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Bound and resonance states of the dipole-bound anion of hydrogen cyanide HCN™ are studied
using a non-adiabatic pseudopotential method and the Berggren expansion technique involving
bound states, decaying resonant states, and non-resonant scattering continuum. We devise an
algorithm to identify the resonant states in the complex energy plane. To characterize spatial
distributions of electronic wave functions, we introduce the body-fixed density and use it to assign
families of resonant states into collective rotational bands. We find that the non-adiabatic coupling
of electronic motion to molecular rotation results in a transition from the strong-coupling to weak-
coupling regime. In the strong coupling limit, the electron moving in a subthreshold, spatially
extended halo state follows the rotational motion of the molecule. Above the ionization threshold,
electron’s motion in a resonance state becomes largely decoupled from molecular rotation. Widths
of resonance-band members depend primarily on the electron orbital angular momentum.

PACS numbers: 03.65.Nk, 31.15.-p, 31.15.V-, 33.15.Ry

I. INTRODUCTION

expansion method (BEM) — a complex-energy resonant

Dipolar anions are one of the most spectacular exam-
ples of marginally bound quantum systems [1-11]. Wave
functions of electrons coupled to neutral dipole molecules
[12, 13] are extremely extended; they form the extreme
quantum halo states [14-19]. Resonance energies of dipo-
lar anions, including those associated with rotational
threshold states, can been determined in high resolution
electron photodetachment experiments [20-25]. Theoret-
ically, however, the literature on the unbound part of the
spectrum of dipole potentials, and multipolar anions in
particular, is fairly limited [26-34].

The breakdown of the adiabatic approximation in
dipolar molecules possessing a supercritical moment [35-
39] caused by coupling of electron’s motion to the rota-
tional motion of the molecule, is expected to profoundly
impact the properties of rotational bands in such systems
[25, 30, 31, 36], such as the the number of rotationally
excited bound anion states.

In this study, we address the nature of the unbound
part of the spectrum of dipolar anions. In particular, we
are interested in elucidating the transition from the ro-
tational motion of weakly-bound subthreshold states to
the rotational-like behavior exhibited by unbound reso-
nances. The competition between continuum effects, col-
lective rotation, and non-adiabatic aspects of the problem
makes the description of threshold states in dipole-bound
molecules both interesting and challenging.

Our theoretical framework is based on the Berggren

state expansion [40-42] based on a completeness rela-
tion introduced by Berggren [43] that involves bound,
decaying, and scattering states. In the context of
coupled-channel method, BEM was successfully applied
to molecules [39] and nuclei [44-49]. The advantage of
this method, which is of particular importance to the
problem of dipole-bound anions when the rotational mo-
tion of the molecule is considered [39, 50], is that the
BEM is largely independent of the precise implementa-
tion of boundary conditions at infinity.

This is not the case for other techniques such as, for in-
stance, the direct method of integrating coupled-channel
equations. Notable exceptions are basis-expansion meth-
ods relying on complex scaling [51-57]. By rotating ra-
dial coordinates in the complex plane by an given angle
0, r — re'?, the initial Hermitian Hamiltonian is trans-
formed into a non-Hermitian one, whose bound eigen-
states correspond to bound and resonant states of the
system, the latter bearing complex energies. As complex-
scaled wave functions all vanish for » — oo, their
asymptotic behavior does not have to be imposed explic-
itly and they can be obtained through a diagonalization
of the rotated Hamiltonian in a set of square-integrable
states [55, 57-60]. In particular, BEM has been bench-
marked against complex rotation when both methods
apply[59, 60]. However, rotation by an angle 6 of the
Hamiltonian is possible only if the potential is dilatation-
analytic [61, 62]. This is obviously the case for the ex-
act molecular Hamiltonian, but not necessarily the case



for effective pseudo-potentials. In fact, pseudo-potentials
can be non-analytical or diverge in the complex plane for
small values of 6, as is the case for the pseudo-potential
studied in this paper. Complex rotation of the Hamil-
tonian is thus precluded. The BEM, on the other hand,
can be conveniently applied. An alternative treatment,
similar in spirit, is the complex eigenvalue Schrodinger
equation (CESE) method [63, 64].

The calculations have been carried out for the ro-
tational spectrum of dipole-bound anions of hydrogen
cyanide HCN ™, which has long served as a prototype of
a dipole-bound anion [4, 65] and was a subject of ex-
perimental and theoretical studies [25, 66, 67]. Here,
we extend our previous studies [39] of bound states
of dipolar molecules to the unbound part of the spec-
trum. To integrate coupled channel equations, we use
the Berggren expansion method as it offers superior ac-
curacy as compared to the direct integration approach for
weakly-bound states and, contrary to direct integration
approach, allows to describe unbound resonant states.
Moreover, the knowledge of the asymptotic form of eigen-
functions is not necessary in our approach.

This paper is organized as follows. The model Hamil-
tonian is discussed in Sec. II. The coupled channel for-
mulation of the Schrédinger equation for dipole-bound
anions is outlined in Sec. III. The Berggren expansion
method is introduced in Sec. IV. The parameters of
our calculation are given in Sec. V. Section VI presents
the technique adopted to identify the decaying Gamow
states (resonances). To visualize valence electron distri-
butions, in Sec. VII we introduce the intrinsic one-body
density. The predictions for bound states and resonances
of HCN™ are collected in Sec. VIII. Finally, Sec. IX con-
tains the conclusions and outlook.

II. HAMILTONIAN

The dipolar anions are composed of a neutral polar
molecule with a dipole moment p that is large enough
to bind an additional electron. Since energy of the va-
lence electron in an anion is very small as compared to
energies of well-bound HCN electrons, this scale separa-
tion justifies the use an effective potential treatment of
the halo [68-70]. In the present study, the HCN~ dipo-
lar anion is described in the Born-Oppenheimer approx-
imation, and the intrinsic spin of an external electron
is neglected [35], largely simplifying the equations [36].
Within the pseudo-potential method, the Hamiltonian of
a dipolar anion can be written as:

2 -2

p. J

= — 4V 1
2me, + 21 + (1)

where I is the moment of inertia of the molecule, p, is

the linear momentum of the valence electron, and m, its

mass. The electron-molecule interaction V' is approxi-

mated by a one-body pseudo-potential [35, 71, 72|:
V(T, 9) = Vdip (T, 6‘) +Va (Tv 9) + Vsz (Tv 9) + VSR(T)ﬂ (2)

where 6 is the angle between the dipolar charge separa-
tion s and electron coordinate;

Vaip(r.6) = —pe 3 (’?)Asimcose) (3)

r
A=13, N 7

is the electric dipole potential of the molecule;

2
e
Va(r,0) = T4 [ao + aaPa(cos O)] f(r) (4)
is the induced dipole potential, where ap and as are
the spherical and quadrupole polarizabilities of the linear
molecule;

Va..(r,0) = =—5Qu: Pa(cos )£ (r) (5)

is the potential due to the permanent quadrupole mo-
ment of the molecule, and

Var(r) = Voexp | ~(r/r)°] (6)

is the short-range potential, where 7. is a radius range.
The short-range potential accounts for the exchange ef-
fects and compensates for spurious effects induced by the
regularization function

f(r) =1—exp [~(r/ro)°] (7)

introduced in Egs. (4,5) to avoid a singularity at r — 0.
The parameter rg in Eq. (7) defines an effective short
range for the regularization.

The dipolar potential Vi, (r, 0) is discontinuous at r =
s. To remove this discontinuity, in Eq. (3) we replace

— s {Zfu(r) + 2 [1 = fu(r)]}erf(ar)  (8)
re — sfa(r) 41— fu(r)] (9)

with fo(r) = (1 +exp[(r — s)/a]) .

III. COUPLED-CHANNEL EQUATIONS

In the description of dipolar anions with the Hamilto-
nian (1), the coupled-channel formalism is well adapted
to express the wave function of the system [1, 35, 72—
74]. The eigenfunction of H corresponding to the total
angular momentum J can be written as

v =3 ul(rer,,. (10)

where the index c labels the channel (£,7), u/(r) is the
radial wave function of the valence electron, @jc ;. is the
channel function, and 7 + £ = J. Since the Hamiltonian
is rotationally invariant, its eigenvalues are independent
of the magnetic quantum number M ;, which will be

omitted in the following.



In order to write the Schrédinger equation as a set
of coupled-channel equations, the potential V(r, ) in
Egs. (2 - 6) is expanded in multipoles:

0) = Z Va(r) Py (cos ), (11)
A
where V) (r) is the radial form factor and
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Py (cos0) = v{moD (). v (#). (12)

The matrix elements (0] i Pa(cos 0)|0;] .j.) are ob-
tained by means of the standard angular momentum al-
gebra [39]. The resulting coupled-channel equations for
the radial wave functions u(r) can be written as:

Pl gt D)
dr? 72 I

=D Vab(ryul(r), (13)

where E; is the energy of the system and

> (O7,,,[Pa(cos8)|0F ;) Va(r)  (14)
A

+ Ej uCJ(r)

Vcﬁ’ (T) -

is the coupling potential. Due to an 7® dependence of
exponents in Egs. (6) and (7), the resulting pseudo-
potential is non-dilatation-analytic.

IV. BERGGREN EXPANSION METHOD

The Berggren expansion method for studies of the
bound states of dipolar anions has been introduced in
Ref. [39]. In this method, the Hamiltonian is diagonal-
ized in a complete basis of single-particle (s.p.) states,
the so-called Berggren ensemble [41-43] which is gener-
ated by a finite-depth spherical one-body potential. The
Berggren ensemble contains bound (b), decaying (d), and
scattering (s) single-particle states along the contour £Zj
for each considered partial wave (¢,j). For that rea-
son, the Berggren ensemble is ideally suited to deal with
weakly-bound and unbound structures having large spa-
tial extensions, such as halos, Rydberg states, or decaying
resonances. For more details and recent applications of
BEM in the many-body context, see Ref. [75] and refer-
ences cited therein.

While the finite-depth potential generating the
Berggren ensemble can be chosen arbitrarily, to improve
the convergence we take the diagonal part of the channel
coupling potential V.. (r). Indeed, since all basis states
of a channel ¢ have the same values of /. and j., chang-
ing their generating potential only amounts to applying
a unitary transformation. Hence, the most optimal po-
tential is that for which all couplings between states of a
given channel ¢ vanish, which is the case for V,.(r). The
basis states ®y, .(r) are eigenstates of the spherical poten-
tial V,.(r), which are regular at origin and meet outgoing

(b,d) and scattering (s) boundary conditions. Note that
the wave number k characterizing eigenstates ®y, .(r) is in
general complex. The normalization of the bound states
is standard, while that for the decaying states involves
the exterior complex scaling [39, 75-78]. The scattering
states are normalized to the Dirac delta function.

To determine Berggren ensemble, one calculates first
the s.p. bound and resonance states of the generating
s.p. potential for all chosen partial waves (£,7). Then,
for each channel (¢, ), one selects the contour ,CZJ in
a fourth quadrant of the complex k-plane. All (4, 7)-
scattering states in this ensemble belong to L’Zj. The
precise form of EZ ; is unimportant providing that all se-
lected s.p. resonances for a given (¢, j) lie between this
contour and the real k-axis for Re(k) > 0. For each chan-
nel, the set of all resonant states and scattering states on
L‘j e forms a complete s.p. basis.

In the present study, each contour E . is composed of
three segments: the first one from the OI‘lglIl t0 kpeak in
the fourth quadrant of the complex k-plane, the second
one from kpeak t0 kmiddle on the real k-axis (Re(k) > 0),
and the third one from ki iqdie tO0 kmax also on the real
k-axis. In all practical applications of the BEM, each con-
tour E; is discretized and the Gauss-Legendre quadra-
ture is applied. The cutoff momentum k = k,,,4, should
be sufficiently large to guarantee the completeness to a
desired precision. The discretized scattering states |9, )
are renormalized using the Gauss-Legendre weights. In
this way, the Dirac delta normalization of the scattering
states is replaced by the usual Kronecker delta normal-
ization. In this way, all |®; ) states can be treated on
the same footing in the discretized Berggren complete-
ness relation:

Z |(I)i,c> <(P

where the N basis states include bound, resonance, and
discretized scattering states for each considered channel
c.

el 1, (15)

The Hamiltonian matrix can be computed straightfor-
wardly in the discretized Berggren basis [79]. The diag-
onal matrix elements are:

o1
W) ] (16)

P |H|P; ) = (k7 +
R

To compute off-diagonal matrix elements, we apply the
exterior complex scaling [53, 78, 80, 81]:

(@ir o |[H [P c) = (Pir o |V [Pi ) =

R
:/0 Qs o1 (1) Voer (r) @i c(r) dr (17)
+o0

£ 3 [ ) Vet 22 o)
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where z(x) = R+ ze'?, @E’ic)(r) is the outgoing/incoming
part of ®; .(r), 6 is a complex rotation angle chosen ac-



cording to the asymptotic behavior of @E’ic)(r). The ra-
dius R is chosen sufficiently large so that the exponen-
tials of Egs. (6) and (7) can be suppressed in the real
asymptotic region. Since the coupling potential V.. (r)
in Eq. (17) decreases at least as fast as =2 in the com-
plex plane, no singularities occur. Due to the complete-
ness of the Berggren ensemble, the representation of the
Hamiltonian by the matrix (16,17) is exact, up to contour
discretization and momentum truncation.

V. PARAMETERS OF THE BEM
CALCULATION

The parameters of the pseudo-potential for the HCN™
anion are taken from Ref. [36]. These are:

ap = 15.27a3,

as = 1.08a},

Q.. =328 eag,

I =742 x 10" m.a2,

ro = 4.4 ay,

re. = 3.071622666 ay,
Vo = 4.0Ry,

s =2.04 ag,

and a = ag. The value of r. has been adjusted to re-
produce the experimental ground state (J™ = 01) energy
[25]: E<P(0]) = —1.1465789 x 10~* Ry. For the dipolar
moment of the molecule, we take the experimental value
u = 1.174eaqg. In the following, we express r in units
of the Bohr radius ag, I in units of m.a2, and energy in
Ry. The J™ =1~ band head energy is also known ex-
perimentally, EP(1; ) = —8.8198377 x 10~° Ry, but no
adjustment of the model parameters has been attempted
to fit the experimental value.

To achieve stability of bound-state energies, the BEM
calculations were carried out by including all partial
waves with ¢ < £, = 9 and taking the optimized num-
ber of points (N¢ = 165) on the complex contour with
kmax = 6.ag L for each J™. For all (¢,7) channels and
all J™-values, the complex contour £Zj is taken close to
the real axis (kpeak = 0.15 — i1077, kmidgale = 1.0, and
kmax = 6.0; all in ao_l). Its precise form has been ad-
justed by looking at the convergence of bound state en-
ergies when changing the imaginary part of kpeax. Each
segment of any contour ch is discretized with the same
number of points (N¢/3 = 55).

VI. IDENTIFICATION OF THE RESONANCES

The diagonalization of a complex-symmetric Hamilto-
nian matrix in BEM yields a set of eigenenergies which
are the physical states (poles of the resolvent of the
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Hamiltonian) and a large number of complex-energy scat-
tering states. The resonances are thus embedded in a
discretized continuum of scattering states and their iden-
tification is not trivial [82, 83].

The eigenstates associated with resonances should be
stable with respect to changes of the contour [82, 83].
Moreover, their dominant channel wave functions should
exhaust a large fraction of the real part of the norm. The
norm of an eigenstate of the Hamiltonian is given by:

Z Z (Bpelue)® = ch =1, (18)

where n. the norm of the channel wave function. In gen-
eral, the norms of individual channel wave functions for
resonances are complex numbers and their real parts are
not necessarily positive definite. It may happen that if
a large number of weak channels {¢;} with small nega-
tive norms Re(n.,) < 0 contribute to the resonance wave
function, then the dominant channel ¢ can have a norm
n. > 1. This does not come as a surprise as the channel
wave functions have no obvious probabilistic interpreta-
tion.

To check the stability of BEM eigenstates, we var-
ied the imaginary part of kpeax from 0 to —0.0001(161
in all partial-wave contours. Resulting contour varia-
tions change both real ARe(F) < Re(E) and imag-
inary AIm(E) parts of the eigenenergies. The preci-

TABLE I. Relative variation of the real part dRe(E) =
ARe(E)/Re(E) (in percent) and imaginary part éIm(E) =
Alm(E)/Im(E) (in percent) of energies of twenty J™ = 27
resonances with the change of kpeak. All energies are in Ry.
The numbers in parentheses denote powers of 10.

resonance Re(E) 0Re(E) Im(E) oIm(E)
1 2.51(-5)  247(-1)  -9.68(-6)  2.09(-1)
2 2.69(-4)  1.29(-4)  -3.45(-10)  1.32(+1)
3 2.77(-4)  1.37(-5)  -3.58(-9)  1.56(+1)
4 3.55(-4)  5.61(-4)  -7.20(-7) 1.60
5 3.67(-4)  3.70(-4)  -1.21(-6) 1.78
6 3.96(-4)  3.52(-3)  -2.34(-6)  4.55(-1)
7 3.98(-4)  2.07(-2)  -5.05(-5)  6.19(-2)
8 425(-4)  6.02(-3)  -1.04(-4)  3.02(-2)
9 6.48(-4)  9.70(-5)  -6.72(-7) 1.42
10 6.60(-4)  6.86(-4)  -8.32(-7) 2.52
11 6.81(-4)  6.77(-3)  -1.19(-5)  7.41(-1)
12 6.86(-4)  9.86(-4)  -1.60(-6) 1.55
13 7.40(-4)  5.05(-3)  -6.68(-5)  3.85(-2)
14 9.80(-4)  7.89(-4)  -7.86(-7)  1.45(+1)
15 1.05(-3)  4.80(-5)  -6.22(-7) 1.39
16 1.06(-3)  1.87(-4)  -8.54(-7) 2.66
17 1.07(-3)  1.82(-3)  -5.60(-6) 1.10
18 1.09(-3)  4.00(-4)  -4.89(-7) 7.67
19 1.11(-3)  8.05(-4)  -1.66(-6) 9.61
20 1.14(-3)  2.28(-3)  -2.71(-5)  1.31(-1)

sion of the resonance-identification method is assessed
by looking at the ratio Alm(F)/Im(E), which is in the



range [0.001,0.3] for the resonance states. As an exam-
ple, the eigenvalues of J™ = 2T resonant states are listed

in Table I. It is seen that the relative variations of
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FIG. 1. (Color online) Ilustration of the stability of the en-
ergies of the J™ = 2% resonant states of HCN™ listed in Ta-
ble I (large dots) when the non-resonant scattering contour is
shifted. Here, the imaginary part of kpeak was varied from 0
to —0.0001(151. As a comparison, non-resonant eigenenergies
are marked with tiny dots and exhibit significant shifts.
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FIG. 2. (Color online) Similar as in Fig. 1 but zoomed in on
the two threshold resonances (states 2 and 3 in Table I). Here,
the real part of kpeax is also varied from 0.14a; " to 0.16a; "

Re(FE) are always smaller than 1%, while the relative
variations of Im(FE) can reach ~15%. Moreover, values
of Alm(FE)/Im(FE) for different resonant states can dif-
fer by three orders of magnitude. In general, a better
stability of the BEM eigenstates and, i.e., smaller val-
ues of AIm(E)/Im(E), is found for those eigenstates,
which have several channel wave functions contributing
significantly to the total norm. A typical accumulation

of eigenenergies when changing the contour is shown in
Fig. 1. One can see that the non-resonant states do not
exhibit the degree of stability that is typical of resonant
states. It is interesting to notice that several resonant
states are found fairly away from the region of non-
resonant eigenstates. The stability of resonant eigen-
states persists if the real part of kpear is varied from
0.14 aal to 0.16 aal. In this case, the relative variations
of the real part of the eigenstate energies dominate as can
be seen in Fig. 2 for the two near-threshold resonances
labeled 2 and 3 in Table I.

In order to demonstrate that the identified resonances
are stable with respect to fyax, in Fig. 3 we show the
energy convergence for states 1-3 of Table I. In general,
Im(E) is significantly more sensitive than Re(E) with
respect to the addition of channels with higher ¢- and
j-values. It is seen that Im(FE) for resonances with the
dominant channels ({ = 4,5 =4) and (¢ = 3,j = 1) are
converged already for £,,,x > 6. The convergence for the
narrow resonance with the dominant channel (¢ =2,j =
4) shown in Fig. 3(a) is also excellent, considering that
in this case Im(FE) is of the order of 107!° Ry, which is
close to the limit of a numerical precision of our BEM
calculations.

€II] ax

FIG. 3. (Color online) The convergence of Im(E) for J™ = 27
resonances 2 (a), 3 (b), and 1 (c) of Table I as a function of
lmax. The quantum numbers (¢, ) of the dominant channel
are indicated.

VII. INTRINSIC DENSITY

It is instructive to present the density of the valence
electron in the body-fixed frame. This can easily be done
in the strong coupling scheme of the particle-plus-rotor
model [84-86], which is usually formulated in the K-
representation associated with the intrinsic frame. Here,
Kj = K;+ Kj is the projection of the total angular mo-
mentum on the symmetry axis of the molecule. Of par-
ticular interest is the adiabatic limit of I — oo, where all



J™ members of a rotational band collapse at the band-
head, i.e., they all can be associated with one intrinsic
configuration. The K-representation is useful to visual-
ize wave functions, group states with different J-values
into rotational bands, and interpret the results in terms
of Coriolis mixing [47, 50, 87-90].

In the body-fixed frame, the density of the valence elec-
tron in the state J™ is axially-symmetric and can be de-
composed as:

0) = Z piK,(r.0), (19)
K,

where (r, 0) stand for the polar coordinates of the electron
in the intrinsic frame, and the K j-components of the
density are:

29 +1
parc,(0) = D % S5 (WK GOLTK ) (K 1j0|TK )
00 g

uy; (r)* uzf/ ()
A

. . — LY (0,0) Y5 (0,0). (20)

If all K j-components except one vanish in Eq. (19),
the adiabatic strong-coupling limit is reached and K ; be-
comes a good quantum number. In this particular case,
psk, can be identified as the intrinsic electronic den-
sity in the dipole-fixed reference frame. To quantify the
degree of K j-mixing, it is convenient to introduce the
normalization amplitudes:

_ 27 +1 . 2 7 9
_%: S g0 [ ()P (21)

NJjK;

Due to (18), nyk, fullfil the normalization condition:

> ik, =1 (22)
K,

VIII. RESULTS OF BEM CALCULATIONS

Predicted energy spectra of HCN~™ with J™ =
07,17,27,37,4" and 5= are shown in Table II. One
may notice that the calculated energy of the 1~ band
head, E(17) = —8.96 x 107° Ry, is close to the exper-
imental value E®*P(17) = —8.82 x 1075 Ry. Moreover,
consistently with earlier Refs. [25, 36], we do not find a
JT = 37 bound state.

The states listed in Table II are plotted in Fig. 4 in
the complex energy plane. These states can be assembled
according to their decay widths into five groups labelled
go-g94. The group 4 contains bound states and very nar-
row threshold resonances of the dipolar anion. Narrow
resonances are contained in groups 3 and 2 while broader
states form groups 1 and 0. The characterization of the
resonance spectra of HCN™ in terms of groups go-g4 will
be provided below.
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FIG. 4. (Color online) Predicted energies of the HCN™ dipo-
lar anion for J™ = 0%, 17, 27, 37, 47, and 5~ states in the
complex-energy plane. Based on their complex energies, these
states can be organized into five groups labelled go to ga.
Bound states and near-threshold resonances belonging to ga
and narrow resonances of gs are shown in the insert.
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FIG. 5. (Color online) The intrinsic density of the valence
electron in HCN™ in the ground-state rotational band J™ =
0F,17,2F,37,... (All densities are in agl.)

A. Adiabatic limit

To check the numerical accuracy of the adiabatic ap-
proximation, we computed the energies of the lowest
states of HCN™ in the adiabatic limit of I — oo (in prac-
tice, I = 10'mca?). In this limit, which can be asso-
ciated with the extreme strong coupling regime, K; be-
comes a good quantum number and energies of all band
members J = K;, K; + 1,K; + 2,... collapse at the
bandhead Ej—k,. In our calculations, the maximum
energy difference between the members of the ground-
state band (J™ = 07 ,17,27,37,41,5]) is 1.5 x 1077 Ry,
which is better than 0. 1% of the energy of the 0 state
(E = —1.2308 x 10~*Ry). We can conclude, therefore,



TABLE II. Predicted complex energies (in Ry) of bound and resonance 07,17,

anion. Numbers in the parentheses denote powers of 10.

27,37, 4%, and 5~ states of the HCN™ dipolar

state E(0T) E(17) E(2%) E(37) E(4T) E(57) |
1 -1.15(-4) -8.96(-5) -3.69(-5) 3.89(-8) -i 1.06(-8)|2.70(-5) -i 5.55(-9) | 8.09(-5) -i 3.08(-9)
2 | 7.62(-5) -i 3.79(-6)|2.70(-5) -i 9.98(-10)| 2.51(-5) -i 9.68(-6) |2.63(-4) -i 1.88(-6) | 1.84(-4) -i 2.02(-6)|1.33(-4) -i 2.02(-6)
3 19.35(-4) -i 9.69(-5)| 8.12(-5) -i 7.04(-7) |2.69(-4) -i 3.45(-10) | 3.03(-4) -i 9.25(-6) | 2.25(-4) -i 2.47(-5)|1.63(-4) -i 3.71(-5)
4 [1.09(-3) -i 1.24(-5) | 1.62(-4) -i 4.77(-10)| 2.77(-4) -i 3.58(-9) |4.99(-4) -i 1.28(-6)|3.65(-4) -i 1.40(-6)|2.56(-4) -i 1.87(-6)
5 [1.11(-3) -i 4.06(-4)| 4.88(-4) -i 7.04(-7) | 3.55(-4) -i 7.20(-7) |5.32(-4) -i 1.01(-6)|3.99(-4) -i 1.43(-6)[2.91(-4) -i 1.85(-6)
6 |1.14(-3) -i 1.62(-5)| 5.00(-4) -i 1.02(-6) | 3.67(-4) -i 1.21(-6) |5.69(-4) -i 1.25(-4)|4.23(-4) -i 1.26(-4)|3.03(-4) -i 1.22(-4)
7 11.16(-3) -i 2.19(-4) | 5.28(-4) -i 1.65(-6) | 3.96(-4) -i 2.34(-6) |8.20(-4) -i 1.17(-5)|6.58(-4) -i 9.78(-7)|4.94(-4) -i 1.03(-6)
8 [1.19(-3) -i 1.96(-5)| 5.34(-4) -i 3.13(-5) | 3.98(-4) -i 5.05(-5) |8.80(-4) -i 2.96(-7)|6.91(-4) -i 3.44(-7)|5.28(-4) -i 3.62(-7)
9 |1.27(-3) -i 2.13(-5)| 5.71(-4) -i 9.11(-5) | 4.25(-4) -i 1.04(-4) [9.39(-4) -i 9.91(-5)|6.92(-4) -i 1.07(-5)|5.67(-4) -i 9.80(-5)
10 |1.31(-3) -i 3.45(-4)| 6.71(-4) -i 3.31(-4) | 6.48(-4) -i 6.72(-6) | 1.07(-3) -i 3.55(-4)|7.40(-4) -i 1.01(-4) | 5.92(-4) -i 9.87(-6)
11 [1.43(-3) -i 5.64(-6)| 8.37(-4) -i 6.53(-7) | 6.60(-4) -i 8.32(-7) | 1.16(-3) -i 1.24(-5) | 8.66(-4) -i 3.38(-4)|6.82(-4) -i 3.14(-4)
12 [1.84(-3) -i 1.10(-5) | 8.48(-4) -i 8.03(-7) | 6.81(-4) i 1.19(-5) | 1.30(-3) -i 7.87(-7)|9.75(-4) i 1.15(-5)|8.21(-4) -i 1.23(-5)
13 |3.35(-3) -i 1.42(-4)| 8.63(-4) -i 8.45(-6) | 6.88(-4) -i 1.60(-6) |1.34(-3) -i 1.09(-7)|1.06(-3) -i 7.83(-7) |8.44(-4) -i 7.67(-7)
14 |3.68(-3) -i 3.26(-5)| 8.76(-4) -i 9.82(-7) | 7.40(-4) -i 6.68(-5) | 1.41(-3) -i 7.12(-5) | 1.09(-3) -i 1.16(-7)|8.78(-4) -i 1.14(-7)
15 |4.23(-3) -i 3.47(-4)| 9.34(-4) i 5.08(-5) | 9.80(-4) -i 7.86(-7) | 1.56(-3) -i 3.54(-4)|1.16(-3) -i 7.50(-5) |9.34(-4) -i 7.38(-5)
16 |4.60(-3) -i 4.45(-5)| 1.05(-3) -i 3.13(-4) | 1.05(-3) -i 6.22(-7) | 1.61(-3) -i 1.41(-5)|1.30(-3) -i 3.37(-4) | 1.06(-3) -i 3.13(-4)
17 1.17(-3) i 7.06(-7) | 1.06(-3) -i 8.54(-7) | 1.65(-3) -i 7.83(-4)|1.37(-3) -i 1.24(-5)|1.16(-3) -i 1.08(-5)
18 1.30(-3) -i 3.00(-4) | 1.07(-3) -i 5.60(-6) |2.17(-3) -i 1.60(-5) | 1.67(-3) -i 4.88(-5)|1.30(-3) -i 6.64(-7)
19 1.30(-3) -i 1.41(-6) | 1.09(-3) -i 4.89(-7) |2.24(-3) -i 7.85(-4)| 1.84(-3) -i 3.41(-4) | 1.40(-3) -i 4.89(-5)
20 1.62(-3) -i 5.82(-7) | 1.11(-3) -i 1.66(-6) 1.88(-3) -i 1.44(-5)|1.55(-3) -i 3.19(-4)
21 1.78(-3) -i 2.83(-4) | 1.14(-3) -i 2.71(-5) 1.94(-3) -i 7.63(-4) | 1.61(-3) -i 1.27(-5)
22 2.49(-3) -i 1.64(-5) | 1.66(-3) -i 7.36(-4)
23 2.58(-3) -i 7.73(-4) | 1.96(-3) -i 3.15(-5)
24 2.14(-3) -i 3.29(-4)
25 2.17(-3) -i 1.46(-5)
26 2.25(-3) -i 7.44(-4)
27 2.84(-3) -i 1.67(-5)
28 2.94(-3) -i 7.61(-4)

that the members of the ground-state rotational band are
practically degenerate in the adiabatic limit.

Figure 5 illustrates the intrinsic density for the ground-
state band in the adiabatic limit (I — oo; Ky = 0).
The intrinsic densities for all band members are numeri-
cally identical even though the associated wave functions
in the laboratory system are different, see Fig. 6. The
strongly asymmetric shape of electron’s distribution re-
flects the attraction/repulsion between the electron and
positive/negative charge of the dipole (for other illustra-
tive examples, see Refs. [5, 7, 11, 25, 91]).

We found that the density representation given by
Eq. (19) can also be useful in the non-adiabatic case,
with finite moment of inertia, to assign members of ro-
tational bands. This is illustrated in Fig. 7 which shows
the density (19) for the bound states J™ = 07, 17, and
21 of HCN~. Despite the fact that the strong coupling
limit does not strictly apply in this case, distributions
are practically identical and close to the intrinsic density
displayed in Fig. 5.

B. Rotational bands

Excitation energies of the lowest-energy resonant (i.e.,
bound and resonance) states are plotted in Fig. 8 as a

function of J(J + 1). The J* =0, 17, 27 bound states
form a K ; = 0 rotational band as evidenced by their in-
trinsic densities shown in Fig. 7. Another K; = 0 rota-
tional band is built upon the 03 resonance. According
to Table II, a 15 member of this band has a decay width
that is reduced by over three orders of magnitude as com-
pared to that of the 05 bandhead. We predict other very
narrow resonances as well. Among them, the 2 state
has K; = 2 while 1; and 2§ resonances have a mixed
character.

As can be judged by results displayed in Fig. 8, ex-
cept for few states with well defined K j-values, majority
of resonances are strongly K j-mixed. Consequently, an
identification of other rotational bands in the continuum,
based on the concept of intrinsic density, is not straight-
forward. This is true, in particular for the supposed
higher-J members of the ground-state band. Figure 9
shows pjf,—o for J™ = 37,4, 5] resonances, which are
expected — based on energy considerations — to form a
continuation of the ground state rotational band. One
can see that these densities are not only drastically dif-
ferent from those of 07, 17, and 2] states but also change
from one state to another. It is also worth noting that
the densities of 37,47, and 5] resonances have spatial
extensions that are dramatically larger as compared to
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FIG. 6. (Color online) Channel wave functions (¢,7) of the
J™ = 0} (a) and 4] (b) members of the ground-state rota-
tional band in HCN™ in the adiabatic limit.

the three bound members of the ground-state band.

As seen in Fig. 4, there appear clusters of resonances
having the same total angular momentum J within one
group g;. In each cluster, dominant channel wave func-
tions have the same orbital angular momentum of the va-
lence electron ¢, but different rotational angular momenta
of the molecule j. Excitation energies of resonances are
plotted as a function of the molecular angular momentum
7 in Fig. 10 for different groups of resonances of Fig. 4.
It is seen that these states form very regular rotational
band sequences in j rather than in J. Different mem-
bers of such bands lie close in the complex energy plane
and have similar densities px, (r,0). This is illustrated
in Fig. 11, which shows p;g,(r,0) for the two J™ = 5~
resonances marked by arrows in Fig. 10(c); namely 55,
having the dominant parentage (¢,j) = (6,1), and 553,
having the dominant parentage (6,11).

The results of Fig. 10 suggest that the rotational res-
onance structures are governed by a weak ¢-j coupling,
whereby the orbital motion of a valence electron is de-
coupled from the rotational motion of a dipolar neu-
tral molecule. To illustrate the weak coupling better,
in Fig. 12 we display the rotational bands of Fig. 10 with
respect to the rigid rotor reference j(j + 1)/2I. In the
case of a perfect /-j decoupling, the rescaled energy in
Fig. 12 should be equal to 1. One can see that this limit
is reached in most cases, with deviations from unity be-
ing less than 10 %. Larger deviations are found for few
low-j states in bands with J = 2 in go and J = 5 in
ga. Consequently, intrinsic densities for resonances in
these two bands exhibit certain differences, whereas they
are almost identical for bands close to the weak-coupling
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FIG. 7. (Color online) Density (19) of the valence electron in

the bound states J™ = 0} (a), 17 (b), and 2 (c) of HCN™.
(All densities are in ag'.)
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FIG. 8. (Color online) Energy spectrum of the HCN™ anion
for J* =07, 17, 2%, 37, 47, and 5~ shown as a function of

J(J 4+ 1). The dominant K j-component (21) is indicated. If
several components are present, the state is marked as “mix”.

limit.

The variations seen in Fig. 12 can be traced back to
the leading channel components along a j-band. Table IIT
displays the leading channel wave functions to the reso-
nances in different groups g;. Not surprisingly, the res-
onances forming j-band structures are associated with
high orbital angular momentum components ¢ = 6 — 9
for which the centrifugal force induces a strong decou-
pling of the electron and the rotor. For regular bands
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FIG. 9. (Color online) Similar as in Fig. 7 but for psx ,—o(r, 6)
(in 107" ap) in (a) 37, (b) 4], and (c) 57 .

TABLE III. Contributions of the two leading channel wave
functions to the norm of resonances in different groups of
states in Fig. 4. Only states with dominant channel £ = 6 for
g1, g2, annd g4, and £ = 8 for go, and g3 are included.

Group ¢ of dominant channels
6 7 8 9
9o - - 60% 40%
g3 1% - 99% -
a 70% 30% - -
g2 90% 10% - -
ga 100% - - -

in Fig. 12, the ¢-content is almost constant as a function
of j. For instance, for the four J = 5 states in ¢7, the
(¢, §) parentages of the two largest (6,5)/(7,j41) compo-
nents are: 0.64/0.37 (j =5), 0.67/0.36 ( =7), 0.69/0.35
(j =9), and 0.70/0.34 (j = 11). On the other hand, for
bands that exhibit stronger j-dependence in Fig. 12 the

50 100 150 0 50 100 150
j(j+1)

FIG. 10. (Color online) Excitation energies of resonances
of the HCN™ dipolar anion for various J” as a function of
j(j + 1), where j is the rotational angular momentum of the
molecule in the dominant channel wave function for each con-
sidered state. Colors are related to groups of states in the
complex-energy plane identified in Fig. 4. The symbols l, e,
v and + denote states with J™ = 27, 37, 4% and 57, respec-
tively.

{-compositions change.

Interesting complementary information about the ar-
rangement of resonances in the continuum of HCN™ can
be seen in Fig. 13 which shows the decay width for vari-
ous j-bands in different groups g; and different total an-
gular momenta J within a given group. One can see
that the bands that exhibit largest deviations from the
weak-coupling limit in Fig. 12, also show strong in-band
variations of the decay width. In regular bands belong-
ing to go, g1, and g3, the width stays constant or slightly
increases with j. On the other hand, the irregular bands
in go and g4 exhibit a decrease of Iy with j. Such a be-
havior of lifetimes can be traced back to variations of the
(¢, j)-content of the resonance wave function with rota-
tion.

IX. CONCLUSIONS

In this work, we studied bound and resonance states of
the dipole-bound anion of hydrogen cyanide HCN™ us-
ing an open-system quantum-mechanical approach: the
Berggren expansion method. To identify the decaying
resonant states and separate them from the scattering
background, we adopted the algorithm based on contour
shift in the complex energy plane. To characterize spa-
tial distributions of valence electrons, we introduced the
intrinsic density of the valence electron. This quantity
is useful when assigning resonant states into rotational
bands.
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FIG. 11. (Color online) Intrinsic densities psx,(r,0) (in
10710 ap) with K; = 0,1,2, for the two resonances 5; and
555 belonging to the group g2, marked by arrows in Fig. 10(c).
For both states, the dominant channel has ¢ = 6.

Dipole molecules contain large numbers of electrons
and this makes ab-initio treatments difficult. However,
since we are interested in a description of a near-threshold
spectrum of an anion rather than the whole molecular
spectrum, we use a phenomenological approach based on
a pseudo potential, with few parameters adjusted to ex-
periment. This guarantees that all important reaction
thresholds are described correctly, and this is essential
for the description of one-electron continuum. The use
of a pseudo-potential is well justified by a scale separa-
tion between the slow s.p. motion of the attached electron
(comparable with rotational excitations of the molecule)
and fast s.p. motion of HCN electrons. Such a mismatch
of scales, well known in the field of quantum halos, guar-
antees the validity of an effective interaction treatment
[68-70]. The low ionization energy implies that the fa-
miliar Born-Oppenheimer approximation breaks down so
the motion of the valence electron is highly non-adiabatic.

Since the pseudo-potential used is non-dilatation-
analytic, it cannot be treated by a complex-coordinate
method. Hence, available methods to treat this type of
problems reduce to two classes of models. The first class
of models can be associated with CESE [63, 64], where
Hamiltonian coordinates are not complex-rotated and its
eigenfunctions are split in two parts, an inner localized
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Ebh)ﬁ, where Fy;, is a bandhead energy at j = 0.
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FIG. 13. (Color online) Similar as in Fig. 10 but for the
resonance widths.

part and an outer part of outgoing character. Exterior
complex scaling can thus be applied to the wave function
in order to make it normalizable. The second class of
models concerns BEM, where Hamiltonian coordinates
remain real and the exterior complex scaling is utilized,
but which is based on a diagonalization procedure us-
ing non-localized basis; this implies that the asymptotic
form of eigenfunctions is not predefined and comes nat-
urally from the configuration mixing. While both meth-
ods are theoretically equivalent, imposition of the outgo-
ing asymptotics would be difficult in the studied case of
HCN™ anion. Indeed, due to the slowly decaying dipole
potential, exponential asymptotic is attained only at dis-
tances of tens of thousands of ag.

Non-adiabatic coupled-channel calculations with a
pseudo potential adjusted to ground-state properties of



HCN~™ predict only three bound states of the dipole-
bound anion: 0T, 17, and 2*. Those states are mem-
bers of the ground-state rotational band. The lowest 3
state is a threshold resonance; its intrinsic structure is
very different from that of 0y, 17, and 2] states, and
the lowest-energy resonances 47, and 5; .

The dissociation threshold in the HCN™ dipolar anion
defines two distinct regimes of rotational motion. Below
the threshold, rotational bands in J can be associated
with bound states. Here, the valence electron follows
the collective rotation of the molecule. This is not the
case above the threshold where the motion of a valence
electron in a resonance state is largely decoupled from
the molecular rotation with the families of resonances
forming regular band sequences in j. Widths of reso-
nances forming j-bands depend primarily on the elec-
tron’s orbital angular momentum in the dominant chan-
nel and remain fairly constant within each band for regu-
lar bands. Small irregularities in moments of inertia and
decay width are predicted for very narrow resonances in
the vicinity of the dissociation threshold.

In summary, this work demonstrates the feasibility
of accurate calculations of weakly bound and unbound
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states of the dipolar anions using a non-adiabatic pseudo-
potential method and the Berggren expansion approach.
Our prediction of two distinct modes of rotation in this
open quantum system awaits experimental confirmation.
It is interesting to note a similarity between the problem
of a dipolar anion and a coupling of electrons in high
molecular Rydberg states to molecular rotations [92, 93].
Namely, in both cases one deals with non-adiabatic cou-
pling of a slow electron to the fast rotational motion of
the core, with no separation in the single-particle and
collective time scales.
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