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We study a scheme for implementing a controlled-Z (CZ) gate between two neutral-atom qubits
based on the Rydberg blockade mechanism in a manner that is robust to errors caused by atomic
motion. By employing adiabatic dressing of the ground electronic state, we can protect the gate
from decoherence due to random phase errors that typically arise because of atomic thermal motion.
In addition, the adiabatic protocol allows for a Doppler-free configuration that involves counterprop-
agating lasers in a σ+/σ− orthogonal polarization geometry that further reduces motional errors
due to Doppler shifts. The residual motional error is dominated by dipole-dipole forces acting on
doubly-excited Rydberg atoms when the blockade is imperfect. For reasonable parameters, with
qubits encoded into the clock states of 133Cs, we predict that our protocol could produce a CZ gate
in < 10 µs with error probability on the order of 10−3.

PACS numbers: 34.50.-s,34.10.+x

I. INTRODUCTION

A primary obstacle to scalable quantum computation
is the requirement that qubits must interact strongly with
each other to produce entangling gates and conditional
logic, while interacting weakly with their environment to
minimize decoherence. Neutral atom qubits are naturally
well-isolated from their environments, but their interac-
tions with each other tend to be similarly weak. As shown
in the seminal work of Jaksch et al. [1], one way around
this difficulty is to couple ground-state neutral atoms to
highly excited Rydberg states, producing strong dipole-
dipole interactions on demand while preserving the ro-
bustness properties in between operations. In particular,
the Rydberg blockade [2] provides a direct mechanism
for producing entangling interactions between atoms on
demand between individually trapped atoms [3–5].

There have been numerous proposals to use the Ry-
dberg blockade as a mechanism for implementing two-
qubit quantum logic gates [6], and experimental progress
in producing a controlled-NOT (CNOT) gate has been
promising [4, 7]. In the standard approach of fast gates,
one employs short resonant pulses, in conjunction with
the Rydberg blockade to induce the requisite entangling
interaction. However, such a mechanism is not robust
to thermal motion of the atoms, which imparts random
phases on the two-atom state that vary from shot to shot.
Indeed, such random phases are impediments to the di-
rect observation of entanglement in the signature two-
atom Rydberg blockade [3]. More generally, the decoher-
ence arising from coupling internal (electronic) and exter-
nal (motional) degrees of freedom is a dominant source
of error that limits the implementation of high-fidelity
quantum gates [8].

To address this issue we propose a method of imple-
menting entangling gates that is robust to errors caused
by atomic motion by dressing the ground states via the

Rydberg blockade [9–13], and evolving the system adia-
batically. The original proposal of Jaksch et al. [1] ex-
amined adiabatic evolution as a mechanism for relaxing
the requirement of single atom addressability, and only
did so for atoms cooled to the ground state of motion.
Subsequent proposals have suggested various modifica-
tions, but most either ignore thermal motion in order
to focus on electronic effects [14, 15] or require experi-
mental parameters that are challenging to achieve [16].
Our motivation is to use adiabaticity to substantially im-
prove the robustness to errors caused by atomic motion,
and thereby achieve high-fidelity operation with current
technology. Adiabatic evolution, a well known strategy
for suppressing certain error mechanisms, is a paradigm
for implementation of a quantum algorithm [17], and we
have previously studied this in the context of the Rydberg
blockade [18]. Similar robustness was recently studied in
adiabatic passage of atoms to a doubly-excited Rydberg
state [19], which might be used as a mechanism to gen-
erate quantum logic gates.

Adiabatic evolution does not protect against all types
of decoherence, however, and the motional errors we con-
sider are not strongly suppressed by adiabaticity alone.
In fact, motional errors have been among the main
fidelity-limiting factors in recent attempts to produce an
adiabatic gate [20]. The protocol we consider is compat-
ible with a “Doppler-free” laser configuration, in which
the qubits are excited by two counterpropagating beams
rather than just a single beam. Such a configuration does
not directly reduce the terms in the Hamiltonian that
lead to motional decoherence, but it changes their form
to one more amenable to adiabatic suppression. Taken
together, adiabatic dressing and a Doppler-free configu-
ration produce more than an order-of-magnitude reduc-
tion of motional decoherence that neither change achieves
on its own.

The remainder of this article is organized as follows.
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In Sec. II we describe the dressed Rydberg blockade and
describe a protocol to perform a controlled-Z gate adia-
batically via this interaction. In Sec. III we examine the
errors arising from atomic motion, including both single-
qubit errors due to thermal motion and two-qubit errors
due to imperfect Rydberg blockade. Among these errors,
we identify the Doppler shift as a primary obstacle to
achieving high gate fidelities, and show how it can be
suppressed using a Doppler-free configuration with coun-
terpropagating lasers. In Sec. IV, we numerically simu-
late the performance of such a gate with realistic exper-
imental parameters and find that error probabilities on
the order of 10−3 should be possible. Finally, we offer
some concluding remarks in Sec. V.

II. IMPLEMENTING A CZ GATE

A. The Dressed-Blockade Interaction

For concreteness, we consider qubits encoded in single
133Cs atoms, individually trapped in tightly focused op-
tical tweezers, with a typical separation of 5-10 microns
(see Fig. 1). Qubits are encoded in the magnetically in-
sensitive “clock” states, |0〉 ≡ |6S1/2;F = 4,MF = 0〉 and
|1〉 ≡ |6S1/2;F = 3,MF = 0〉. We consider direct excita-
tion to a high-lying Rydberg level, |r〉 ≡ |84P3/2;MJ〉 by
a single exciting laser at λL ≈ 319 nm in the absence of
the trap which is turned off during the duration of the in-
teraction so the atoms undergo ballistic motion [5]. In the
absence of the dipole-dipole interaction, each atom (la-
beled i = a, b) interacts with a laser propagating on the
interatomic z axis. The Hamiltonian individually govern-
ing the dynamics of the two atoms is (in the two-level,
rotating wave approximation, ~ = 1),

Hi =
p2
i

2m
−∆|r〉i〈r|+

Ω

2
(eikLzi |r〉i〈0|+ e−ikLzi |0〉i〈r|).

(1)
When including the dipole-dipole interaction of atoms in
the Rydberg states, the two-atom Hamiltonian takes the
form,

H = Ha ⊗ 1 + 1⊗Hb + Vdd(zb − za)|rr〉〈rr|, (2)

where Vdd(z) is the dipole-dipole potential for two atoms
excited to the Rydberg state. This form of the interaction
energy is approximately correct for atoms separated by
a large enough distance such that the interaction is per-
turbative when compared to the splitting of the atomic
Rydberg levels (e.g., in the van der Waals regime). For
more closely spaced atoms, the electrostatic forces will
strongly mix many atomic orbitals into molecular-type
orbitals, so that the double excitation is no longer of the
form |rr〉〈rr|, for a single Rydberg level [21]. Neverthe-
less, as long as the blockade is strong, we can obtain the
essential physics by considering only one doubly-excited
state with a given dipole-dipole potential.

The position dependent phases exp(±ikLzi) associated
with photon recoil can be removed from the Hamiltonian
by moving to a frame where a Rydberg excited atom is
moving with a velocity v = −kL/m with respect to the
lab frame, yielding,

Hi ⇒
p2
i

2m
−
(

∆− kLpi
m

)
|r〉i〈r|+

Ω

2
(|r〉i〈0|+ |0〉i〈r|).

(3)
Here we have absorbed the constant recoil energy into the
standard definition of the detuning, ∆→ ∆−k2

L/2m, and
see explicitly the Doppler shift, kLpi/m. The single atom
laser induced light shift (LS) on the ground state at zero
momentum is ∆E

(1)
LS = 1

2

(
−∆ + sign(∆)

√
∆2 + Ω2

)
As the interaction is only a function of the relative

atomic distance, it is useful to express the Hamiltonian
in terms of the center-of-mass Pcm = pa + pb and rel-
ative prel = (pb − pa)/2 momentum coordinates. In
addition, the laser field only couples the logical state
|00〉 to a symmetric superposition of one excited and
one ground state atom. Defining the bright and dark
states of this two-atom system, |B〉 ≡ (|r0〉+ |0r〉) /

√
2

and |D〉 ≡ (|r0〉 − |0r〉) /
√

2, Eq. (2) can be rewritten as

H ≈ H0 +H1,

H0 = −∆
(
|B〉〈B|+ |D〉〈D|

)
−
(

2∆− Vdd(z̄)
)
|rr〉〈rr|

+

√
2Ω

2

(
|B〉〈00|+ |00〉〈B|+ |rr〉〈B|+ |B〉〈rr|

)
,

H1 = T + Vgrad + VDop.

(4)

Written in this form, H0 is the “frozen atom” model
including only the internal state dynamics, that show
the usual

√
2Ω Rabi flopping between the double-ground

|00〉, single-Rydberg bright |B〉, and double Rydberg |rr〉
states. The blockade energy is taken at the mean atomic
separation z̄. H1 accounts for the effects of atomic mo-
tion according to

T ≡ P 2
cm

4m
+
p2
rel

m
,

Vgrad ≡
dVdd
dz

∣∣∣
z̄
(z − z̄) |rr〉〈rr|, and,

VDop ≡
kLPcm

2m

(
|B〉〈B|+ |D〉〈D|+ 2|rr〉〈rr|

)
− kLprel

m

(
|B〉〈D|+ |D〉〈B|

)
.

(5)

T is the kinetic energy; this term does not entangle in-
ternal and external degrees of freedom and thus is unim-
portant in the perturbation to the logic gate. Vgrad ac-
counts for the interatomic forces due to the local gradient
of the dipole-dipole potential for the doubly-excited Ry-
dberg state and results from linearizing Vdd about the
point z = z̄. VDop describes the effect of the Doppler
shift. This includes a term diagonal in the {|B〉, |D〉} ba-
sis that depends on the center of mass momentum. The
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Figure 1. (Color online) (a) Schematic for the CPHASE gate. Two cesium atoms are trapped and cooled in dipole traps,
several µm apart. During the CPHASE gate, the trapping lasers are turned off and the atoms are illuminated by a 319 nm
Rydberg laser. A bias magnetic field ensures that the laser’s propagation axis coincides with the atomic quantization axis. (b)
In each atom, the logical-|0〉 state is coupled to a |84P3/2;MJ〉 Rydberg state. The coupling laser has Rabi rate Ω and detuning
from atomic resonance ∆0, with a momentum-dependent Doppler shift δD ≡ klp/m. (c) In the two-atom basis, |00〉 is coupled
to the bright state |B〉, again with base detuning ∆0 and Doppler shift δD. Excitation to |rr〉 is blockaded by the dipole-dipole
interaction Vdd. Atomic motion further couples |B〉 to a dark state, |D〉, outside the ideal blockade subspace.

off-diagonal terms in VDop account for the coupling be-
tween bright and dark states due to the relative motion
of the atoms, familiar in studies of coherent population
trapping [22]. This term leads to random phases induced
by thermal motion that cause errors and reduce the en-
tangling action of the interaction.

The eigenstates of H0 are completely decoupled from
the motional degrees of freedom and define the adiabatic
basis. The problem can be simply diagonalized; the gen-
eral case has been studied in [10]. In a strongly block-
aded regime, |Vdd(z̄)| � |∆|,Ω, excitation to the doubly-
excited state |rr〉 is suppressed by a factor of order
(Vdd)

2/(Ω2 + ∆2). The ground state |00〉 and the entan-
gled bright state |B〉 form an effective two-level system,
and coupling to |rr〉 can be treated as a perturbation.
The two-atom ground-state light-shift energy is then ap-
proximately, E(2)

LS ≈
1
2

(
−∆ + sign(∆)

√
∆2 + 2Ω2

)
[10].

The effective atomic interaction strength J is the dif-
ference between the two-atom light shift and that for
two atoms in the absence of the dipole-dipole force,
J ≡ E

(2)
LS − 2E

(1)
LS . For weak dressing, Ω � |∆|,

J ≈ −Ω4/(8∆3). As we will see, however, the regime
of the highest fidelity operation occurs for strong dress-
ing, close to equal superpositions of ground and bright
states. In our previous analysis, we found J/2π = 500
kHz to be experimentally feasible [18].

B. The CZ Gate Protocol

Given an interaction of this form, it is straightforward
to produce a two-qubit logic gate in a manner analo-
gous to Jaksch et al. [1]. Adiabatically increasing the
Rydberg laser power while decreasing the detuning cre-
ates the coupling, J(t). Concurrently, the instantaneous
ground state of H0 evolves from the bare |00〉 state into a
“dressed” state with some admixture of Rydberg charac-

ter, |0̃0〉 = c0|00〉+cB |B〉+crr|rr〉, where the coefficients
c0, cB , and cr depend on the time-dependent parame-
ters ∆(t) and Ω(t), as well as the static blockade Vdd(z̄).
Perfect adiabatic state transfer is ensured by satisfying
the adiabatic condition, |〈e| ddtH0|0̃0〉| � |E(e)−E(0̃0)|2,
where |e〉 is any one of the instantaneous excited states of
H0. Inverting this ramp returns the system to the bare
logical subspace, with the addition of nontrivial phases.
When the adiabatic condition is satisfied, J(t) is the rate
at which the dressed ground state accumulates the en-
tangling phase. Integrating the evolution over the total
time duration of the gate, [0, T ], gives a unitary map,
U

(2)
LS , that, when restricted to the two-qubit-logical sub-

space, takes the diagonal form,

U
(2)
LS =

∑
xy=0,1

e−iφxy |xy〉〈xy|, where,

φ11 = 0; φ10 = φ01 =

∫ T

0

dtE
(1)
LS(t); φ00 =

∫ T

0

dtE
(2)
LS(t).

(6)

Following this with the inverse of local single qubit uni-
taries, U (1)

LS = exp(−iφ10|0〉〈0|), cancels the single atom
light shifts, yielding the controlled phase gate, UCφJ ,

UCφJ =
(
U

(1)
LS ⊗ U

(1)
LS )† U

(2)
LS = e−iφJ |00〉〈00|,

where φJ =

∫ T

0

dt J(t).
(7)

The single-atom light shifts can be compensated by, e.g.,
applying microwave pulses or Raman lasers. The case
where φJ = π is of particular interest, since UCπ ≡ UCZ
is the controlled-Z (CZ) gate, which, up to local unitaries,
is equivalent to a controlled-X (CX, or CNOT) gate.

The speed of the gate is set by balancing the require-
ments that one adiabatically follows the dressed ground
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state of the Hamiltonian during the implementation of
the gate while avoiding the errors that accumulate over
time. One fundamental source of such errors is the fi-
nite lifetime of the Rydberg state, Γ−1. Decay of |r〉 will
not only dephase the qubits, but with high probability
optically pump them into magnetic sublevels outside the
computational space, so we treat this as loss. This ef-
fect can be described as the action of a non-Hermitian,
effective Hamiltonian with an imaginary part to the de-
tuning: ∆ → ∆ − iΓ/2. Over the full duration T of a
gate, such loss will reduce the trace of the density ma-
trix. For a large detuning, the interaction strength scales
as J ∼ −Ω4/∆3, while the decay rate due to absorption
of a photon and decay of the Rydberg state scales as
γ ∼ Ω2Γ/∆2. This implies that it is not advantageous to
remain in the large detuning limit, but to instead adia-
batically sweep to resonance, where the dressing is max-
imum, while simultaneously avoiding, to the maximum
degree possible, double excitation of two atoms into the
Rydberg state.

The shape of the laser pulse can strongly influence the
speed at which one can perform the gate while remain-
ing adiabatic; finding the optimal pulse shape for a given
control goal is an area of active research (see, e.g. [23]).
For a sufficiently large energy gap between the dressed
ground and excited states, the the adiabatic time scale
can be small compare to the time scales for decoher-
ence, such as the finite Rydberg lifetime. In this case,
one can remain adiabatic solely by rounding the edges
of an essentially square-topped pulse and have minimal
impact on gate time. In the opposite limit, when the
energy gap is not very large compared to other decoher-
ence rates, to achieve very high levels of adiabaticity one
might require a more triangular pulse, where laser power
increases slowly until half the desired phase is accumu-
lated at which point the process is reversed. The param-
eter ranges we explored fell between these two extremes
where adiabaticity was one of a few limiting factors on
the gate’s speed and fidelity. An example simulation of
the time dependent Schrödinger equation in the absence
of decoherence is shown in Fig. (2) for the following
parameters: pulse rise time 1 µs, Rabi frequency sweep
Ω/2π = 0 → 3 MHz, detuning sweep ∆/2π = 6 → 0
MHz, Rydberg decay rate Γ/2π= 3.7 kHz, and inter-
atomic separation z̄ = 5 µm. These parameters produce
a blockade shift of Vdd(z̄)/2π ≈ −6.4 MHz, giving an in-
teraction strength of J/2π ≈ 1.8 MHz at full power. For
this example, the populations are highly adiabatic; ap-
proximately 99.5% of the original population returns to
the ground state.

III. MOTIONAL ERRORS

The method described produces a high-fideity
CPHASE gate when errors due to motional effects are
neglected. To account for the motional degrees of free-
dom, we must consider the near-degenerate manifold of
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Figure 2. (Color online) Pulse shape and bare state popu-
lations over the course of a gate with experimentally feasi-
ble parameters: pulse rise time 1 µs, Rabi frequency sweep
Ω/2π = 0 → 3 MHz, detuning sweep ∆/2π = 6 → 0 MHz,
Rydberg decay rate Γ/2π= 3.7 kHz (blackbody limited life-
time), and interatomic separation r = 5 µm. As the laser
turns on and is tuned to resonance, the bare ground state
(red) is dressed by admixing significant bright state (blue)
population, while the blockaded |rr〉 state (green) remains
mostly unpopulated. Adiabaticity and available interaction
strength set comparable constraints in this case, so that the
laser pulse shape that best achieves the desired evolution is
neither square-topped nor triangular.

dressed ground states, all with the same electronic char-
acter but different momenta, |0̃0〉 ⊗ |prel, Pcm〉. The per-
turbative effects of motion are described by H1, Eq. (4).
For a gate performed for atoms in free flight, the finite
momentum spread of the atoms leads to two types of er-
rors corresponding to the two terms in Vdop, Eq. (5).
First, the perturbation of the energy,

〈0̃0|VDop|0̃0〉 =
kLPcm

2m
(|cB |2 + 2|crr|2), (8)

leads to a momentum-dependence of the light shift. This
in turn leads to a momentum-dependence of the phase
accumulated over the course of the gate, which mani-
fests as decoherence after averaging over motional degrees
of freedom. Second, the off-diagonal terms, 〈D|Vdd|0̃0〉,
transfer population from the ideal dressed ground states
into electronic dark states, potentially causing qubit loss
as well as decoherence.

An adiabatic gate is naturally robust against some of
these motional noise sources. Specifically, the dressed
ground manifold is “protected” from the excited dressed
states by an energy gap, ∆E ≈

√
∆2 + Ω2, and by de-

sign, we assume that the laser intensity is turned on
slowly enough to stay adiabatic given this gap. As long
as |〈e|H1|0̃0〉| � |∆E|, averaged over the atomic ther-
mal distribution and for all excited states |e〉, any time-
dependent sweep of the laser parameters that is adia-
batic for H0 will also be adiabatic for H0 + H1. Since
H1 does not significantly affect adiabaticity, we can com-
pletely characterize its effects by examining its action
on the dressed ground subspace. By guaranteeing that
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we remain in a dressed ground state, we make the gate
robust against errors that couple the system to states
outside the desired 3-level space, {|00〉, |B〉, |rr〉}. The
off-diagonal bright-dark coupling is such an error, so its
effects are largely suppressed. The Doppler shift, on the
other hand, is not suppressed and remains a major source
of error, even for cold atoms.

To ensure that Doppler errors are also suppressed, we
can make use of a “Doppler-free” configuration. We can
achieve this through the addition of the light-shifts from
counter-propagating laser-beams on two Rydberg tran-
sitions such that the Doppler shift cancels to first order
in p. Consider counter-propagating lasers with opposite
helicity, σ+/σ−, tuned to address two different sublevels
in the Rydberg manifold (see Fig. 3),

σ+ : |0〉 = |6S1/2, F = 4,mF = 0〉
→ |r1〉 = |84P3/2,mJ = 3/2〉|I = 7/2,mI = −1/2〉

σ− : |0〉 = |6S1/2, F = 4,mF = 0〉
→ |r2〉 = |84P3/2,mJ = −3/2〉|I = 7/2,mI = +1/2〉

(9)

Note, we choose a nP3/2 Rydberg multiplet because this
has much larger oscillator strength than the correspond-
ing nP1/2 mutiplet [24]. We can suppress the coupling
of the mF = 0 ground state to the mJ = ±1/2 sublevels
with a sufficiently large Zeeman shift so that those transi-
tions remain well off resonance (e.g. B ≈ 10 G). Because
the two beams are differently detuned and orthogonally
polarized, we avoid standing waves in intensity and po-
larization.

Given the couplings in Eq. (9), we can write the single-
atom Hamiltonian as in Eq. (1),

HA =
p2

2m
−∆(|r1〉〈r1|+ |r2〉〈r2|)

+

(
Ω1

2
eikLz|r1〉〈0|+

Ω2

2
e−ikLz|r2〉〈0|+ h.c.

)
.

Including counter-propagating laser beams doubles the
incident power, so in order to make a fair comparison to
a single laser beam we will assume that Ω2

1 = Ω2
2 = Ω2/2.

In such a configuration, there are coupled and uncoupled
excited states for the each of the atoms |r±〉 ≡ (Ω1|r1〉 ±
Ω2|r2〉)/Ω. As before, we can go to a comoving frame,
yielding the single atom Hamiltonian

HA =
p2

2m
−∆

(
|r+〉〈r+|+ |r−〉〈r−|

)
+
kL p

m

(
|r−〉〈r+|+ |r+〉〈r−|

)
+

Ω

2

(
|r+〉〈0|+ |0〉〈r+|

)
.

(10)

For this configuration, as in Eq. (4), we can split the
two-atom Hamiltonian into H0 for “frozen atoms” and a

perturbation H1 due to motion. Thus,

H0 = HA ⊗ 1 + 1⊗HA + Vdd

= −∆(0)
∑
i=±

(|Bi〉〈Bi|+ |Di〉〈Di|)

+
∑
i,j=±

(
V ijdd(z̄)− 2∆(0)

)
|rirj〉〈rirj |

+

√
2Ω

2
(|B+〉〈00|+ |r+r+〉〈B+|+ h.c.)

+
Ω

2

[
(|r−r+〉+ |r+r−〉)〈B−|

+ (|r−r+〉 − |r+r−〉)〈D−|+ h.c.
]
,

(11)

H1 =T + V =
P 2
cm

4m
+
p2
rel

m
+
kL Pcm

2m
(σrx ⊗ 1 + 1⊗ σrx)

+
kL prel
m

(σrx ⊗ 1− 1⊗ σrx)

+
∑
i,j=±

dV ijdd
dz

(z − z̄)|rirj〉〈rirj |.

Here, we have defined the Pauli-x operators acting in
Rydberg states to be σ(r)

x ≡ |r−〉〈r+|+ |r+〉〈r−| as well as
the bright and dark states,|B±〉 ≡ (|r± 0〉 + |0 r±〉) /

√
2

and |D±〉 ≡ (|r± 0〉 − |0 r±〉) /
√

2. The effect of gradient
forces now depends in the dipole-dipole potential for the
different Rydberg states, V ijdd(z) = 〈ri|Vdd(z)|rj〉.

We see that for the counter-propagating σ+/σ− geom-
etry, H0 is block diagonal in the electronic degrees of
freedom as well as diagonal in p. The states |00〉, |B+〉,
and |r+r+〉 form a block described by our desired 3-level
blockade Hamiltonian, while |B−〉, |D−〉, |r+, r−〉, and
|r−, r+〉 form a separate block; the state |D+〉 is com-
pletely uncoupled from all other states. The terms in V
arising from the Doppler shift scale as kLpσrx/m, but be-
cause this coupling is off-diagonal, its effect will manifest
as a second order perturbation to the energies of |B+〉
and |r+r+〉. This counter-propagating laser configura-
tion can thus be considered as “Doppler-free” to first or-
der. By contrast, with a single laser beam, 〈B|V |B〉 was
nonzero, leading to contributions to the dressing energy
that are first order in the Doppler shift. To zeroth or-
der in p, our scheme only involves the states in the 3× 3
ideal block; the other states are only included through
perturbations. Restricting H0 to this subspace leaves

H0 = V ++
dd (z)|r+r+〉〈r+r+| −∆

(
|B+〉〈B+|+ 2|r+r+〉〈r+r+|

)
+

√
2|Ω|
2

(
|B+〉〈00|+ |00〉〈B+|+ |r+r+〉〈B+|+ |B+〉〈r+r+|

)
,

(12)

a Doppler-free Hamiltonian (see Fig. 1).
The ability to suppress motional error via this Doppler-

free configuration is a key benefit of the adiabatic gate
approach. For comparison, consider the effects of the
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Figure 3. (Color online) (a) Schematic for the “Doppler-free” configuration. Two cesium atoms are trapped and cooled in
dipole traps, several µm apart. During the CPHASE gate, the trapping lasers are turned off and the atoms are illuminated by
two counterpropagating, 319 nm Rydberg lasers. The two Rydberg lasers have opposite circular polarizations, so they couple
the atoms to orthogonal magnetic sublevels of the Rydberg manifold. Both Rydberg lasers propagate along the interatomic
separation axis; a bias magnetic field ensures that this coincides with the atomic quantization axis. (b) In each atom, counter-
propagating lasers couple the logical-|0〉 state to the mJ = ± 3

2
magnetic sublevels of the |84P3/2〉 Rydberg manifold. The two

lasers have the same Rabi rate Ω/
√

2 and detuning from resonance ∆0, but experience opposite Doppler shifts, δD ≡ kLp/m.
Zeeman splitting should be made large enough that coupling to mJ = ± 1

2
can be neglected. (c) In the two-atom basis, the

states |00〉, |B+〉, and |r+r+〉 are coupled by the ideal blockade Hamiltonian with no Doppler shifts. Instead, motional noise
manifests as a coupling to the dark states |D−〉 and |B−〉. Because |D−〉 and |B−〉 are outside the ideal adiabatic basis, we can
suppress the effects of this coupling through adiabatic evolution.

same error Hamiltonians on a gate protocol based on fast
pulses [6]. Such a gate involves the application of reso-
nant lasers on one atom at a time in a series of unitary
evolutions: a π-pulse excites a control qubit in one logical
state to the |r〉 state followed by a 2π-pulse applied to the
target qubit; the control qubit is then de-excited by an-
other π-pulse. During its time T = 2π/Ω in the Rydberg
state, the control qubit freely evolves, resulting in a phase
accumulation due to the Doppler shift, exp(−2πikLpmΩ ).
This error is first-order in p, as in the single-laser adi-
abatic protocol. Using the counter-propagating σ+/σ−
laser geometry, the situation is similar, except that now
each atom evolves according to the Hamiltonian HA,
Eq. (10). During the time T the off-diagonal terms of
the Hamiltonian cause the control qubit to evolve from
|r+〉 to cos(2π kLpmΩ )|r+〉+sin(2π kLpmΩ )|r−〉. Any population
transferred to |r−〉 will be uncoupled from the de-exciting
π-pulse, and this leads loss of probability amplitude that
is first-order in p. The fast pulse scheme cannot be made
“Doppler-free” to first order. In contrast, adiabatic evolu-
tion suppresses population transfer to states outside the
3×3 ideal block, so this population loss is greatly reduced;
it only manifests as a second-order energy perturbation,
which leads to errors a factor of ∼ kLp

mΩ smaller.

In addition to the effect of finite momentum spread,
recent work has shown that the Rydberg interaction it-
self can lead to further two-body decoherence when the
blockade is imperfect [25]. Because the dipole-dipole en-
ergy Vdd varies with interatomic distance, it can produce
an interatomic force when the system is in |rr〉. In our
case, the effect of the force is captured by Vgrad, Eq.
(5), which does not change in the Doppler-free geom-
etry. The perturbation on the dressed ground state is

〈0̃0|Vgrad|0̃0〉 = |crr|2 dVdddz (z − z̄), leads to a displace-
ment on the relative momentum of atoms in this state,

δprel =

∫ T

0

|crr(t)|2
dVdd
dz

dt. Higher order perturba-

tions take the system out of its dressed ground state
to some excited state |e〉; as long as the evolution re-
mains adiabatic, they are suppressed by an extra order of
|〈e|Vgrad|0̃0〉|/∆E. For a near “perfect blockade,” where
|Vdd| � ∆,Ω, and crr ≈ 0, this force can be neglected
entirely.

IV. SIMULATED GATE FIDELITIES

To evaluate the performance of the gate, we use
as our metric the fidelity to produce the desired
output given an input of all the logical states,
|ψ0〉 = (uH ⊗ uH) |00〉, where uH is the Hadamard
gate. This fidelity F = 〈ψtar|ρout|ψtar〉, where
|ψtar〉 is the target state obtained through a com-
bination of local unitaries and an ideal CZ gate,
|ψtar〉 = UCZ |ψ0〉 = 1

2 (|11〉+ |10〉+ |01〉 − |00〉), while
ρout is the actual state in the logical space produced in
the presence of the error sources described above: nona-
diabatic dressing, decay of the Rydberg state, Doppler
shift, and dipole-dipole forces for an imperfect blockade,

ρout =Trext

[
e−i|00〉〈00|⊗δprelzUeff

(
|ψ0〉〈ψ0| ⊗ ρext

)
U†eff

× ei|00〉〈00|⊗δprelz
]
.

(13)
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Figure 4. (Color online) Simulated gate error rates (1−F) as
a function of adiabatic ramp time. The upper pair of curves
were generated with the parameters given in Fig. 2, while the
lower curves used a higher Rabi rate for the exciting laser. Ig-
noring interatomic forces but including all other errors (green
triangles), the higher Rabi rate improves both gate speed and
fidelity. Including interatomic forces (red circles), any gain in
fidelity from the increased speed is offset by stronger forces
owing to a larger |rr〉 population when the blockade is imper-
fect. This suggests that beyond a certain threshold, increased
laser power requires a commensurately stronger blockade in-
teraction in order to improve fidelity.

Here ρext is the thermal state associated with the “ex-
ternal” (motional) degrees of freedom, δprel is the total
momentum displacement caused by the dipole force, and
Ueff is the total effective action of the gate including all
decoherence sources other than the dipole-dipole force.
It is nonunitary due to the non-Hermitian Hamiltonian
arising from decay of the Rydberg state and thus we treat
the map as generally non-trace-preserving. We are able
to separate out the effects of the dipole force through
a first-order Baker-Campbell-Hausdorff expansion; since
H0 commutes with momentum displacements, all higher-
order terms will scale as the products of already small er-
ror Hamiltonians and can be ignored. Because Ueff does
not couple different logical states, it is convenient to ex-
pand F in the logical basis, giving

F =
1

4

∑
x,y,x′,y′

(−1)
δxy,00−δx′y′,00 〈xy|ρout|x′y′〉 (14)

where |xy〉 are over the two-qubit logical states.
To understand the effects of atomic motion on gate er-

rors, consider the contribution to the fidelity from each
of the matrix elements in Eq. (14) under the assump-
tion of perfect adiabatic evolution of the dressed states.
When both atoms are in the logical-1 state, we assume
no coupling to the laser, and thus there is no error con-
tribution from 〈11|ρout|11〉. When both atoms are in the
logical-0 state, both photon scattering and motional ef-
fects come into play. Motional dephasing has no effect
on populations, only photon scattering contributes error

on the diagonal terms of ρout,

〈0̃0|ρout|0̃0〉 =
1

4
e−γT , (15)

where the factor e−γT accounts for loss due to
the finite lifetime of the Rydberg state γT =

Γ
∫ T

0

(
|cB(t′)|2 + 2|crr(t′)|2

)
dt′. On the other hand, the

off-diagonal terms are affected by both loss and dephas-
ing, leaving

〈11|ρout|0̃0〉 = −1

4
e−γT/2

∫
dPcmdprel e

−iφDop

× 〈Pcm, prel|ρext|Pcm, prel〉

= −1

4
e−γT/2

∫
dPcmdprel e

−iφDop e
− P2

cm
4∆p2

th e
− p2

rel
∆p2
th

4π∆p2
th

.

(16)

We have assumed a thermal state of motion associated
with the initial trapped atom of massm with mean vibra-
tional quantum number n̄, with ∆p2

th = (n̄+ 1/2)mωosc,
and used the fact that the Doppler effect is diagonal in
the momentum representation. The additional phase,
e−iφDop , is due to perturbation of the dressed ground
state energy arising from the Doppler shift,

φDop(Pcm, prel) ≡
∫ T

0

(
〈0̃0(t′)|VDop|0̃0(t′)〉

+
∑
e

∣∣∣〈e|VDop|0̃0(t′)〉
∣∣∣2

〈0̃0(t′)|H0|0̃0(t′)〉 − 〈e|H0|e〉

)
dt′.

(17)

With a single coupling laser the correction to the light
shift, Eq. (8), is first order in p, and Eq. (16)
can be integrated analytically. This leads to a reduc-
tion in the fidelity of order e−(n̄+1/2)η2(ωoscT )2

, where
η =

√
Erecoil/~ωosc is the Lamb-Dicke parameter. For

example, using the parameters in Fig. 2 and n̄ = 5, we
find that the 〈11|ρout|00〉 coherence is reduced to ∼ 0.90
of its original value due to Doppler effects - an order of
magnitude more decoherence than from any other source.
In contrast, with the Doppler-free configuration, the first
order correction vanishes, thereby strongly suppressing
the effect of the Doppler shift. The |01〉 and |10〉 states
experience similar Doppler perturbations to their single
atom light shifts, which are generally different from the
light shifts on |00〉. This means that the coherences be-
tween {|01〉, |10〉} and {|11〉, |00〉} are also significantly
reduced by Doppler effects, and the Doppler-free config-
uration likewise suppresses these decoherences.

The effect of the dipole-dipole force is seen in the co-
herences 〈xy|ρout|00〉, where xy 6= 00. Because atoms in
|00〉 will experience a relative momentum kick when the
blockade is imperfect and they are both excited into the
Rydberg state, this local basis state will contain “which
way” information relative to the other basis states. Trac-
ing over the the motional degrees of freedom, this leads
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Figure 5. (Color online) Simulated gate error rates (1 − F)
as a function of adiabatic ramp time. For comparison, the
red triangle curve ignores motional effects and includes errors
due solely to diabatic transitions and finite Rydberg lifetime.
For ramp times significantly below 1 µs, all curves predict
low fidelities because the gate is not adiabatic. As the ramp
time and adiabaticity are increased, other error sources be-
come limiting factors. Including all error sources while using
the Doppler-free configuration (blue circles), we can reach er-
ror rates of ∼ 2 × 10−3, with finite blockade strength as the
primary fidelity-limiting factor. By contrast, the single-laser
configuration (green squares) suffers more than an order of
magnitude greater error than its counterparts.

to a reduction of the coherences,

〈xy|ρout|00〉 ∝ Trext

[
e−iδprelzρext

rel

]
=

∫
dprel 〈prel + δprel|ρext

rel |prel〉 = e−
(n̄+1/2)δp2

rel
2Mω .

(18)

Because δprel scales with |rr〉 population, this decoher-
ence provides a strong penalty for increasing the exciting
laser power beyond the point of “breaking” the blockade
(see Fig. 4). For this reason, strong blockade interactions
as well as high Rabi rates will be required to achieve very
high fidelities.

Finally, the gate’s fidelity is reduced by imperfect adia-
batic following. Diabatic transitions during dressing pro-
cess generally cause both population loss and dephasing
for each atom in the |0〉 state, so nearly every element of
ρout is affected. The magnitude of the resulting fidelity
loss can be found by numerical simulation.

To calculate the fidelity according to Eq. (14), we
simulate the evolution according to the (non-Hermitian)
time-dependent Schrödinger equation governed by Heff .
This generates the (non trace preserving) evolution Ueff ,
accounting for errors due to imperfect adiabatic evolu-
tion, loss of atoms due to excitation to the Rydberg state,
and decoherence due to thermal spread of Doppler shifts.
We use the simulated excitation to |rr〉 to calculate the
relative momentum kick given to atoms due to the dipole-
dipole force, and from this include the additional deco-
herence effect described in Eq. (18).

As an example, we take the parameters given in Fig. 2.

This requires a ramp time on the order of 1 µs to stay adi-
abatic, so that one can perform a CPHASE gate in ∼ 2.3
µs. Putting together all of the error sources discussed,
we calculate a gate infidelity of 1−F ∼ 2× 10−3 for the
Doppler-free configuration. The gate error arises in small
part from the second-order effect of Doppler shifts and fi-
nite Rydberg lifetime, but it is dominated by interatomic
dipole forces owing to an imperfect blockade (see Fig. 5).
By contrast, without the Doppler-free configuration, the
same parameters give an infidelity of 1−F ∼ .04, almost
all of which is due to the spread in Doppler shifts.

V. CONCLUSION

We have studied a method for robustly implement-
ing a CZ gate between neutral cesium atoms based on
adiabatic dressing of the ground state via the Rydberg
blockade. The main advantage of this approach is that it
strongly suppresses random phases between bright and
dark-state superpositions that arise due to atomic mo-
tion. In addition, by employing two counterpropagating
Rydberg lasers in a σ+/σ− configuration, one can elimi-
nate the Doppler shift to first order. All effects of ther-
mal motion then take the form of coupling to a dark state
outside the ideal blockade subspace, which is suppressed
by an energy gap during adiabatic evolution. When both
adiabatic dressing and the Doppler-free configuration are
used together, errors from thermal motion are reduced
by more than an order of magnitude compared to either
strategy used alone.

With motional errors reduced in this way, the main
remaining source of error is entanglement between inter-
nal and external degrees of freedom due to dipole-dipole
forces when the Rydberg blockade is imperfect. Such
error is highly nonlinear in laser power; it can be kept
small as long as the Rydberg blockade is nearly perfect,
but increases rapidly when laser power is increased be-
yond the point of breaking the blockade. This implies
that the available blockade strength sets an upper limit
on useful laser power, which in turn limits both the fi-
delity and speed of the gate. If the blockade shift can be
increased by bringing atoms into closer proximity or by
the appropriate choice of Rydberg levels, the gate errors
will be limited solely by finite Rydberg lifetime.

As a final note, we have considered here gates per-
formed while atoms are untrapped and fall ballistically.
Recapturing the atoms after the gate will generally cause
the atoms to heat [26]. This effect is not reflected in our
error estimates because it does not affect the fidelity of
any one gate, but it could increase decoherence if multiple
gates are performed successively with no re-cooling in be-
tween. In principle, all of these errors would be substan-
tially reduced in a “magic trap” which traps electronic-
ground-state and Rydberg atoms equivalently [27]. In
that case, cooling the atoms to the vibrational ground
state would completely remove Doppler shifts as well as
suppress decoherence due to the dipole-dipole force in an
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imperfect blockade, providing a potential path to high-
fidelity quantum logic.
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