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Boson-sampling has been presented as a simplified model for linear optical quantum computing.
In the boson-sampling model, Fock states are passed through a linear optics network and sampled
via number-resolved photodetection. It has been shown that this sampling problem likely cannot
be efficiently classically simulated. This raises the question as to whether there are other quantum
states of light for which the equivalent sampling problem is also computationally hard. We present
evidence, without using a full complexity proof, that a very broad class of quantum states of light
— arbitrary superpositions of two or more coherent states — when evolved via passive linear optics
and sampled with number-resolved photodetection, likely implements a classically hard sampling
problem.

I. INTRODUCTION

Linear optical quantum computing (LOQC) [1, 2] has
become a leading candidate for the implementation of
large-scale universal quantum computation [3]. While
LOQC is possible in principle, the technological require-
ments are daunting, requiring technologies that are not
readily available today, such as fast feed-forward and op-
tical quantum memory. Thus, the search for simplified,
more technologically realistic models for LOQC is a pri-
ority.

One recent proposal, by Aaronson & Arkhipov (AA)
[4], known as boson-sampling, significantly simplifies the
requirements for LOQC, allowing a type of non-universal
quantum device that implements a classically hard al-
gorithm using technologies that are, for the larger part,
available today. In the boson-sampling model, we sim-
ply input n copies of the single-photon Fock state into
a passive linear optics network, comprised of beamsplit-
ters and phase-shifters, and perform photodetection at
the output. This yields a sampling problem, which is be-
lieved to be classically hard to simulate [4]. Thus, the
full model requires only single-photon Fock state prepa-
ration, passive linear optics, and photodetection, tech-
nologies that are all available today on a small scale. For
a review on various photon sources and photo-detectors
see [5]. Note that number-resolving photo-detectors are
not required in the limit of large n as there is likely only
zero or one photon per output mode [6]. Several ele-
mentary experimental demonstrations have recently been
performed [7–11].
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In boson-sampling, the classical hardness of the sam-
pling problem relates to the computational complexity of
calculating the amplitudes in the output superposition.
In the case of Fock state inputs, the output amplitudes
are related to matrix permanents, the computation of
which are known to be complete for the complexity class
#P and hence are not believed to be efficiently com-
putable by classical means.

The classical hardness of this Fock state sampling
raises the question as to whether there are other quantum
states of light, which also yield classically hard sampling
problems. It was shown recently by Seshadreesan et al.
[12] that photon-added coherent states (PACS) and by
Olson et al. [13] that photon-added or photon-subtracted
squeezed vacuum (PASSV) states are an example of such
states. And it was shown by Lund et al. [14] that a
certain class of Gaussian state inputs yield a computa-
tionally hard sampling problem. It is known that passive
linear optics may be efficiently simulated with Gaussian
inputs and non-adaptive Guassian measurements [15, 16].
However, the more general question as to which quantum
states of light may be efficiently simulated with number-
resolved measurements is an open question.

Given the result of AA for single photons, the natu-
ral question is whether this generalises to other quan-
tum states. Here we consider a more generalized boson-
sampling device where the input states are not Fock
states, but rather superpositions of coherent states. This
is a very broad class of continuous-variable optical states.

We will structure this paper as follows. We first give
a review of AA’s boson-sampling formalism in terms of
Fock and vacuum states and show the typical expression
obtained at the output. Then, we analyse cat sampling
in three separate limits:

1. First we analyse even and odd cat states and show
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that their Taylor expansions reduce to the vacuum
and single-photon Fock state respectively as α→ 0.
Thus, in the zero amplitude limit, cat sampling
exactly reduces to boson-sampling and therefore
yields a computationally hard problem.

2. Second, we analyse small, but non-zero amplitude
odd cat states. This is equivalent to Fock state
sampling with some residual components that are
treated as an error. This error is related to the AA
proof for approximate boson-sampling, where it is
required that the error rate satisfies a 1/poly(n)
bound. Thus small, but non-zero, amplitude odd
cat states are also computationally hard.

3. Third, we analyse general cat states which are
arbitrary superpositions of two or more coherent
states. We demonstrate that the output state is
a highly entangled superposition of an exponen-
tial number of multi-mode coherent states [17–
21], where the amplitude of each term is related
to a permanent-like combinatoric problem, which
would require exponential resources to compute via
a brute-force approach. This provides strong evi-
dence that such generalized optical sampling prob-
lems might in general be implementing classically
hard problems. Determining a complete charac-
terization of the computational complexity of such
problems is a notoriously difficult open problem,
but based on the evidence we present here, it likely
resides in a classically hard class comparable to
ideal boson-sampling.

Next, to further support our evidence we present a
complexity theoretic argument for the hardness of cat
state sampling. We show that unless the polynomial hi-
erarchy collapses to the third level there must not ex-
ist an efficient randomized classical algorithm which can
produce an output distribution approximating that of an
arbitrary interferometer with multiplicative error of

√
2

or less.

While such states may be more challenging to prepare
than Fock states, addressing this question sheds light on
what makes a quantum optical system classically hard
to simulate, and may provide motivation for developing
technologies for preparing quantum states of light be-
yond Fock states. We end this paper by discussing the
prospects for experimentally preparing general cat states.

II. REVIEW OF BOSON-SAMPLING

We begin by reviewing the boson-sampling model us-
ing single photons as illustrated in Fig. 1. For an ele-
mentary introduction to boson-sampling, see [22]. First
we prepare an m-mode state, where the first n modes
are prepared with the single photon Fock state, and the

remainder with the vacuum state,

|ψin〉 = |11, . . . , 1n, 0n+1, . . . , 0m〉
= a†1 . . . a

†
n|01, . . . , 0m〉, (1)

where a†i is the photon creation operator on the ith mode,
and m = O(n2). Note that when n photons are ran-
domly inputed into the m modes the sampling problem
remains classically difficult [14]. This has become collo-
quially known as scattershot boson-sampling.

Next we propagate this state through a passive linear
optics network, which can be expressed by a unitary map
on the creation operators,

Û : â†i →
m∑
j=1

Ui,j â
†
j . (2)

U

. . 
.

. . 
.

. . 
.

. . 
.

FIG. 1: The boson-sampling model for quantum computation.
A series of single-photon and vacuum states are prepared,
|1, . . . , 1, 0, . . . , 0〉, and passed through a linear optics network,

Û . The experiment is repeated many times and each time
the output distribution is measured via coincidence number-
resolved photodetection, sampling from the distribution PS .

With this map, the output state can be expressed as,

|ψout〉 =
∑
S

γS |s1, . . . , sm〉, (3)

where S are the different photon number configurations,
si is the number of photons in mode i associated with
configuration S, and γS ∈ C are the respective ampli-
tudes. The number of configurations scales exponentially
with n, |S| =

(
n+m−1

n

)
. The total photon-number is con-

served, thus
∑
i si = n for all S. Performing number-

resolved photodetection, which are described by projec-
tion operators Π̂(n) = |n〉〈n|, we sample from the distri-
bution PS = |γS |2, each time obtaining an m-fold coinci-
dence measurement outcome of a total of n photons.

As shown by AA the sampling amplitudes are related
to matrix permanents,

γS =
Per(US)√∏m
i=1 si!

∏m
j=1 tj !

=

∑
σ∈Sn

∏n
j=1 Uj,σi√∏m

i=1 si!
∏m
j=1 tj !

, (4)
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where US is an n× n sub-matrix of U as a function of
the respective configuration S, Sn is the group of per-
mutations, and si (tj) is the number of photons in the
input (output) mode associated with mode i (j). The
best known classical algorithm for calculating matrix per-
manents is by Ryser [23], requiring O(2nn2) time steps.
Because this requires exponential time to evaluate, sam-
pling from the distribution PS is believed to be a clas-
sically hard problem. Importantly, boson-sampling does
not allow us to calculate matrix permanents as this would
require an exponential number of measurements.

III. ZERO AMPLITUDE CAT ANALYSIS

‘Cat state’ is a generic term for an arbitrary superposi-
tion of macroscopic states and may be used for quantum
information processing [24]. In quantum optics, this is
generally understood to mean a superposition of two co-
herent states, potentially with large amplitudes. This is
the definition we will use in this work. Two illustrative
examples are the ‘even’ (+) and ‘odd’ (−) cat states,
so-called because they contain only even or odd photon-
number terms respectively,

|cat±〉 =
(|α〉 ± | − α〉)√
2(1± e−2|α|2)

. (5)

The odd cat state has the property that all of the even
photon number terms vanish. In the limit of α → 0 its
amplitude identically approaches the single-photon state
as shown here,

lim
α→0
|cat−〉 = lim

α→0

√
2e
−|α|2

2

√
1− e−2|α|2

(
α|1〉+

α3|3〉√
3!

+ . . .

)
≈ |1〉+O(α2)|3〉
→ |1〉. (6)

In the limit as α→ 0 we ignore all higher order α terms.
Furthermore, the vacuum state (we require O(n2) vac-

uum states to be consistent with the boson-sampling
model) is given by a trivial cat state containing only a
single term in the superposition (t = 1) with the respec-
tive amplitude α = 0. Alternately, the vacuum state can
be regarded as the zero amplitude limit of the even cat
state,

lim
α→0
|cat+〉 = lim

α→0

√
2e
−|α|2

2

√
1 + e−2|α|2

(
α|0〉+

α2|2〉√
2!

+ . . .

)
≈ |0〉+O(α2)|2〉
→ |0〉. (7)

Thus, it is immediately clear that in the α → 0 am-
plitude limit, cat state sampling reduces to ideal boson-
sampling, using an appropriate configuration of odd and
even cat states, which is a provably hard problem. We use
the term ‘provably hard’ to mean computationally hard,

assuming that ideal and approximate boson-sampling are
computationally hard. Specifically, to implement exact
boson-sampling with cat states, we choose our input state
to be,

|ψin〉 = lim
α→0

(|cat−〉1 . . . |cat−〉n|cat+〉n+1 . . . |cat+〉m)

= |11, . . . , 1n, 0n+1, . . . , 0m〉, (8)

which is exactly the form of Eq. 1. This example is
trivial but the point is to show a simple example of cat
states leading to a computationally hard problem in a
particular limit, which raises the question as to whether it
remains hard as we transition out of that limit. In App. B
we present an example of this reduction in the case of
Hong-Ou-Mandel interference to explicitly demonstrate
that small amplitude cats behave as single photons. This
demonstrates that in certain regimes, cat state sampling
reproduces single-photon statistics.

IV. SMALL AMPLITUDE CAT ANALYSIS

Having established that cat sampling reduces to boson-
sampling in the zero amplitude limit, the obvious next
question is ‘what if the amplitude is small but non-zero?’.
It was shown by AA that boson-sampling, when cor-
rupted by erroneous samples, remains computationally
hard provided that the error rate scales as 1/poly(n).
If we consider a small, but non-zero, amplitude odd cat
state, we can treat the non-single-photon terms, which
scale as a function of α, as erroneous terms. The error
that these erroneous terms induce must be kept below
the 1/poly(n) bound. Specifically,

|cat−〉 = γ1(α)|1〉︸ ︷︷ ︸
single photon

+ γ3(α)|3〉+ . . .︸ ︷︷ ︸
error terms

, (9)

where γi(α) defines the odd photon-number distribution
and follows from Eq. 23. The two underbraced compo-
nents represent the desired single-photon term and the
remaining photon-number terms, which are treated as
errors.

In App. C we show that the bound on the amplitude
of the cat states for a provably hard sampling problem
to take place is,

α2ncschn(α2) > 1/poly(n), (10)

where we input odd cat states in every mode requiring a
|1〉 and vacuum in the remaining modes. Although this
function is exponential in n the probability of success-
fully sampling from the correct distribution will satisfy
this bound for sufficiently small values of n and α. The
value of nmay still be large enough however to implement
a post-classical boson-sampling device. Thus, it follows
that for non-zero, but sufficiently small α, cat sampling
remains computationally hard.

We have established that cat state boson-sampling is a
provably computationally hard problem in two regimes:
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(1) in the α→ 0 amplitude limit, in which case we repro-
duce ideal boson-sampling, and (2) for non-zero but suf-
ficiently small amplitudes, in which case the non-single-
photon-number terms may be regarded as errors, which
remains a computationally hard problem, subject to the
bound given in Eq. 10. Having established this, the re-
mainder of this paper is dedicated to the completely gen-
eral case, whereby the terms in the cat states may have
arbitrary amplitude, potentially at a macroscopic scale.

V. ARBITRARY AMPLITUDE CAT ANALYSIS

In this section we will consider arbitrary superpositions
of an arbitrary number of coherent states, in which case
a general cat is of the form,

|cat〉 =

t∑
j=1

λj |αj〉. (11)

Let the input state to our generalized boson-sampling
model comprise m arbitrary superpositions of t coherent
states, which we will refer to as generalized cat states,

|ψin〉 =

m⊗
i=1

t∑
j=1

λ
(i)
j |α

(i)
j 〉, (12)

where |α(i)
j 〉 is the coherent state of amplitude α ∈ C of

the jth term in the ith mode, and λ
(i)
j ∈ C is the am-

plitude of the jth term of the superposition in the ith
mode1. It should be noted here that, in line with tra-
ditional boson-sampling, we can choose a number of the
modes to be the vacuum. This is achieved by setting

λ
(i)
1 = 1 and α

(i)
1 = 0.

Expanding this expression yields a superposition of
multi-mode coherent states of the form,

|ψin〉 =

t∑
~t=1

λ
(1)
t1 . . . λ

(m)
tm |α

(1)
t1 , . . . , α

(m)
tm 〉, (13)

where ~t is shorthand for {t1, ..., tm}. We propagate this

state through the passive linear optics network Û illus-
trated in Fig. 2. Such a unitary network has the property
that a multi-mode coherent state is mapped to another
multi-mode coherent state,

Û |α(1), . . . , α(m)〉 → |β(1), . . . , β(m)〉, (14)

where the relationship between the input and output am-
plitudes is given by (see App. A),

β(j) =

m∑
k=1

Uj,kα
(k). (15)

1 Continuous superpositions are a simple generalization of our for-
malism, and with this generalization arbitrary states could be
expressed as continuous superpositions of coherent states.

Û acts on each term in the superposition of Eq. 13 inde-
pendently. Thus, the output state will be of the form,

|ψout〉 = Û |ψin〉

=

t∑
~t=1

λ
(1)
t1 . . . λ

(m)
tm |β

(1)
~t
, . . . , β

(m)
~t
〉. (16)

The number of terms in the output superposition is tm,
scaling exponentially with the number of modes, pro-
vided t > 1.

Our goal is to sample this distribution using number-
resolved photodetectors, which are described by the mea-
surement projectors,

Π̂i(n) = |n〉i〈n|i, (17)

where n is the photon-number measurement outcome on
the ith mode. Multi-mode measurements are described
by the projectors,

Π̂(S) = Π̂1(S1)⊗ · · · ⊗ Π̂m(Sm), (18)

where S = {S1, . . . , Sm} is the multi-mode measurement
signature, with Si photons measured in the ith mode.
The sample probabilities are given by,

PS = 〈ψout|Π̂(S)|ψout〉. (19)

In the case of continuous-variable states, the number
of measurement signatures, |S|, is unbounded as the
photon-number is undefined, unlike Fock states where
the total photon-number is conserved.

U

. . 
.

. . 
.

FIG. 2: The model for generalized boson-sampling with su-
perpositions of coherent states — ‘cat states’. The input state
to each mode is an arbitrary superposition of coherent states,
some of which are set to the vacuum. Following the applica-
tion of a linear optics network, the distribution is sampled via
number-resolved photo-detection.

Without presenting a rigorous complexity argument,
we argue that this sampling problem is likely to be clas-
sically hard if three intuitive criteria are satisfied:

1. There must be an exponential number of terms in
the output distribution. This rules out brute-force
simulation by explicitly calculating the state vector.
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2. The terms in the superposition must be entangled,
such that the distribution cannot be trivially sam-
pled by independently sampling each mode.

3. Each of the amplitudes in the output distribution
must be related to a computationally hard prob-
lem. This ensures that classical simulation of the
individual amplitudes is not efficient.

We have chosen these criteria as they are general prop-
erties that classically hard problems are known to ex-
hibit, but we do not prove that these criteria are sufficient
to establish whether a problem is likely to be classically
hard. For example, ideal boson-sampling is known to be
computationally hard, satisfying all 3 criteria. However,
fermionic-sampling is known to be classically efficient,
and violates criteria 3, as it relates to matrix determi-
nants rather than permanents, which reside in P.

Criteria (1) is achieved by virtue of our choice of input
state — there are tm terms in the output distribution.

It is easily seen that criteria (2) holds in general. As a
simple example, consider the input state,

|ψin〉 = N 2(|α〉+ | − α〉)⊗ (|α〉+ | − α〉) = |cat+, cat+〉,
(20)

a tensor product of two even cat states. Passing this
separable two-mode state through a 50/50 beamsplitter
gives rise to the output state,

|ψout〉 = Ĥ|ψin〉 = |cat′, 0〉+ |0, cat′〉, (21)

where |cat′〉 = N 2
+(|
√

2α〉+ | −
√

2α〉) is a cat state. This
is a path-entangled superposition of a cat state across two
modes. Thus, while Eq. 14 demonstrates that a unitary
network maps a tensor product of coherent states to a
tensor product of coherent states, such a network will in
general generate path-entanglement when the input state
is a tensor product of superpositions of coherent states.
Note the structural similarity between cat state interfer-
ence and two-photon Hong-Ou-Mandel (HOM) [25] -type
interference. In the case of HOM interference we have
Ĥ|1, 1〉 = (|2, 0〉+ |0, 2〉)/

√
2, whereas for cat states we

have Ĥ|cat, cat〉 = |cat′, 0〉+ |0, cat′〉.
It was recently and independently reported by Jiang

et al. [26] that linear optics networks fed with nonclas-
sical pure states of light almost always generates modal
entanglement, consistent with our observation here. This
ensures that the output state to our generalized boson-
sampling device is highly entangled, thus satisfying crite-
ria (2). However, Jiang et al. present no discussion about
our hardness criteria (3); they do not connect their states
to a computationally hard problem. Thus their work
provides a necessary but not sufficient proof of compu-
tational hardness. It is important, as in our work here,
to examine such non-classical input states individually
and make the case for the importance of criteria (3). For
example it is well known from the Gottesman-Knill the-
orem that some systems with exponentially large Hilbert
spaces that satisfy our criteria (1) and (2) can neverthe-
less be efficiently simulated. An example is the circuit

model for quantum computation that deploys only gates
from the Clifford algebra.

Finally let us consider criteria (3). Let the expansion
for a coherent state be,

|α〉 =

∞∑
n=0

fn(α)|n〉, (22)

in the photon-number basis, where,

fn(α) = e−
|α|2
2

αn√
n!
, (23)

is the amplitude of the n-photon term. Then,

〈n|α〉 = fn(α). (24)

Thus, acting the measurement projector for configuration
S, Eq. 18, on the output state, Eq. 16, we obtain,

Π̂(S)|ψout〉 = γS |S1, S2, . . . , Sm〉, (25)

where,

γS =

t∑
~t=1

 m∏
j=1

λ
(j)
tj fSj

(
m∑
k=1

Uj,kα
(k)
tj

) , (26)

and the sampling probability takes the form PS = |γS |2.
We can group the terms under the product and label

them A
(S)

j,~t
. Then the amplitudes are given by,

γS =

t∑
~t=1

m∏
j=1

A
(S)

j,~t
, (27)

which has the same analytic structure as the permanent
when t = m but sums over additional terms that are not
present in the permanent. Evaluating this combinatoric
problem requires exponential resources using brute-force.
Via brute force, evaluating this expression requires sum-
ming tm terms. Given that Eq. 27 has the same ana-
lytic form as the matrix permanent, which is known to
be classically hard, this implies a striking similarity be-
tween cat state sampling and Fock state sampling, with
the constraint that A is of a form whose permanent is not
trivial. In fact, in the α→ 0 limit, evaluating this combi-
natoric expression must be as hard as calculating an n×n
matrix permanent, since we know that in this limit the
problem reduces to ideal boson-sampling. In the original
proof by Aaronson & Arkhipov, it is required that U is
Haar-random. It is an open question as to whether A
can be made Haar-random in the presented generalized
boson-sampling model.

In the trivial case of t = 1 this expression simplifies to,

γS =

m∏
j=1

fSj

(
m∑
k=1

Uj,kα
(k)
1

)
, (28)
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which evaluates in polynomial time. In this case the in-
put state is simply a tensor product of coherent states,
and the runtime is consistent with the known result that
simulating coherent states is trivial as the tensor product
structure allows sampling to proceed by independently
sampling each mode, each of which is an efficient sam-
pling problem. However, when t > 1 the complexity of
directly arithmetically evaluating Eq. 26 grows exponen-
tially.

VI. A COMPUTATIONAL COMPLEXITY
ARGUMENT

We now provide a complexity theoretic argument for
the hardness of cat-state sampling. We will consider the
problem of weakly simulating such a system with a ran-
domized classical algorithm, and show that the existence
of any such algorithm which can approximate the output
to within a constant multiplicative factor of

√
2 would im-

ply a collapse of certain classical computational complex-
ity classes which are believed to be distinct. The poly-
nomial hierarchy, denoted as PH, is composed of an infi-
nite number of levels k, which are composed of the com-
plexity classes ΣkP = NPΣk−1P, ∆kP = PΣk−1P, and
ΠkP = coNPΣk−1P, where Σ0P = ∆0P = Π0P = P.
We show that if the measurement results in a cat state
interferometry experiment are specified by a string x,
and each x occurs with probability p(x), then if there
exists an efficient (polynomial time) randomized algo-
rithm which, for all such cat state interferometry ex-
periments, produces output x with probability p′(x)

such that 1√
2
p(x) ≤ p′(x) ≤

√
2p(x) for all x, then the

polynomial hierarchy collapses to the third level (i.e.
PH = ∆3P). While such a result would not be quite as
strong as P = NP, it has a well established connection
to this problem, and it is widely believed that the poly-
nomial hierarchy has an infinite number of inequivalent
levels.

Our approach follows the method developed by Brem-
ner, Jozsa & Shepherd [27], which they used to show
the intractability of classical simulation of certain cir-
cuits composed of commuting gates. The technique has
since been extended to other settings, including the one
clean qubit (DQC1) model [28, 29]. This approach makes
use of the notion of post-selection, in which the com-
putational cost of performing a certain computation is
counted only if that computation results in a particular
value of a chosen post-selection register.

We provide informal definitions of two computational
complexity classes based on post-selection, based on
those used in [28], which will be used extensively in our
proof. More formal definitions of these classes can be
found in [27]. These classes are defined in terms of cir-
cuits composed of either classical or quantum gates with
identified output and post-selection registers Ox and Px
respectively. A language L is in the class PostBPP if
and only if there exists a uniform family of classical cir-

cuits and a 0 < δ < 1/2 such that:

1. if x ∈ L then Prob(Ox = 1|Px = 0 . . . 0) ≥ 1
2 + δ,

2. if x /∈ L then Prob(Ox = 1|Px = 0 . . . 0) ≤ 1
2 − δ.

Similarly, a language L is in the class PostBQP if there
exist a uniform family of quantum circuits satisfying the
above criteria 2. We also define a third complexity class
PostCAT to capture the notion of post-selection applied
to the interferometry experiments we are concerned with.
We will say that a language L is in PostCAT if there
exists a uniform family of n-port linear interferometers
acting on cat state inputs satisfying the preceding crite-
ria.

The complexity of the first two classes has previously
been studied, and it is known that PostBPP exactly cor-
responds to another complexity class known as BPPpath,
which is contained within ∆3P [30]. On the other hand,
it was shown by Aaronson that PostBQP = PP [31].
This is rather surprising, since PH ⊆ PPP, which implies
a difference between the power of post-selected classical
and quantum computation unless PPP = PH = ∆3P.
Following from the definitions of PostBPP and Post-
BQP given above, this further implies that an efficient
classical randomized algorithm cannot mimic the output
of an arbitrary quantum circuit, since such a situation
would yield PostBQP = PostBPP and so collapse the
polynomial hierarchy. In fact, this last statement can
be made stronger: The existence of a polynomial time
randomized classical algorithm which approximates the
output distribution to an arbitrary quantum circuit to
within multiplicative error of

√
2 would yield PH = ∆3P

[27, 28].

All that must be done, then, in order to prove
our claim, is to show that PostBQP ⊆ PostCAT,
from which it would follow that the existence of
an efficient randomized classical algorithm which can
approximate the output distribution of an arbitrary
linear interferometer applied to cat state inputs to
within a multiplicative error of

√
2 would imply that

PostCAT ⊆ PostBPP and hence PH = ∆3P. How-
ever, that PostBQP ⊆ PostCAT follows directly from
the work of Ralph et al. [32], who showed that arbitrary
quantum circuits could be implemented exactly, albeit
probabilistically, on qubits encoded as a superposition of
even and odd parity cat states. Although the set of gates
they introduce is probabilistic, there is always some prob-
ability of obtaining a measurement result which correctly
implements the desired gate with unit fidelity. Hence by
post-selecting on such an outcome, the system can be

2 Here the gate set is assumed to be some standard universal set,
such as the Hadamard and Toffoli gates. More exotic gate sets
can potentially lead to more powerful models, but this class pro-
vides a lower bound on the power of post-selected quantum com-
putation, which is sufficient for our purposes.
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made to deterministically implement an arbitrary quan-
tum circuit. Since post-selection could also be applied to
output qubits from the circuit while remaining in Post-
CAT, it follows that any computation in PostBQP is
also in PostCAT. Thus we must conclude that unless
PH = ∆3P, there must not exist an efficient randomized
classical algorithm which can produce an output distri-
bution approximating that of an arbitrary interferometer
with multiplicative error of

√
2 or less.

VII. PREPARING CAT STATES

Finally, we will discuss the prospects for experimen-
tally preparing cat states of the form used in our deriva-
tion. There exists a significant number of schemes for
generating a finite number of superpositions of coher-
ent states all of which are extremely difficult to scale
to higher order cat states. For example, superpositions
of coherent states with equal amplitudes but different
phases can be produced with quantum nondemolition
(QND) measurements [33] via the interaction of a strong
Kerr nonlinearity [34, 35]. Another approach is to use
strong Kerr nonlinearities together with coupled Mach-
Zehnder interferometers [35] but this is impractical as
outside the cavity a strong Kerr would require a coher-
ent Electromagnetically Induced Transparency [36, 37]
effect in an atomic gas cloud and even there in practice
the nonlinearities are too weak for our purposes.

In a similar way that measurements of photon num-
ber can produce discrete coherent state superpositions in
phase; measurements of the phase can produce discrete
coherent state superpositions in amplitude. This can be
understood via the number-phase uncertainty relation.
Any improved knowledge of the phase of a state induces
kicks in the number and vice versa. In this way, by
combining such different measurements, one can produce
discrete superpositions in both phase and amplitude; ap-
proaching the arbitrary superpositions of coherent states
we require here. Exactly such a scheme was proposed by
Jeong et al. in 2005 [38, 39]. By combining both types
of detection schemes, even with detectors of non-unit ef-
ficiency, they show that a large number of propagating
superpositions of coherent states may be thus produced.
These states then could be used in proof-of-principle ex-
periments for our protocol outlined here.

VIII. CONCLUSION

We have presented evidence that a linear optics net-
work, fed with arbitrary superpositions of coherent
states, and sampled via number-resolved photodetection,
is likely to be a classically hard problem. We have shown
that sampling within multiplicative errors is hard and
we have also presented evidence that it has similar com-
plexity to boson-sampling, a model for which sampling
with even additive error is known to be hard. Our argu-

ment is based on three realistic criteria for computational
hardness of the sampling problem. In the case of in-
put states comprising superpositions of coherent states,
these three criteria are satisfied. In the case of crite-
ria (3), we find that the amplitudes are related to a
permanent-like function of a matrix, strikingly similar
to ideal boson-sampling. In fact, if this permanent-like
function is shown to be in the Haar random class of matri-
ces, then our result is provably hard following Aaronson
and Arkhipov’s proof.

Furthermore, we show two examples of how sampling
with normal cat states reduces to a computationally hard
problem,

1. In the limit of α → 0 amplitude cat states, cat
sampling reduces to ideal boson-sampling.

2. When the amplitude is increased slightly away from
zero, odd cat state sampling is hard for sufficiently
small amplitudes following the bound of Eq. 10.
We show this by treating the non-single-photon-
number terms as an error model.

Furthermore, given that (1) is known to be computa-
tionally hard, as it reduces to ideal boson-sampling, it
follows that our combinatoric expression for evaluating
the amplitudes in the output superposition, Eq. 27, is
equivalent to evaluating a permanent in this limit. For
arbitrary alpha, the combinatoric expression maintains
the same analytic form. This presents strong evidence
that arbitrarily large cat states yield a hard sampling
problem akin to standard boson-sampling.

With all of these results combined, these observations
present strong evidence that such a generalized sampling
problem is likely classically hard to simulate and is indeed
hard within multiplicative errors.

Because coherent states form an over-complete basis,
any pure optical state can be expressed in terms of
coherent states, suggesting that most quantum states of
light may yield hard sampling problems. This observa-
tion further motivates interest in developing sources for
quantum states of light other than Fock states.
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Appendix A: Propagating multi-mode coherent
states through passive linear optics networks

The unitary map describing a passive linear optics net-
work is given by,

Û : â†i →
m∑
j=1

Ui,j â
†
j , (A1)

and taking the Hermitian conjugate yields,

Û : âi →
m∑
j=1

U∗i,j âj . (A2)

A coherent state can be expressed in terms of a displace-
ment operator acting on the vacuum state,

|α(i)〉i = D̂i(α
(i))|0〉i, (A3)

where the displacement operator may be expressed in
terms of creation and annihilation operators as,

D̂i(α
(i)) = exp(α(i)â†i − α

(i)∗âi). (A4)

Applying the unitary map Eqs. A1 & A2, we obtain,

ÛD̂i(αi) = exp

α(i)
m∑
j=1

Ui,j â
†
j − α

(i)∗
m∑
j=1

U∗i,j âj

 .

(A5)
Let,

Û |α(1), . . . , α(m)〉 = |β(1), . . . , β(m)〉. (A6)
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Then,

Û |α(1), . . . , α(m)〉 = ÛD̂1(α(1)) . . . D̂m(α(m))|01, . . . , 0m〉.
(A7)

For each term,

ÛD̂i(α
(i)) =

m∏
j=1

exp
(
α(i)Ui,j â

†
j − α

(i)∗U∗i,j âj

)
=

m∏
j=1

D̂j(Ui,jα
(i)). (A8)

Thus,

Û

m∏
i=1

|α(i)〉i = Û

m∏
i=1

D̂(α(i))|0〉i

=

m∏
i=1

m∏
j=1

D̂j(Ui,jα
(i))|0〉

=

m⊗
j=1

∣∣∣∣∣
m∑
i=1

Ui,jα
(i)

〉
j

=

m⊗
j=1

|β(j)〉j . (A9)

And,

β(j) =

m∑
i=1

Ui,jα
(i), (A10)

as per Eq. 15.

Appendix B: Reproducing Hong-Ou-Mandel
interference using small amplitude odd cat states

We begin with our generalized cat state result from
Eq. 26.

γs =

t∑
~t=1

 m∏
j=1

λ
(j)
tj fSj (β

(j)
~t

)

 , (B1)

and input the odd cat state which has the form

|cat−〉 =
|α〉 − | − α〉√

2(1− exp[−2α2])
. (B2)

When considering the specific example of |cat−〉 the

λ
(j)
tj of Eq. B1 goes to (−1)tj . Eq. B1 then becomes,

γs =

t∑
~t=1

 m∏
j=1

(−1)tj
fSj (β

(j)
~t

)√
2(1− exp[−2α2])

 . (B3)

Since the β
(j)
~t

’s in Eq. B3 depend on α, we substitute the
argument of fSj using Eq. 23,

γs =
1(√

2(1− exp[−2α2])
)m (B4)

×
t∑

~t=1

 m∏
j=1

(−1)tjexp

[
−
|β(j)
~t
|2

2

]
(β

(j)
~t

)Sj√
Sj !

(B5)

Next we take a first order approximation. Since α is
small, the exponential in the numerator goes to one while
the exponential in the denominator goes to exp(x) ≈ 1+x
because otherwise this would diverge. This yields,

γs ≈
1(√

2(1− (1− 2α2)
)m t∑

~t=1

 m∏
j=1

(−1)tj (1)
(β

(j)
~t

)Sj√
Sj !


=

1

(2α)m
√
S1!S2! . . . Sm!

t∑
~t=1

 m∏
j=1

(−1)tj (β
(j)
~t

)Sj


=

1

(2α)m
√
S1!S2! . . . Sm!

t∑
~t=1

(−1)σ(~t)
m∏
j=1

(β
(j)
~t

)Sj . (B6)

In the limit of small α we know that the odd cat state
reduces to a single photon Fock state. Here we con-
sider the case of a cat state being inputted into the first
two modes and let the unitary be the Hadamard gate.
In small α this corresponds to inputting a single pho-
ton Fock state into the first two modes and interfering
them in a single 50/50 beamsplitter. Therefore, the cor-
responding bunching in the output modes would to be
expected. In this section we show that our expression of
Eq. B6 does show the expected bunching.

We begin by putting an odd cat state |cat−〉 with t = 2
terms into the first m = 2 modes. Then Eq. B6 becomes,

γs ≈
1

(2α)2
√
S1!S2!

2∑
t1,t2=1

(−1)σ(~t)
2∏
j=1

(β
(j)
t1,t2)Sj

=
1

(2α)2
√
S1!S2!

2∑
t1,t2=1

(−1)σ(t1+t2)(β
(1)
t1,t2)S1(β

(2)
t1,t2)S2

=
1

(2α)2
√
S1!S2!

[
(β

(1)
1,1)S1(β

(2)
1,1)S2 − (β

(1)
1,2)S1(β

(2)
1,2)S2

− (β
(1)
2,1)S1(β

(2)
2,1)S2 + (β

(1)
2,2)S1(β

(2)
2,2)S2

]
(B7)

Now to calculate the β
(j)
~t

’s for this case we first take
the tensor product between the first two modes. Ignoring
the normalization factor this yields,

|cat 〉 = (|α〉 − | − α〉)⊗ (|α〉 − | − α〉)
= |α, α〉 − |α,−α〉 − | − α, α〉+ | − α,−α〉.

(B8)

Next we pass them through a 50/50 beamsplitter,

U |cat 〉 = |
√

2α, 0〉 − |0,
√

2α〉 − |0,−
√

2α〉+ | −
√

2α, 0〉.
(B9)
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Now we read off the β
(j)
~t

’s to be

β
(1)
1,1 = β

(2)
1,2 =

√
2α

β
(1)
2,2 = β

(2)
2,1 = −

√
2α

β
(1)
1,2 = β

(1)
2,1 = β

(2)
1,1 = β

(2)
2,2 = 0. (B10)

Now Eq. B7 becomes,

γs =
1

(2α)2
√
S1!S2!

[
(
√

2α)S1(0)S2 − (0)S1(
√

2α)S2

− (0)S1(−
√

2α)S2 + (−
√

2α)S1(0)S2

]
. (B11)

Because we are dealing in the limit of small α, a non-
zero number arbitrarily close to zero raised to a zero
power is one, so the terms 0Sj = δSj ,0. Now Eq. B11
becomes,

γs =
1

(2α)2
√
S1!S2!

[
(
√

2α)S1δS2,0 − (
√

2α)S2δS1,0

− (−
√

2α)S2δS1,0 + (−
√

2α)S1δS2,0

]
. (B12)

For this example we know that there are three possible
signature outcomes. We expect that the configuration
S1 = S2 = 1 is not possible due to HOM photon bunching
and thus in this case γs = 0. For configurations S1 = 0
and S2 = 2 or S1 = 2 and S2 = 0 we would expect a non-
zero configuration amplitude of γs = 1/2 in each case.
Next, we will show that this is indeed the case.

1. Configuration S1 = S2 = 1

With configuration S1 = S2 = 1 Eq. B12 becomes,

γs ≈
1

4α2

[
(
√

2α)δ1,0 − (
√

2α)δ1,0

− (−
√

2α)δ1,0 + (−
√

2α)δ1,0

]
= 0, (B13)

which vanishes as expected.

2. Configuration S1 = 0 and S2 = 2

With configuration S1 = 0 and S2 = 2 Eq. B12 be-
comes,

γs =
1

(2α)2
√

0!2!

[
(
√

2α)0δ2,0 − (
√

2α)2δ0,0

− (−
√

2α)2δ0,0 + (−
√

2α)0δ2,0

]
=

1

4α2
√

2

[
−2α2 − 2α2

]
= − 1√

2
, (B14)

and the corresponding classical probability is 1/2 as ex-
pected.

3. Configuration S1 = 2 and S2 = 0

With configuration S1 = 2 and S2 = 0 Eq. B12 be-
comes,

γs =
1

(2α)2
√

2!0!

[
(
√

2α)2δ0,0 − (
√

2α)0δ2,0

− (−
√

2α)0δ2,0 + (−
√

2α)2δ0,0

]
=

1

4α2
√

2

[
2α2 + 2α2

]
=

1√
2
, (B15)

again with classical probability 1/2 as expected.

Thus, our result generalizes to the expected results for
passing a single photon Fock state inputted in modes one
and two through a Hadamard gate. This shows that our
cat state generalization works for the odd cat state in
the limit of small α, which is equivalent to Aaronson &
Arkhipov’s boson-sampling.

Appendix C: Non-zero amplitude odd cat states as
an error model

According to the error bound derived by Aaronson &
Arkhipov, the probability of sampling from the correct
distribution must not exceed the bound of 1/poly(n) in
order for it to implement classically hard boson-sampling.
The correct input distribution is |1, . . . , 1, 0, . . . , 0〉 and
the probability of successfully sampling from it depends
on the odd cat states since we input odd cat states in
every mode requiring a |1〉 and vacuum in the remaining
modes. Thus, the single-photon component of the odd
cat state must be successfully sampled n times.

Consider the odd cat state from Eq. B2. The ampli-
tude of the single photon term of an odd cat state is given
by,

γ1 =
f1(α)− f1(−α)√

2(1− e−2|α|2)
, (C1)

where fn(α) is defined in Eq. 23. In order to get the
classical probability we calculate γ2

1 . The amplitude of
the n = 1 coherent state photon term is then,

f1(α) = αe−
|α|2
2 , (C2)

thus, the probability of having sampled from the correct
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term is,

P = γ1
2n

=

(
αe
−|α|2

2 − (−α)e
−|α|2

2√
2(1− e−2|α|2)

)2n

=

(
2αe

−|α|2
2√

2(1− e−2|α|2)

)2n

=

(
4α2e−|α|

2

2(1− e−2|α|2)

)n

=

(
2α2

e|α|2(1− e−2|α|2)

)n
=

(
2α2

e|α|2 − e−|α|2
)n

=
(
α2csch(|α|2)

)n
= α2ncschn(|α|2), (C3)

where the hyperbolic trigonometric identity csch(x) =
2/(ex − e−x) was used. Following A&A’s given bound
this requires that,

α2ncschn(|α|2) > 1/poly(n), (C4)

in order for the sampling problem to be in a regime which
is provably computationally hard.
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