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Edge Corrections to Electromagnetic Casimir Energies From General-Purpose

Mathieu Function Routines

Elizabeth Noelle Blose,1 Biswash Ghimire,1 Noah Graham,1, ∗ and Jeremy Stratton-Smith1

1Department of Physics, Middlebury College, Middlebury, VT 05753, USA

Scattering theory methods make it possible to calculate the Casimir energy of a perfectly con-
ducting elliptic cylinder opposite a perfectly conducting plane in terms of Mathieu functions. In the
limit of zero radius, the elliptic cylinder becomes a finite-width strip, which allows for the study of
edge effects. However, existing packages for computing Mathieu functions are insufficient for this
calculation, because none can compute Mathieu functions of both the first and second kind for com-
plex arguments. To address this shortcoming, we have written a general purpose Mathieu function
package, based on algorithms developed by Alhargan [1, 2]. We use these routines to find edge
corrections to the proximity force approximation for the Casimir energy of a perfectly conducting
strip opposite a perfectly conducting plane.

PACS numbers: 42.25.Fx, 03.70.+k, 12.20.-m

I. INTRODUCTION

Scattering theory methods have made it possible to calculate Casimir energies, arising from quantum-mechanical
fluctuations of charges and fields in quantum electrodynamics, for any objects for which one can obtain the T -matrices
for light scattering. In this approach, one expresses the Casimir energy in “TGTG” form [3], generalizing scattering
results for planar geometries [4] and for scalar fields in spherical geometries [5] to any geometry that is tractable
for electromagnetic scattering [6, 7]. The resulting calculation combines the scattering T -matrix, which captures the
reflection of quantum fluctuations from each object individually, with the free Green’s function, which propagates
fluctuations from one object to the other.
One geometry of particular interest is the electromagnetic cylinder, which in the limit of zero radius becomes a

finite-width strip [8], allowing for the study of edge effects [8–15]. These effects can be modeled as corrections to
the proximity force approximation (for a situation where the derivative expansion [16–18] does not apply). However,
numerical calculations of the Casimir energy in elliptic cylinder geometries require Mathieu functions [19–22], in cases
for which existing packages are not well-suited. As a result, we have created a general-purpose package to compute
odd and even, angular and radial, first-kind and second-kind, and ordinary and modified Mathieu functions of integer
order, for complex parameter and argument and integer index. Our approach is based on the routines developed by
Alhargan [1, 2], extended to the case of complex inputs and implemented in Mathematica.
At short distances, we can expand the Casimir interaction energy per unit length of a perfectly conducting strip

oriented parallel to a perfectly conducting plane as

E
~cL

= − π2

720

2d

H3
+

2β

H2
+

γ

2dH
+ . . . (1)

where 2d is the width of the strip, H is the distance between the plane and the strip, and β and γ are dimensionless
constants. The leading term in this expansion gives the proximity force approximation; the second term gives the
interaction of the two edges with the infinite plane; and the third term gives the interaction between the two edges,
mediated by the plane. From an exact numerical calculation, we find good agreement with this form, with β = 0.00092
and γ = −0.0040. The former quantity agrees with results obtained at lower precision in Refs. [9–11, 23]; its small
magnitude can be explained by the cancellation of the effects of the first reflection for electromagnetism [9, 23, 24].
In the following sections we assemble the various components needed to obtain this result. In Section II we review

scattering theory in elliptic cylinder coordinates and establish conventions for the Mathieu functions that arise as
solutions to the Helmholtz equation. Then in Section III we describe the numerical package we have developed to
calculate these functions in the generality required for Casimir calculations. Finally, we discuss the results of the
Casimir calculation in Section IV.

∗Electronic address: ngraham@middlebury.edu
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II. SCATTERING THEORY IN ELLIPTIC CYLINDER COORDINATES

We begin by formulating scattering theory in elliptic cylinder coordinates,

x = d coshµ cos θ y = d sinhµ sin θ z = z , (2)

where 2d is the interfocal separation, −π < θ ≤ π is the analog of the angle in ordinary cylindrical coordinates, and
0 ≤ µ < ∞ is the analog of the ordinary cylindrical radius R, with

R =
√

x2 + y2 = d

√

cosh 2µ+ cos 2θ

2
→ d

2
eµ as µ → ∞. (3)

The Helmholtz equation in elliptic cylinder coordinates is given by

1

d2
(

cosh2 µ− cos2 θ
)

(

∂2Ψ

∂µ2
+

∂2Ψ

∂θ2

)

+
∂2Ψ

∂z2
+ k2Ψ = 0 . (4)

Using separation of variables with Ψ = M(µ)Θ(θ)Z(z) gives

d2Θ

dθ2
+ (α− 2q cos 2θ)Θ(θ) = 0

d2M

dµ2
− (α− 2q coshµ)M(µ) = 0

d2Z

dz2
+ k2zZ(z) = 0 , (5)

where the parameter q is given by q = d2

4 (k2− k2z) and the separation constant α is known as the characteristic value.

For Z(z) we have the standard complex exponential solutions Z(z) = eikzz. Because the problem still has reflection
symmetry, we have angular solutions Θ(θ) that are either even or odd functions of the argument θ, the analogs of cos
and sin in the ordinary cylinder case. We are interested only in characteristic values for which the resulting angular
functions are periodic, which we label by the integer index r, where r runs from 0 to ∞ for even solutions and from
1 to ∞ for odd solutions. For q = 0 and r 6= 0, the even and odd angular functions then reduce to cos rθ and sin rθ
respectively, and the characteristic value becomes r2 in both cases. For the special case of r = 0, in the limit as q goes
to zero the even angular function goes not to cos 0 = 1, but instead to the constant function 1√

2
, with characteristic

value zero (and there is no odd angular function for r = 0).
The radial solutions M(µ) are the analogs of Bessel functions in ordinary cylindrical coordinates. We note that the

radial functions obey the same differential equation as the angular functions with imaginary argument, a relationship
we will make use of in our computational algorithm. Unlike the case of ordinary cylindrical functions, the radial
functions corresponding to even and odd angular functions for the same index r differ, because they have different
characteristic values.
Because the Mathieu equations are second-order, they each have two independent solutions: solutions of the first

kind obey appropriate regularity conditions at the origin, while solutions of the second kind do not. Furthermore,

since q = d2

4 (k2 − k2z), positive values of q correspond to propagating waves, while negative values of q correspond
to evanescent waves; it will be convenient to define modified versions of all of our functions, which are related to
the ordinary functions with q → −q. These choices — even and odd, angular and radial, ordinary and modified,
and first-kind and second-kind — therefore yield a total 16 Mathieu functions. The four modified angular functions
typically are not assigned their own names; the remaining 12 are summarized in Table I.
We normalize our functions following the conventions of of Abramowitz and Stegun [20], but name them using a

modified notation that is more closely analogous to the ordinary cylinder case. The even and odd angular functions
cer(q, θ) and ser(q, θ) are normalized such that

∫ 2π

0

cer(q, θ)
2dθ =

∫ 2π

0

ser(q, θ)
2dθ = π , (6)

which is analogous to the normalization of the ordinary trigonometric functions cos rθ and sin rθ (except for r = 0,
as described above). The radial functions are all normalized so that they approach the analogous Bessel functions at
large distances. These conventions are convenient for creating a standard expansion of free quantum fields in terms
of Mathieu functions [25]. Also in analogy with Bessel functions, we define the modified functions by

Ier(−q, µ) = i−rJer(q, µ) Ior(−q, µ) = i−rJor(q, µ) (7)
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Angular Radial

Ordinary Ordinary Modified

First kind Second kind First kind Second kind First kind Third kind

Even Odd Even Odd Even Odd Even Odd Even Odd Even Odd

cer(q, θ) ser(q, θ) Fer(q, θ) For(q, θ) Jer(q, µ) Jor(q, µ) Y er(q, µ) Y or(q, µ) Ier(q, µ) Ior(q, µ) Ker(q, µ) Kor(q, µ)

TABLE I: Table of Mathieu functions. Modified angular functions are not assigned separate names; they are simply given by
sending q → −q in the ordinary functions. Note that the modified functions Ke and Ko are referred to as “third kind” because
they are related not to Y e and Y o, but instead to the combinations He = Je+ iY e and Ho = Jo+ iY o, as described below.

and

Ker(−q, µ) = ir+1π

2
Her(q, µ) Kor(−q, µ) = ir+1π

2
Hor(q, µ) (8)

for q < 0, where the radial functions of the third kind are given by Her(q, µ) = Jer(q, µ)+ iY er(q, µ) and Hor(q, µ) =
Jor(q, µ)+ iY or(q, µ). As in the ordinary cylinder case, the definitions of Ke and Ko in terms of third kind functions
yield the exponentially decaying evanescent solutions, avoiding the cancellation of large numbers that would be
required to extract these solutions from the direct continuation to negative q of the solutions first and second kind.

III. COMPUTATION OF MATHIEU FUNCTIONS

We have developed a package written in Mathematica for computing Mathieu functions. The built-in functional-
ity of Mathematica supports only angular, first-kind functions (similar functionality is available in Maple). Since
complex arguments are allowed, one can in principle obtain the radial first-kind functions as well. However, as de-
scribed below, the standard calculation of angular functions is of limited utility for arguments with nonzero imaginary
part; as a result, in that case we will need to use routines designed explicitly for the calculation of radial functions.
We will also need second-kind functions to describe irregular scattering waves.
Our approach is based on methods developed by Alhargan [1, 2]. While these routines, written in C, support all 16

Mathieu functions and work reliably for all the inputs we have tested, they accept only positive q and real arguments.
We will therefore generalize these routines to complex argument and parameter, motivated by the Casimir calculation,
which involves both angular functions of the first kind with complex argument and modified radial functions of the
first and third kinds. Our code is available at http://community.middlebury.edu/~ngraham .

A. Angular Functions for Real Argument

The standard calculation of angular Mathieu functions uses a Fourier series expansion,

cer (q, θ) =
δ

√

∞
∑

m=0
A2m+p (r, q)

2
+ (1 − p)

∞
∑

m=0

A2m+p (r, q) cos [(2m+ p) θ]

with p =

{

1, odd r

0, even r
and δ =

{

(−1)
(r−p)/2

, for ℜ (q) < 0

1, otherwise
, (9)

and

ser (q, θ) =
δ

√

∞
∑

m=0
B2m+p (r, q)

2

∞
∑

m=0

B2m+p (r, q) sin [(2m+ p) θ]

with p =

{

1, odd r

0, even r
and δ =

{

(−1)
(r−2+p)/2

, for ℜ (q) < 0

1, otherwise
(10)

Here the prefactors implement our L2 normalization convention for the angular functions (which differs from that used
by Alhargan). To obtain the coefficients A2m+p (r, q) and B2m+p (r, q), we follow Alhargan and use both upward and
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downward recurrence relations for the ratios of adjacent coefficients. These recurrences start from zero and infinity
respectively, and then meet at m = r. The forms are slightly different for the even and odd functions and for odd and
even order r.
For the even function coefficients, denoting the even characteristic values as ar we have the following recursions,

Even order Odd order

Am (r, q) = Aem = Aem−2V em−2, Am (r, q) = Aom = Aom−2V om−2 (11)

for m > 1 with the base cases

Ae0 = 1 Ao1 = 1

V e0 =
ar
q

V o1 = −1 +
ar − 1

q

V e2 =
ar − 4

q
− 2

V e0
V e∞ = 0 V o∞ = 0 (12)

and the recursion relations for m > 2

V em =











ar −m2

q
− 1

V em−2
, m ≤ r

−q
(m+2)2−ar+qV em+2

, m > r
V om =











ar −m2

q
− 1

V om−2
, m ≤ r

−q
(m+2)2−ar+qV om+2

, m > r
. (13)

For the odd function coefficients, denoting the odd characteristic values as br we have

Even order Odd order

Bm (r, q) = Bem = Bem−2Wem−2, Bm (r, q) = Bom = Bom−2Wom−2 (14)

for m > 2 with the base cases

Be0 = We0 = 0
Be2 = 1 Bo1 = 1

We2 =
−4 + br

2
Wo1 = 1 +

br − 1

q
Be∞ = 0, Bo∞ = 0 (15)

and the recursion relations for m > 2

Wem =











br −m2

q
+

−1

Wem−2
, m ≤ r

−q
(m+2)2−br+qWem+2

, m > r
Wom =











br −m2

q
− 1

Wom−2
, m ≤ r

−q
(m+2)2−br+qWom+2

, m > r
. (16)

B. Radial Functions

Again following Alhargan [1, 2], we find the radial functions as expansions in products of Bessel functions, in terms
of the same coefficients as we found in the angular case. These expansions take the form

Jer (q, µ) =
σr(−1)

r−p

2

Ar (r, q)

∞
∑

m=0

(−1)
m
A2m+p (r, q)

[

Jm− r−p

2

(

e−µ√q
)

Jm+ r+p

2

(eµ
√
q)

+ Jm+ r+p

2

(

e−µ√q
)

Jm− r−p

2

(eµ
√
q)
]

Jor (q, µ) =
(−1)

r−p

2

Br (r, q)

∞
∑

m=0

(−1)m B2m+p (r, q)
[

Jm− r−p

2

(

e−µ√q
)

Jm+ r+p

2

(eµ
√
q)

− Jm+ r+p

2

(

e−µ√q
)

Jm− r−p

2

(eµ
√
q)
]

Y er (q, µ) =
σr(−1)

r−p

2

Ar (r, q)

∞
∑

m=0

(−1)m A2m+p (r, q)
[

Jm− r−p

2

(

e−µ√q
)

Ym+ r+p

2

(eµ
√
q)
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+ Jm+ r+p

2

(

e−µ√q
)

Ym− r−p

2

(eµ
√
q)
]

Y or (q, µ) =
(−1)

r−p

2

Br (r, q)

∞
∑

m=0

(−1)
m
B2m+p (r, q)

[

Jm− r−p

2

(

e−µ√q
)

Ym+ r+p

2

(eµ
√
q)

− Jm+ r+p

2

(

e−µ√q
)

Ym− r−p

2

(eµ
√
q)
]

Ier (q, µ) =
σr

Ar (r, q)

∞
∑

m=0

A2m+p (r, q)
[

Im− r−p

2

(

e−µ√q
)

Im+ r+p

2

(eµ
√
q)

+ Im+ r+p

2

(

e−µ√q
)

Im− r−p

2

(eµ
√
q)
]

Ior (q, µ) =
1

Br (r, q)

∞
∑

m=0

B2m+p (r, q)
[

Im− r−p

2

(

e−µ√q
)

Im+ r+p

2

(eµ
√
q)

− Im+ r+p

2

(

e−µ√q
)

Im− r−p

2

(eµ
√
q)
]

Ker (q, µ) =
σr (−1)

r−p

2

Ar (r, q)

∞
∑

m=0

(−1)
m
A2m+p (r, q)

[

Im− r−p

2

(

e−µ√q
)

Km+ r+p

2

(eµ
√
q)

+ (−1)
p
Im+ r+p

2

(

e−µ√q
)

Km+ r−p

2

(eµ
√
q)
]

Kor (q, µ) =
(−1)

r−p

2

Br (r, q)

∞
∑

m=0

(−1)
m
B2m+p (r, q)

[

Im− r−p

2

(

e−µ√q
)

Km+ r+p

2

(eµ
√
q)

− (−1)
p
Im+ r+p

2

(

e−µ√q
)

Km+ r−p

2

(eµ
√
q)
]

(17)

with

p =

{

1, odd r

0, even r
and σr =

{

1
2 , r = 0

1, r 6= 0
. (18)

C. Angular Functions for Complex Argument

For complex arguments, the Fourier series in Eqs. (9) and (10) become numerically ill-behaved. This problem does
not, however, affect the Bessel function series used to compute the radial functions. Since the radial functions obey
the same differential equation as the angular functions of imaginary argument (and vice versa), these functions differ
only by a normalization factor. We take advantage this relationship to write

cer (q, θ) =
cer (q, 0)

Jer (q, 0)
Jer (q,−iθ) ser (q, θ) =

se′r (q, 0)

Jo′r (q, 0)
Jor (q,−iθ) , (19)

where prime denotes a derivative with respect to the argument. The prefactor ratios in both expressions, which are
independent of argument, serve as “joining factors” to convert the normalizations of the two functions. We therefore
use these relationships, along with our routines for radial functions, to compute the angular functions of complex
argument. We also use this approach any time the magnitude of q is very small, again to avoid numerical instabilities.
While we use Eqs. (9) and (10) for the case of real argument, the corresponding radial function expansions would also
work perfectly well, but they are slower to compute.

D. Second Kind Angular Functions

Although they are not needed in the Casimir calculation, for completeness our code also implements angular
functions of the second kind, again using the approach of Alhargan [1, 2]. These functions can be written as

Fer (q, θ) =

2δ
√
α2+1−p

π(1+α1)

α1

(

1 +
∞
∑

m=0

(2m+p)G2m+p(r,q)
α1

)

(

θ
√
α2cer (q, θ) +

∞
∑

m=0

G2m+p (r, q) sin [(2m+ p) θ]

)

(20)
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with

αi =

∞
∑

m=0

A2m+p (r, q)
i
, p =

{

1, odd r

0, even r
, and δ =

{

(−1)
(r−p)/2

, for ℜ(q) < 0

1, otherwise
. (21)

for the even functions and

For (q, θ) =

2δ
√
α2,0

π(2−p+α1,1)

(2− p+ α1,1) +
∞
∑

m=0

H2m+p(r,q)
α1,1

(

θ
√
α2,0ser (q, θ) +

∞
∑

m=0

H2m+p (r, q) cos [(2m+ p) θ]

)

(22)

with

αi,j =

∞
∑

m=0

(2m+ p)
j
B2m+p (r, q)

i
, p =

{

1, odd r

0, even r
, and δ =

{

(−1)(r−2+p)/2 , for ℜ(q) < 0

1, otherwise
(23)

for the odd functions. Similarly to the first-kind case, we compute the even coefficients via

Even order recursion Odd order recursion

Gen (r, q) = Gen = Qen − ρqeAen Gon (r, q) = Gon = Qon − ρqoAon

ρqe =
1

2Ae0

[

(ar − 4)Qe2
q

−Qe4

]

− 2ar
q2

ρqo =
1

2Ao1

[

(ar − 1 + q)Qo1
q

−Qo3

]

− 1

q
(24)

with base cases

Qe2nmax
= 0 Qo2nmax+1 = 0

Qe2nmax−2 = −4nmax Ae2nmax

q
Qo2nmax−1 = −2 (2nmax + 1)Ao2nmax+1

q
(25)

and recursion relations

Qen−2 =

(

ar − n2
)

Qen − 2nAen

q
−Qen+2 Qon−2 =

(

ar − n2
)

Qon − 2nAon

q
−Qon+2 (26)

For the odd coefficients, we have

Even order recursion Odd order recursion

Hen(r, q) = Hen = Ten − ρteBen Hon(r, q) = Hon = Ton − ρtoBon

ρte =
1

Be2

[

Te2 −
brTe0

q

]

ρto =
1

2Bo1

[

To3 −
(br − 1− q)To1

q

]

− 1

q
(27)

with base cases

Te2nmax
= 0 To2nmax+1 = 0

Te2nmax−2 = −4nmax Be2nmax

q
T o2nmax−1 =

2 (2nmax + 1)Bo2nmax+1

q
(28)

and recursion relations

Ten−2 =

(

br − n2
)

Ten + 2nBen

q
− Ten+2 Ton−2 =

(

br − n2
)

Ton + 2nBon

q
− Ton+2 . (29)

E. Implementation Details

We note a number of design elements of our code, which serve to enhance its efficiency, convenience, and reliability.

• Characteristic values are computed using the built-in functions in Mathematica.

• Since the Mathieu functions solve second-order differential equations, it is helpful to have expressions for their
first derivatives with respect to their arguments. We implement these by differentiating the corresponding series
expansions term by term, which we can then simplify using known properties of derivatives of trigonometric and
Bessel functions.
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• The Wronskian relations for the first- and second-kind functions and their first derivatives provide valuable
checks on the numerical calculation.

• Quantities that are likely to be needed repeatedly, such as joining factors and coefficients in recurrence relations,
are cached.

• For the case of radial functions with real arguments, stable recurrence relations are used to efficiently compute
Bessel functions for the entire range of orders needed.

IV. CASIMIR CALCULATION AND DISCUSSION

As shown in Ref. [8], the energy per unit length of a perfectly reflecting strip opposite a perfectly reflecting plane
is given in terms of the angular Mathieu functions cer and ser by

E
~cL

=
1

4π

∫ ∞

0

pdp log det

[1χχ′

rr′ − T χ
r T P

∫ ∞

−∞
du e−2pH coshu cer

ser

(

q,
π

2
+ iu+ ϕ

) cer′

ser′

(

q,
π

2
− iu+ ϕ

)

]

, (30)

where χ and χ′ denote the odd and even scattering channels, corresponding to cer and ser respectively, H is the

height of the center of strip above the plane, q = − d2p2

4 , ϕ is the angle of the strip relative to the plane, and the
determinant runs over the r and r′ indices and both parity channels. The scattering T -matrix for the plane is given
by T P = ±1 for Neumann and Dirichlet boundary conditions respectively, while for an elliptic cylinder of radius µ0

we have T e,o
rkzr′k′

z

= 2πδ(kz − k′z)δrr′T e,o
r , with

T e
r = − Ier (−q, µ0)

Ker (−q, µ0)
T o
r = − Ior (−q, µ0)

Kor (−q, µ0)
(Dirichlet)

T e
r = − Ie′r (−q, µ0)

Ke′r (−q, µ0)
T o
r = − Io′r (−q, µ0)

Ko′r (−q, µ0)
(Neumann) (31)

for our two boundary conditions, where prime indicates a derivative with respect to µ. To obtain the Casimir energy
for electromagnetism with perfect conductors, we take the sum of this result for Dirichlet and Neumann boundary
conditions (with the same boundary condition on both surfaces). The case of the strip is then given by taking µ0 = 0
in these results. We will consider ϕ = 0, so that the strip is parallel to the plane. In that case we can simplify Eq. (30)
via the identities

cer(q, θ) =

{

(−1)
r

2 cer
(

−q, π
2 − θ

)

for r even

(−1)
r−1

2 ser
(

−q, π2 − θ
)

for r odd

ser(q, θ) =

{

(−1)
r

2
−1ser

(

−q, π
2 − θ

)

for r even

(−1)
r−1

2 cer
(

−q, π2 − θ
)

for r odd
, (32)

so that for ϕ = 0, we require the angular Mathieu functions at purely imaginary argument. For ϕ = 0, the integrand
in Eq. (30) is also a symmetric or antisymmetric function of u, and the determinant decomposes into two independent
sectors, one consisting of the modes for which the parity of the elliptic functions matches the parity of r, and the
other the modes for which the parities are opposite.
Results of the calculation for a strip parallel to a plane are shown in Fig. 1. We show the ratio of the full energy

to the proximity force approximation, where the latter is given by

Epfa
~cL

= − π2

720

2d

H3
. (33)

We also show a polynomial fit to this quantity, which shows good agreement with the expansion of Eq. (1),

E
Epfa

= 1− 2βH
π2

7202d
− γH2

π2

720 (2d)
2
+ . . . , (34)

from which we obtain β = 0.00092 and γ = −0.0040. These dimensionless quantities give edge corrections to the
proximity force result: β captures the effect of each of the two edges individually, while γ gives an interaction energy
due to the combined effect of the two edges. The result for β agrees with results obtained at lower precision in the
case of a half-plane parallel to a plane [9–11, 23]. The strip allows for better numerical precision than the half-plane,
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FIG. 1: Ratio of the exact Casimir energy to the proximity force approximation for a perfectly conducting strip of width 2d
parallel to a perfectly conducting plane, as a function of separation H . The line represents a polynomial fit, from which we
extract the coefficients in Eq. (1).

because the leading proximity force term is a energy per unit length rather than an energy per unit area. (Of course,
the subleading correction γ is not present in the half-plane case, since it has only a single edge.)
We can gain some qualitative insight into these corrections by considering the effects of edges on the fluctuation

modes that contribute to the Casimir energy. The positive sign of β indicates that the edge boundary condition
suppresses fluctuations that would otherwise contribute to the attractive Casimir interaction (though this effect arises
only from terms beyond the first reflection [9, 23, 24]), while the negative sign of γ indicates an enhancement of the
Casimir energy due to the effect of one edge on the other: Some of the modes whose contribution would be suppressed
by one edge have already been suppressed by the other edge, and so the combined effect of two edges reduces the
Casimir energy by less than the sum of their individual contributions. We note that Eq. (30) is meromorphic around
H = 0, so we cannot have a term proportional to 1/ ln(H/d) in Eq. (1). In contrast, for an expansion at large H , the
essential singularity in the integrand of Eq. (30) makes it possible for such inverse logarithms to appear, and indeed
the leading term at large distances is proportional to 1/[H2 ln(H/d)] in that case [26].
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