗
aAa′〈~na|a

†
αaβ |~na′〉

(47)
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is

∂

∂t
ραβ =

∑

aa′

(
A∗

a(
∂

∂t
A)a′ +Aa′(

∂

∂t
A)∗a

)
〈~na|a

†
αaβ |~na′〉

(48)
With Eq.(30) we obtain
(

∂

∂t
A

)

a

= (−iHA)a −
∑

δγa′′

〈~na|a
†
δaγ |~na′′〉Aa′′(−igδγ)

(49)
Then

∂

∂t
ραβ =

∑

aa′

〈~na|a
†
αaβ |~na′〉

[
(A∗

a(−iHA)a′ +Aa′(−iHA)∗a)

+
∑

γδa′′

(
〈~na|a

†
γaδ|~na′′〉Aa′′(−igγδ)

)∗
Aa′

+A∗
a〈~na′ |a†δaγ |~na′′〉Aa′′ (−igδγ)

]

(50)

In this derivation we do not enforce Hermiticity of g
via, for example, real valued linear algebra as in Sec. III.
Instead, we demonstrate that the block diagonal den-
sity matrix ansatz is consistent with a Hermitian g. We
assume Hermitian g in the derivation; the final expres-
sion is demonstrably consistent. In contrast, making this
assumption at the beginning of the derivation for the
McLachlan or Lagrangian variational principles leads to
a contradiction in the general case.
The first term of Eq.(50) is defined

καβ ≡
∑

aa′

〈~na|a
†
αaβ|~na′〉 (A∗

a(−iHA)a′ +Aa′(−iHA)∗a)

(51)
For MCTDHF, the second term may be manipulated,
∑

aa′

〈~na|a
†
αaβ |~na′〉

∑

γδa′′

(
〈~na|a

†
γaδ|~na′′〉Aa′′(−igγδ)

)∗
Aa′

+A∗
a〈~na′ |a†δaγ |~na′′〉Aa′′ (−igδγ)

=
∑

γδaa′a′′

[
− 〈~na|a

†
αaβ|~na′〉〈~na′′ |a†δaγ |~na〉A

∗
a′′Aa′

+ 〈~na|a
†
αaβ|~na′〉〈~na′ |a†δaγ |~na′′〉A∗

aAa′′

]
(−igδγ)

=
∑

γδaa′′

[
− 〈~na|a

†
δaγa

†
αaβ |~na′′〉A∗

aAa′′

+ 〈~na|a
†
αaβa

†
δaγ |~na′′〉A∗

aAa′′

]
(−igδγ)

+
∑

γδaA′a′′

[
〈~na|a

†
δaγ |~xA′〉〈~xA′ |a†αaβ |~na′′〉A∗

aAa′′

− 〈~na|a
†
αaβ|~xA′〉〈~xA′ |a†δaγ |~na′′〉A∗

aAa′′

]
(−igδγ)

=
∑

γδ

[
δδβργα − δγαρδβ − (w†w)βαδγ + (w†w)γδαβ

]

× (−igδγ)

(52)

with w as defined in Eq. (31). We solve the linear equa-
tion ∂

∂t
ραβ = 0,

∀αβ καβ =
∑

γδ

[
δδβραγ − δγαρδβ − (w†w)βαδγ + (w†w)γδαβ

]
(−igδγ)

(53)

for −ig, where α and β, and γ and δ, are inequivalent
orbitals. The Hermiticity of g is guaranteed by the Her-
miticity of ρ and κ. We solve for both gαβ and gβα and
check the Hermiticity.
Note that for complete active space, CAS, the solution

is not determined; the density matrix is block diagonal
regardless of g. One can see that κ = 0 and the triv-
ial solution g = 0 is allowed. This is an unsatisfactory
property of the ansatz. We do not employ CAS in the ex-
ample on Beryllium below in which we study this density
matrix constraint. However, we examine the method in
which the density matrix constraint equation appropri-
ate for full configuration interaction is used to determine
g for the restricted configuration space calculation. In
other words, we modify the working equation, Eq. (53)
by eliminating the terms with w and adding the terms
for the excluded space to κ:

καβ → καβ +
∑

aA′

〈~na|a
†
αaβ |~xA′〉A∗

a(−iHA)A′

+
∑

Aa′

〈~xA|a
†
αaβ|~na′〉Aa′(−iHA)∗A

(54)

For the Beryllium system calculated, we find that the
equations – the correct equation, Eq. (53), and that
which would keep the density matrix block diagonal for
the full configuration interaction, as described, labeled
“denmat FCI” in figures below – perform similarly; the
terms by which they differ are clearly small for this case.
Therefore it seems that using the full configuration inter-
action equation for g instead of the one appropriate for
the restricted configuration space in question, or some
compromise, may be a way to uniquely determine the
matrix elements of g involving doubly occupied shells.
An optimal treatment of doubly occupied shells within
this density matrix ansatz requires additional thought.

V. PERFORMANCE

We compute the dynamics of two systems using re-
stricted configuration spaces with the implementation de-
scribed in Ref. [17]. We also perform full configuration
interaction calculations, which are used to judge the ac-
curacy of the results.
The initial states are obtained by imaginary time re-

laxation. Three different initial states, full CI, Dirac-
Frenkel, and density matrix, are therefore involved. How-
ever, with our implementation we can only apply the den-
sity matrix treatment to the first calculation, on Be. For
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FIG. 1: (Color online) Analysis of propagation for Beryllium test case. The legend in the left panel applies to all of them.

the second calculation the label Dirac-Frenkel is no longer
appropriate for the propagation because the McLachlan
and Lagrangian variational principles are distinguished.
We perform three different propagations of the initial
state, corresponding to these two variational principles
and their ad hoc combination, as described above.
The energies before and after the pulse for the various

calculations are listed in Table I. We have tried to con-
verge the numbers in Table I with respect to the mean
field time step. For the other results a time step of 0.01
atomic units is sufficient. They include the norm of the
error in the instantaneous derivative, defined as |QHΨ|
with Q the projector onto the configuration space ex-
cluded from the calculation, and the expectation value
of the energy, 〈Ψ|H |Ψ〉/〈Ψ|Ψ〉; these quantities are prop-
erties of each wave function individually. The restricted
configuration wave functions are compared with the full
CI wave function by computing their Hilbert space angle,
which for two wave functions Ψ and Ψ′ is

θ = cos−1

(
〈Ψ|Ψ〉+ 〈Ψ′|Ψ′〉

2 |〈Ψ|Ψ′〉|

)
, (55)

and for the BC2+ calculation, the norm of the difference,
|Ψ−Ψ′|.
All pulses have a sine-squared envelope.

A. Neutral Be, X-ray pulse

In order to compare the Dirac-Frenkel and density ma-
trix treatments, we calculate the dynamics of Be subject
to a laser pulse with central frequency 272eV, intensity
1018 W cm−2, and full duration 53as. We use a radial
grid with three finite elements, 3, 6, and 6 a0 long, com-
plex scaling the final element at an angle of 0.5 radians.
We use five orbitals, all with angular momentum projec-
tion ml = 0. In the restricted configuration list, we only
include configurations in which the combined occupancy
of the orbitals that begin as 1s and 2s is two or more.
Full configuration interaction includes 100 Slater deter-
minants, and the restricted configuration space uses 55
of them. With this restricted configuration list the varia-
tional principles are equivalent and are therefore referred

Calculation Start Finish Change

Be Full CI -14.30475 -12.71702 1.58773

Be Dirac-Frenkel -14.30460 -12.71675 1.58785

Be Density matrix -14.30322 -12.72322 1.58000

Be Denmat FCI -14.30322 -12.72320 1.58002

Be None, DF start -14.30460 -12.27275 2.03185

Be None, Den start -14.30322 -12.65978 1.64345

BC2+ Full CI -61.275139 -60.611515 0.663624

BC2+ Lagrangian -61.275135 -60.611508 0.663627

BC2+ McLachlan -61.275135 -60.611208 0.663927

BC2+ Combination -61.275135 -60.611330 0.663805

BC2+ None -61.275135 -60.645813 0.629322

TABLE I: Absolute energies of the wave functions before and
after the pulse, in atomic units (Hartree). Be results are cal-
culated using a mean field time step of 0.00002au; those for
BC2+, 0.001au. All digits except the last are converged with
respect to the mean field time step.

to as Dirac-Frenkel. In other words the first quadrant
(α < β in row and column) of Eq.(32) is sufficient; one
does not need to choose between Eq.(45) or (46), and if
used they produce equivalent results as implemented.

From Fig. 1 one can see that the Dirac-Frenkel con-
straint produces the closest approximation to the full
configuration interaction wave function, during the ini-
tial stages of the propagation. The errors in both the
derivative of the wave function and the wave function are
minimal using the Dirac-Frenkel constraint, until about
45 attoseconds. At the end of the propagation, the den-
sity matrix constraint has produced a superior wave func-
tion: the final Hilbert space angle is less than that for the
Dirac-Frenkel constraint. In the middle panel showing
the expectation value of the instantaneous Hamiltonian,
and in Table I, one can see that the initial energy of the
Dirac-Frenkel constrained wave function is much closer
to the full CI value than is that for the density matrix
constraint; at the end of the pulse, the Dirac-Frenkel re-
sult returns almost exactly to the full CI value. The
agreement in the change in energy – the physically rele-
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FIG. 2: (Color online) Top panel: occupation of the least
occupied (fifth) natural orbital for Beryllium test case. Bot-
tom panel: measure of off-diagonality of the density matrix
of Eq. (56). “Denmat FCI” refers to using the equation that
would keep the density matrix block diagonal with full con-
figuration interaction, as described at the end of Sec. IV.

vant quantity, the work done by the pulse – is even more
remarkable for the Dirac-Frenkel calculation. As can be
seen in Table I, the change in energy for Dirac-Frenkel
agrees with that for full CI to within 0.2meV; on a rel-
ative basis the agreement is five parts in one million. In
contrast, the restricted space wave functions propagated
with g = 0, no constraint, finish with errors of 2 and 8eV,
depending upon the initial state chosen. The energy of
both of the restricted space wave functions, Dirac-Frenkel
and density matrix, are remarkably close to one another
and to the full CI result for the duration of the pulse.
Whereas the energy ranges over more than 50eV, the
full CI and constrained wave functions are always within
0.05eV of one another – except that the density matrix
calculation diverges from this range at very end of the
calculation.
The smallest of the natural orbital occupation numbers

is plotted in the top panel of Fig. 2. The density matrix
constraint calculation result is very close to the full CI
result. The occupation number from the Dirac-Frenkel
constraint calculation begins to deviate from the full CI
result near 35as. The behavior of the unrestricted cal-
culation is very different depending on the initial state,
with the density matrix initial state occupation number
deviating from full CI far more than does that from the
Dirac-Frenkel initial state.
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FIG. 3: (Color online) Fourier transform of induced dipole
moment for Be calculation obtained after propagation for
7.25fs.

In the bottom panel of Fig. 2 we plot the quantity

offdiag =
1

|Ψ|2

√ ∑

α<β, different shells

|ραβ |2 (56)

as a measure of the degree to which the density matrix
is off-block-diagonal. The density matrix constraint is
designed to keep the density matrix fully block diagonal,
but the mean field treatment and other numerical consid-
erations lead to a nonzero value being accumulated. In-
terestingly, while both the Dirac-Frenkel and density ma-
trix constraints give good approximations to the full CI
solution, the Dirac-Frenkel calculation produces a highly
off block diagonal density matrix. In Fig. 2 a mean field
time step of 0.0001 atomic units has been used, and there
is an observable off diagonal component to the density
matrix for the density matrix constraint treatment, ris-
ing above the x-axis of the figure just after 20as. This
result may be reduced with a smaller time step. Also
shown is the result obtained by using the equation that
would keep the density matrix block diagonal if the full
configuration interaction space were used for the propa-
gation, as described at the end of Sec. IV, labeled “Den-
mat FCI.” This result is converged with respect to the
mean field time step as are all the others. As can be seen
in Fig. 2 and in Table I, the “Denmat FCI” treatment
behaves very similarly to the proper equation, Eq. (53).
As discussed in Sec. IV, it has the advantage of making
the orbital rotation matrix elements involving doubly oc-
cupied orbitals well-determined.
We show the Fourier transform of the dipole moment

calculated over an interval of 7.25 fs in Fig. 3. The den-
sity matrix and Dirac-Frenkel treatments produce nearly
the same result, which is somewhat different from the
full CI result, being shifted by about +0.5eV and being
slightly more narrow and therefore taller. The calcula-
tions performed without one of the constraints manage
to produce peaks, but they are much wider, shorter, and
substantially shifted from the other results.
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FIG. 4: (Color online) Analysis of propagation for BC2+ case.

B. BC2+ charge exchange

In order to analyze the performance of the Dirac-
Frenkel constraint with arbitrary configuration spaces,
for a case in which the McLachlan and Lagrangian varia-
tional principles are different, we calculate the dynamics
of B+ and C+ at 3a0 separation, subject to a 1fs, 5 ×
1014 W cm−2 pulse, with polarization parallel to the bond
axis, and central frequency 15.9eV, tuned approximately
resonant to the charge exchange transition going to B +
C2+.

We use five finite elements for the radial degree of free-
dom ξ in the prolate spheroidal coordinate system, with
lengths 1, 3, 3, 6, and 10. The coordinate is unitless;
given the internuclear separation of 3a0, these elements
are approximately 3, 9, 9, 18, and 30a0 long. The final
three elements are complex scaled at an angle of 0.5 ra-
dians. The Hamiltonian has a large antihermitian com-
ponent and it is important to note that at the end of
this calculation, the norm of the wave function as rep-
resented by exterior complex scaling has decreased from
one to 0.93 due to the absorption of ionized flux. The
total amount ionized is likely much larger than 7%; that
is only the part that has already been absorbed by 1fs.

We employ a configuration space designed for the in-
teracting particles. There are two shells of orbitals, cor-
responding to B+ and C+ atomic orbitals at large separa-
tion. There are three (sigma) orbitals for each fragment.
We restrict the number of electrons in either shell to be
4 or 5, permitting B+ / C+ and B / C2+ charge arrange-
ments. The number of determinants for full CI is 90, of
which 72 are included in the restricted configuration list.

This defines a configuration space much different from
RAS; we have two shells on equal footing, and therefore
for this case the Hermiticity of the g matrix must be en-
forced and the variational principles become inequivalent.
We employ the McLachlan / minimum norm error prin-
ciple, or the Lagrangian / “time-dependent” / energy-
conserving principle, using Eq.(46) or (45), respectively.

We also calculate the result of the ad hoc combina-
tion of the two, as described in section III D, which con-
sists of attempting to simultaneously solve both equa-
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FIG. 5: (Color online) Occupation of the least occupied
(sixth) natural orbital for BC2+ test case.

tions. For an evenly weighted combination, we obtain
the least-norm-error solution to Eq.(37) using singular
value decomposition. For an unevenly weighted combi-
nation, the algebra leading to Eqs. (46) and (45) must be
performed, and we obtain the least-norm-error solution
of both Eq. (46), and Eq. (45) times a factor.

We do not have the capability to apply this interact-
ing fragment restricted configuration space to the density
matrix constraint treatment, due to our inability to pre-
pare the initial state.

We compare four calculations – full configuration in-
teraction, McLachlan, Lagrangian, and evenly weighted
combination – in Table I and Figs. 4 and 5. In Table I,
one can again see remarkable agreement in the work done
by the pulse, the change in energy. As would be expected,
the Lagrangian variational principle, which conserves en-
ergy for time-independent Hamiltonians, produces the
best agreement, at five parts in one million; the uncon-
strained calculation disagrees at a 5% level.

In Fig 4 we show the error in the instantaneous deriva-
tive, and the norm of the difference and Hilbert space an-
gle relative to the full configuration interaction solution.
The former measure is sensitive to phase and the latter
is not. All the measures show that all three treatments
produce wave functions very close to the full CI result,
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FIG. 6: BC2+ propagation with mean field time step 0.01
atomic units and different regularization parameters, as la-
beled.

whereas the unconstrained calculation fails poorly, end-
ing up with wave function error of order unity. The left
panel shows that the three treatments all produce small
derivative error for the duration of the pulse. However,
rapid oscillations are evident. These begin immediately
when using the McLachlan variational principle, as ex-
pected, because the relaxed wave function will not be
stationary, but also occur with a sharp onset when using
the Lagrangian principle.

For the first calculation on Be, the mean field treat-
ment was stable without any regularization of the linear
equation, Eq. (37). For the present calculation on BC2+,
within our mean field implementation, we have found
that the Lagrangian principle generally requires regular-
ization in order to be stable, the McLachlan principle
sometimes does, and the combination generally does not.
To produce Fig. 4, we have applied a regularization pa-
rameter of 10−6 for the McLachlan and Lagrangian cal-
culations. This means we solve Eq.(46) or (45) using sin-
gular value decomposition, adjusting each singular value
by si → max(10−6s1, si) before inverting it, where s1 is
the greatest singular value.

In Fig. 5 the occupation number of the least occupied
natural orbital is plotted. The three methods produce a
result indistinguishable from the full configuration inter-
action result, whereas that from the unconstrained cal-
culation is considerably different.

We now turn to the question of the performance of the
methods, using typical mean field time steps. Whereas
Fig. 4 was converged with a mean field time step of 0.001
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FIG. 7: BC2+ propagation with mean field time step 0.05
atomic units and regularization parameter 10−6, for McLach-
lan (Eq. 46), Lagrangian (Eq. 45), and the least-norm-error
simultaneous solution of the two equations in various ratios.

atomic units, desirable time steps lie in the range of 0.01-
0.05 atomic units. In Fig. 6 we show the results with a
time step of 0.01. This shows what we observe to be
typical behavior. The Lagrangian variational principle
is unstable without significant regularization, and even
with a regularization parameter of 10−6 shows the be-
ginning of an instability at the end of the pulse. The
McLachlan principle is unstable for realistic time steps,
even with regularization. Its instability is a phase in-
stability, apparent in the norm of the error of the wave
function, but not the Hilbert space angle, in Fig. 6.

In Fig. 7 we show the results for the ad hoc com-
bination, the least-norm-error simultaneous solution of
Eqs. (46) and (45), in various ratios, with a time step of
0.05 atomic units and regularization parameter of 10−6.
One can see that the combination of McLachlan and La-
grange in a 1:10 ratio performs the best. When stable,
the Lagrangian performs well, but is often unstable and
inconsistent; the McLachlan exhibits the phase instabil-
ity, which cannot be removed through regularization for
large time steps. The 1:10 method is mostly the La-
grangian, with enough McLachlan to stabilize it. We
have not investigated further elaborations of this ad hoc
method; in particular, we have not attempted to improve
it by multiplying the rows of Eqs. (46) and (45) by dif-
ferent factors.
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VI. SUMMARY AND CONCLUSION

The MCTDHF method provides, at present, the most
numerically tractable framework for accurately calculat-
ing arbitrary many-body quantum dynamics of electrons
in molecules subject to strong, high-energy, ionizing laser
fields. This is the subject of current interest due to im-
proving technology for generating ultrafast laser pulses
spanning from terahertz to X-ray, and the experimental
possibilities that these developments create [58–61].
MCTDHF is the generalization of time-dependent con-

figuration interaction in which the orbitals comprising
the Slater determinants are time-dependent. It therefore
can be described as an “adaptive” method in which the
underlying basis changes to best represent the solution of
the differential equation, as dictated by the chosen vari-
ational principle.
Broadly speaking, there are four barriers that have pre-

vented the application of MCTDHF to very large poly-
atomic molecules, with perhaps hundreds of electrons,
subject to very strong laser fields.
First, the system of nonlinear equations must first be

decoupled via a numerically stable mean field approxi-
mation, making the propagation of orbitals and config-
uration coefficients independent over a mean field time
step, as in the method of Ref. [17], which followed that
of Ref. [62].
The second barrier is to further decouple the orbitals

from one another. Some decoupling approximation must
be applied to the orbital equation, Eq. (8), to enable im-
proved parallelization. A viable method might involve
relaxing the constraint that the orbitals be orthonormal,
or the application of master and slave variational prin-
ciples, or different constraints for different classes of or-
bitals possibly in a hierarchical fashion. However, this
second barrier is a topic for future study.
The third barrier relates to multiple ionization and

breakup problems and as such is less general. For a mul-
tiply ionized system, a compact spatial representation of
the system using exterior complex scaling to absorb ion-
ized electrons requires coupled N -, (N−1)-, etc. electron
representations, such that the residual cations may be fol-
lowed after ionization, if required. The dipole response
in a molecule undergoing total ionization is an example
of an observable whose calculation would require such a
treatment. A method involving coupled density matrices
has been described in Ref. [63], but awaits implementa-
tion within a full dimensional code.
The fourth barrier, that which has been addressed in

the present work, is the reduction in size of the vector of
configuration coefficients via N-electron representations
more flexible than full configuration interaction. It is im-
portant to have overcome this barrier, even for the study
of atoms and small molecules. Even for small systems,
many orbitals are required to describe multiple ioniza-
tion, or ionization into multiple channels, for instance,
calling for restricted spaces such as configuration inter-
action with single and double excitations (CISD). Com-

pact, flexible representations such as coupled cluster or
matrix product states involve much more complicated
restrictions on orbital occupancy, relative to the simple
restricted active space (RAS) ansatz [34] described in the
introduction. For a general restricted space, the allowed
occupancy of one spin orbital is not independent of the
occupancy of the other spin orbitals.

The MCTDHF method, however, provides consider-
able flexibility that has not been explored, and it is pos-
sible that one or more of these barriers may be circum-
vented by more creative zeroth-order ansatzes for the
wave function representation, for instance, ones in which
it is comprised of orbitals with compact support describ-
ing a wave function with discontinuities kept within toler-
ances by artificial penalty terms in the Hamiltonian [64].

Arguably, if there is one set of MCTDHF equations, it
is those that result from the application of the Lagrangian
variational principle [45, 47, 49] to the MCTDHF wave
function ansatz. We have derived Eq. (45), which when
combined with Eqs. (8) and (13), comprise the final set of
MCTDHF working equations for arbitrary configuration
spaces. We have also presented alternatives to Eq. (45),
which result from the McLachlan variational principle
and density matrix ansatzes, Eqs. (46) and (53), respec-
tively. The conditions under which Eqs. (46) and (45)
are different – under which the Dirac-Frenkel variational
principle, their union, is a contradiction – have been spec-
ified for the first time. In particular, for configuration
interaction, we see that if there are multiple shells that
cannot be cardinally ordered, the principles must be in-
equivalent; they will be inequivalent for any interacting
fragment description such as that used here for BC2+.

All of the methods described have been shown to be
capable of producing a close approximation to the full
configuration interaction MCTDHF wave function and
the observables calculated from it. The naive method in
which the equations appropriate for full configuration in-
teraction are used has been shown to produce substantial
error that may depend strongly on the initial state.

For general restricted spaces for which the McLach-
lan and Lagrangian variational principles are inequiva-
lent, we observe that the Lagrangian variational prin-
ciple produces remarkable agreement with the full con-
figuration interaction result in some measures, but that
the McLachlan also performs well. By weighting the
McLachlan and Lagrangian principles in a 1:10 ratio
within the ad hoc combination treatment, we obtain sta-
ble propagation using a mean field time step large enough
for efficient propagation within the method of Ref. [17].

These methods will permit the study of larger
molecules and the use of larger numbers of orbitals for
small molecules. The configuration spaces studied for
Be and BC2+ were small, since it was our interest to
perform calculations in which the effect of truncation
of the Hilbert space would be severe. Converging the
present calculations with respect to number of orbitals
would have made the test of the method less demanding.
It is important to note that the implementation of the
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working equation, Eq. (46), (45) or (53), requires only
indexing excluded configurations that are connected to
the included space via single excitations. For example,
with a configuration interaction with single excitations
(CIS) wave function, we must store a configuration in-
teraction with single and double excitations (CISD) con-
figuration list; for complete active space (CAS), we must
store a list of configurations with one hole in the doubly
occupied space; et cetera.
It is also important to realize that these equations,

Eq. (45), (46), or (53), may be directly applied to N-
electron treatments more sophisticated than configura-
tion interaction, such as coupled cluster or matrix prod-
uct states – or, N-electron treatments involving more spe-
cially designed one-electron “orbital” spaces. Ansatzes
such as coupled cluster or matrix product states are
powerful tools of many-body theory, and MCTDHF has
already been applied to the coupled cluster representa-
tion [50–52]. However, as discussed in the introduction,
that work made use of a “bivariational” principle, con-
sidering 〈Ψ| and |Ψ〉 to be linearly independent. Such a

treatment may ultimately prove superior to the present
one, and has already shown its utility. It seems that the
present equations are applicable to any Slater determi-
nant representation, that Eq.(45) is the unique correct
expression for the rates and phases of rotation of the
orbitals into one another, the matrix g, regardless of the
manner in which the full configuration interaction Hilbert
space is contracted, within the MCTDHF wave function
ansatz, satisfying the Lagrangian variational principle.
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