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We propose a scheme to realize quantum networking of superconducting qubits based on the opto-mechanical

interface. The superconducting qubits interact with the microwave photons, which then couple to the optical

photons through the opto-mechanical interface. The interface generates a quantum link between superconduct-

ing qubits and optical flying qubits with tunable pulse shapes and carrier frequencies, enabling transmission of

quantum information to other superconducting or atomic qubits. We show that the scheme works under realistic

experimental conditions and it also provides a way for fast initialization of the superconducting qubits under 1

K instead of 20 mK operation temperature.

I. INTRODUCTION

Superconducting qubits (SQs) constitute one of the lead-

ing candidate systems for realization of quantum computation

[1]. Through the circuit resonators, SQs have strong coupling

to the microwave photons [1], which can be used for qubit

interaction, state engineering of the photonic modes, and non-

destructive readout of the qubits [2, 3]. Universal quantum

logic gates have been realized for SQs in circuit QED (cQED)

systems with high fidelity and speed [4]. Through use of the

noise insensitive qubits, the coherent time of the SQs has been

increased by several orders of magnitude in recent years and

pushed to the 100 µs region [5, 6]. In a single circuit res-

onator, the number of SQs is still limited. Further scaling up

the number of qubits requires linking distant cQED systems

to form a quantum network. Microwave photons are sensitive

to thermal noise and their quantum states only survive under

cryogenic temperature. So it is hard to use them to link SQs

in two different setups. Optical photons, on the other hand,

are robust information carriers at room temperature and serve

as ideal flying qubits for long-distance communication. They

can carry quantum information to distant locations through an

optical fiber.

In this paper, we propose a scheme to realize a quantum net-

work of SQs through an opto-mechanical interface that cou-

ples optical photons in a cavity to microwave photons and SQs

in a circuit resonator. The interface generates entangled states

between SQs and photonic pulses with tunable pulse shape

and carrier frequency. The photons then make a quantum link

between distant SQs through either a measurement-based en-

tangling protocol or a deterministic state mapping. Because of

the tunability of shape and frequency of the emitted photon,

the same scheme can also be used to realize a hybrid network

between SQs and other matter qubits such as atomic ions [7],

quantum dots [8], or defect spins in solids [9]. A hybrid net-

work may allow combination of advantages of different kinds

of qubits. For instance, SQs may be good for fast informa-

tion processing while atomic qubits are ideal for quantum

memory. Our scheme is based on the recent advance on the

microwave-optical interface: there have been several propos-

als to realize this interface with ions [10, 11], cold atoms [12],

or a hybrid opto-mechanical system with superconducting res-

onators [13–19], or with flux qubit [20]. In particular, a re-

cent experiment has demonstrated the transducer between mi-

crowave and optical photons using the opto-mechanical sys-

tem at 4.5K temperature [21]. One hassle for an interface be-

tween SQs and optical photons is that thermal initialization

of the SQs requires an operating temperature around 20 mK

in a dilution fringe, while an interface to photons requires an

optical window, which introduces heating due to black-body

radiation and may significantly increase the system tempera-

ture. We circumvent this problem by showing that our pro-

posed scheme can achieve fast initialization of the SQs at 1

K through optical sideband cooling by use of the same opto-

mechanical interface.
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FIG. 1: (Color online) (a) The schematic scheme of the opto-

mechanical quantum interface. The SQ couples with the microwave

mode a2 in a superconducting resonator (SR). The mechanical oscil-

lator (MO) mode am for vibration of the interface couples simultane-

ously to the mode a2 of the SR and the mode a1 of the optical cavity

(OC). Both a2 and a1 modes are driven by coherent classical fields

on the red sideband. (b) The energy levels of the superconducting

junction, where |g〉 is the ground state, |e〉 is the first excited state,

and |s〉 is the second excited state. The transition |g〉 to |e〉 couples to

the mode a2 with coupling rate gc, while transition |e〉 to |s〉 is driven

by a microwave field with Rabi frequency Ω (t).

II. THE MODEL

As show in Fig. 1, the system we consider contains an op-

tical cavity (OC) and a microwave superconducting resonator

(SR) [22, 23], which share an interface that can vibrate and

forms a mechanical oscillator (MO) [24, 25]. The shared vi-

brating interface between the OC and the SR has been pro-
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posed in several schemes [13–17] and realized very recently

in experiments [21, 26]. For this system, the MO mode am

of frequency ωm couples simultaneously to the optical mode

a1 of frequency ω1 and the microwave mode a2 of frequency

ω2. We have assumed that the coupling rate is much less than

the mode spacing of either of these oscillators so that only

one mode is relevant respectively for the OC, the MO, and

the SR. The optical and the microwave modes a1 and a2 are

driven at the red-sideband with frequency ωL1 = ω1 − ∆1 and

ωL2 = ω2 − ∆2, respectively. We set ∆1 = ∆2 = ωm. In-

side the SR, there are nonlinear Josephson junctions, with the

lowest three anharmonic levels shown in Fig. 1b. The levels

|g〉 and |s〉 make a SQ, with coupling mediated by the middle

level |e〉 with a coupling rate gc for the |g〉 → |e〉 transition

and a Rabi frequency Ω (t) (driven by a microwave field with

tunable shape) for the |e〉 → |s〉 transition.

The Hamiltonian of the system has the form H = H0 +

HI + Hd, where H0 =
∑

i=1,2 ωia
†
i
ai + ωma

†
mam + ωeσee,

HI =
∑

i=1,2 gia
†
i
ai(am+a

†
m)+gc(σeg+σge)(a2+a

†
2
), and Hd =

∑

i=1,2(Ωi

2
e−iωLi t + h.c.)(ai + a

†
i
) + (Ω

′

2
e−iωL2

t
+ h.c.)(σge + σeg).

We have set ~ = 1 and taken the notation σµν = |µ〉〈ν| (µ, ν =
g, e, s). The SQ and SR drive pulses are generated by two

phase-locked microwave generators. The flux control pulses

are used to tune the SQ to be resonant with the SR with

ω2 = ωe [23]. The opto-mechanical coupling rates gi (i = 1, 2)

are typically small, but their effect can be enhanced through

the driving field Ωi. Under the driving, the steady state am-

plitude of the mode ai is given by αi ≈ Ωi/2∆i. We take the

driving strength Ω′∗ = gcΩ2/ωm. The opto-mechanical cou-

pling terms can be expanded with ai − αi and the effective

coupling Hamiltonian takes the form (see details in Appendix

A)[15, 16, 27]

Hom =

∑

i=1,2

[

ωma
†
i
ai +Gi(a

†
i
+ ai)(am + a†m)

]

+ ωma†mam + (gca2σeg + h.c.)

(1)

where Gi = αigi. Under the rotating wave approximation

(ωm ≫ Gi, gc), the whole Hamiltonian in the interaction pic-

ture is given by

HI =

(

G1a
†
1
+G2a

†
2

)

am + gcσega2 + h.c.. (2)

The corresponding Langevin equations for the a j ( j = 1, 2,m)

modes and the SQ take the form

ȧ j = − i[a j,HI] −
κ j

2
+
√
κ ja

in
j ,

σ̇ge = − i[σge,HI],−
γ

2
σge +

√
γσza

in
s ,

(3)

where σz = σee − σgg, γ is the decay rate of the level |e〉, and

κ j is the decay rate of the mode a j.

III. SQ INTIALIZATION AND SQ-PHOTON QUANTUM

INTERFACE

Without loss of generality, we take G1 = G2 = G for sim-

plicity of notation. We may define the normal modes b, b±

with a1 = (b+ + b− −
√

2b)/2, a2 = (b+ + b− +
√

2b)/2,

am = (b+ − b−)/
√

2, which diagonalize the opto-mechanical

coupling Hamiltonian [28]. The SQ only resonantly couples

with normal mode b. The normal mode b decays through two

channels, aout
1

and aout
2

. The decay of b mode is denoted as

κ = (κ1 + κ2)/2. Typically, we have κ1 ≫ κ2, so the photons

go out dominantly through the aout
1

channel, which is vacuum.

As the SQ only strongly couples with the normal mode b, the

steady state of SQ will approach to the ground state |g〉. If the

SQ is initially in a mixture of |g〉 and |e〉 states, we can cool

it to the ground state |g〉 by driving the red sideband of the

optical cavity [29–33]. If the initial state of the SQ involves

mixture of other states, these other states can be first driven

to the state |e〉 through a microwave filed and then decay to

the ground state |g〉 by the opto-mechanical sideband cooling.

The working temperature temperature for both initialization

and interface can be much higher than tens of mK.

In order to couple the SQ to an output optical photon with

controllable pulse shape, we prepare the SQ initially on the

level |s〉 and drive the transition |s〉 to |e〉 by a microwave field

with Rabi frequency Ω(t) and pulse duration TD. The total

Hamiltonian of the system is Ht = HI + (Ω(t)σse + h.c.). In

the limit T−1
D
≪ G, g, κ1, the modes b± are not populated and

can be adiabatically eliminated. The effective Hamiltonian is

simplified to Ht = Ω(t)σse +

√
2

2
gcbσeg + h.c. The Hamilto-

nian Ht has a dark state |D〉 = [|s〉|0〉 − r(t)|g〉|1〉]/
√

1 + |r(t)|2,

where r(t) =
√

2Ω(t)/gc, and |0〉, |1〉 represent the Fock

states of the mode b. To solve the output pulse shape, we

rewrite the dark state as |D〉 = cos θ|s〉|0〉 − sin θ|g〉|1〉, with

cos θ = 1/
√

1 + |r|2, and define an orthogonal bright state

|B〉 = sin θ|s〉|0〉+ cos θ|g〉|1〉. The wave-function of the whole

system can be expanded as |Ψ〉 = (cd|D〉+cb|B〉+ce|e〉)⊗|vac〉+
|g〉|0〉 ⊗ |ϕ〉, where |vac〉 is the vacuum state of output field,

and |ϕ〉 =
∫

+ωc

−ωc
dωcωa

†
out(ω)|vac〉 denotes the single-photon

state of the output filed with frequency spectrum cω. The dy-

namics of system is determined by the Schrdinger equation

i∂t|Ψ〉 = Ht |Ψ〉, where Ht is the total Hamiltonian that in-

cludes the input-output coupling terms [34]. Using the method

in Ref. [34], the output pulse shape f (t), given by the Fourier

transform of cω, can be solved analytically in the adiabatic

limit, with

f (t) =
√
κ sin θ exp(− κ

2

∫ t

0

sin2 θ(τ)dτ). (4)

The pulse shape f (t) is fully determined by θ(t).

To check whether the pulse shape of Eq. (4) derived under

the adiabatic limit holds under typical experimental parame-

ters, we compare in Fig. (2) the pulse shapes obtained from

the analytic formula and from the exact numerical simulation.

In numerical simulation, we solve the exact system dynam-

ics by including the contribution of populations either in the

bright state |B〉 or of all the three modes b and b±. As one

can see from Fig. 2, if the pulse duration TD & 20/κ, the

pulse shape from the analytic formula (4) overlaps very well

with the exact result, with the mismatching error less than 1%.

However, for a short pulse with TD ∼ 5/κ, there is a signifi-
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FIG. 2: (Color online) (a) The shape of the output single-photon

pulse | f (t)|. We take g = G = 3κ and the pulse duration TD = 20/κ.

The driving pules Ω(t) = ge−(t−TD/2)2/2t2w is assumed to be a Gaus-

sian shape with the peak at t = TD/2 and a width tw = TD/5. The

solid (dash, dash-dot) curve represents respectively the analytic pulse

shape in Eq. (4) derived in the adiabatic limit (the numerical result

that includes contribution of the bright state |B〉, the exact result that

includes contributions of all the modes b, b±). The shape function is

normalized according to
∫

| f (t)|2dt = 1 for the convenience of com-

parison. The overlap between the exact shape (dash-dot curve) and

the adiabatic shape (solid curve) is about 99%. (b) Same as Fig. (a)

but with the pulse duration TD = 5/κ. The adiabatic approximation

is not well satisfied in this case, and the shape overlap is reduced

to 80%. (c) Same as Fig. (a) but wih the driving Rabi frequency

Ω(t) =
(

gc/
√

2
)

eκ(t−TD/2)/2, which gives a symmetric output pulse

shape [34]. In the adiabatic limit, the shape (the solid curve) is given

by the analytic form f (t) =
√
κ/4sech [κ(t − TD/2)/2], which has

overlap of 99.7% with the exact shape. (d) Same as Fig. (c) but with

the puse duration TD = 5/κ.

cant shape mismatching error and one should use the exact

result instead of the approximate analytic formula. The exact

result shows some oscillations in the pulse shape for a short

driving field, resulting from the population oscillation in dif-

ferent modes b,b± when the condition of adiabatic elimination

T−1
D
≪ G, g, κ1 is not well satisfied.

IV. QUANTUM NETWORKING OF SQS

In the above, we have shown how to couple a SQ to a single

optical output photon with a controllable pulse shape. This

ability is critical for building up a quantum network of SQs

or a hybrid network between SQs and other matter qubits.

Here, we mention two complementary schemes for quantum

networking of SQs, requiring different kinds of pulse shape

control.

The key requirement of quantum networking is to gener-

ate entanglement between remote SQs. The first scheme for

entanglement generation is based on a deterministic quantum

state transfer between SQs in two remote cavities [35]. As

absorption is the time reversal of the emission process, it has

been shown in Ref. [35] that an emitted single-photon pulse

can be completely absorbed by a matter qubit in a cavity if we

simultaneously reverse the temporal shape of the photon pulse

and the driving filed Ω(t). As shown in Fig. 2, with an ap-

propriate control of the driving microwave field Ω(t), we can

transfer a quantum state from a SQ to a single-photon pulse

with a symmetric temporal shape. This single-photon pulse,

after propagation in an optical fiber, can then be absorbed by

a SQ in another remote cavity, if the driving Ω′(t) of the sec-

ond SQ is the time reversal of Ω(t). The shape control of the

driving microwave pulse Ω(t) or Ω′(t) can be easily achieved

through modulation by an arbitrary wave form generator. If

we make a half transfer of the population from the first SQ to

the photonic pulse, the generated state between the SQ and the

output photon p has the form
(

|s〉1|0〉p + |g〉1|1〉p
)

/
√

2. Then,

after absorption of the photon by the second SQ, we gener-

ate an entangled state (|s〉1|g〉2 + |g〉1|s〉2) /
√

2 between two

remote SQs, as required for quantum networking.

 

 

 

 

 

 

 

FIG. 3: (Color online) (a) The schematic to generate entanglement

between remote SQs. Two SQs are located in distant cavities A

and B. The SQs with dashed boxes represent the same structure as

the orange part (SQ) in Fig. 1a, capacitively coupled to the SRs.

The SQs couple to the output photons through opto-mechanical in-

terfaces. The output photons, after propagation, interfere at a beam

splitter and then are detected by single-photon counters. Registration

of a photon-count generates entanglement between the remote SQs.

(b) The same setup can be used to entangle SQs with other kinds of

matter qubits, such as trapped ions. The carrier frequency and shape

of the photon from the SQ is tuned by the opto-mechanical interface

to match with the photon pulse from other matter qubits.

The entanglement between remote SQs can also be gen-

erated in a probabilistic fashion through detection of inter-

ference of the emitted photon(s) [34, 36, 37]. For instance,

as shown in Fig. 4a, we have SQs in two remote cavities,

each emitting a single-photon pulse with a small probability

p0 = 1 − exp[−κ
∫ TD

0
sin2 θ(τ)dτ] through an incomplete adia-

batic passage from the state |s〉 to |g〉. The emitted pulses, after

propagation in optical channels, interfere at a 50 − 50% beam

splitter, with outputs detected by single-photon counters. If

we register only one photon from these detectors, the two SQs

are projected to an entangled state
(

|s〉1|g〉2 + eiϕ|g〉1|s〉p
)

/
√

2

with a success probability proportional to p0 ≪ 1. The un-

known relative phase ϕ can be canceled during the detection

process [38], or through the second round of entanglement

generation by applying the same protocol again [39]. Com-
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pared with the deterministic scheme [35], this probabilistic

scheme has a lower efficiency as the protocol needs to be re-

peated until one successfully registers a photon count, how-

ever, it is more robust to noise as the photon loss in the optical

channels does not influence the fidelity of this scheme.

A major challenge for quantum networking based on the

photonic connection is to achieve the spectrum (shape) and

frequency matching of the emitted photon pulses from dif-

ferent matter qubits. For solid-state qubits in particular, the

coupling parameters usually vary for different systems and it

is hard to get identical qubits or coupling rates. A remarkable

advantage of the scheme based on the opto-mechanical inter-

face is that all the mismatches in frequencies or pulse shapes

can be easily compensated through the driving fields. For in-

stance, the scheme works perfectly well if the coupling or de-

cay rates are different for different systems. As the pulse shape

only depends on θ(t) from Eq. (4), we can always get identical

shapes as difference in the coupling rates can be easily com-

pensated by the microwave driving amplitude Ω(t). Further-

more, the output optical frequency is purely determined by

the eigenmode structure of the optical cavity and not limited

by the qubit parameters. So, depending on the frequency and

shape of the driving field, we can have a quantum interface

between the SQ and the optical photon with widely tunable

carrier frequency and shape, which can then interfere with

the photons emitted by other kinds of matter qubits, such as

trapped ions [40], quantum dots [8, 41], or diamond nitrogen

vacancy centers [9]. The SQ-opto-mechanical interface there-

fore can work as a quantum transducer to generate entangle-

ment links between different types of matter qubits. This leads

to a hybrid quantum network, with an example illustrated in

Fig. 3(b), which has the important advantage to combine the

particular strength of each kind of matter qubits.

V. SQ INITIALIZATION FIDELITY AND INTERFACE

EFFICIENCY

In the above analysis, we assume the SQ couples domi-

nantly to the output field of the optical cavity and neglect other

dissipation channels. Now we take into account all the other

dissipation processes and calculate their effects on the fidelity

of quantum interface. Under the condition that the pulse du-

ration T−1
D
≪ G, g, κ1, we can adiabatically eliminate all the

modes a j ( j = 1, 2,m) in the Langevin equations (3) and ar-

rive at the following decay equation for the SQ (see details in

Appendix B):

σ̇ge = −
γe f f

2
σge +

√
γe f fσza

in
e f f , (5)

where γe f f = γ + κ̃1 + κ̃2 + κ̃m, ain
e f f
= [−i

√
κ̃1ain

1
+

i
√
κ̃2ain

2
+
√
γain

s +
√
κ̃main

m]/
√
γe f f , κ̃1 =

4g2κ1
(κ1+κ2+κ1κ2κm/4G2)2 ,

κ̃2 =
(2+κ1κm/2G2)2g2κ2

(κ1+κ2+κ1κ2κm/4G2)2 , and κ̃m =
g2κ2

1
κm/G

2

(κ1+κ2+κ1κ2κm/4G2)2 . The physi-

cal meaning of Eq. (5) is clear: the SQ couples to four decay

channels, the optical channel ain
1

with decay rate κ̃1, the mi-

crowave channel ain
2

with decay rate κ̃2, the mechanical chan-

nel ain
m with decay rate κ̃m, and the intrinsic channel ain

s with

decay rate γ. For each decay channel, the effective dissipation

rate is given by
(

n̄ j + 1
)

κ̃ j, where n̄ j = 1/(exp(~ω j/kBT ) − 1)

is the mean thermal photon (or phonon) number and T de-

notes temperature of the system. The initialization of the SQ

is described by the Langevin equation (5) and the final prob-

ability Pg for the SQ in the state |g〉 is determined by the sta-

tionary state under Eq. (5) (after a decay time of the order of

1/κ̃1 ∼ 10 ns with

Pg =
κ̃1 + (n2 + 1)κ̃2 + (nm + 1)κ̃m

κ̃1 + (2n2 + 1)(γ + κ̃2) + (2nm + 1)κ̃m
. (6)

Under experimental parameters list in the caption of Fig. (4)

and 1 K system temperature, the fidelity Pg for state initializa-

tion is larger than 99% (we assume temperature T = 1 K with

n̄2 = 1.62, and n̄m = 2.08 × 103).
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FIG. 4: (Color online) (a) The temperature dependence of the fidelity

F (solid curve) of quantum interface and the fidelity Pg (dashed

curve) for state initialization. The dash-dotted curve shows the prob-

ability in the ground state without opto-mechanical sideband cooling.

The parameters are taken as ω1/2π = 200 THz, ω2/2π = 10 GHz,

and ωm/2π = 10 MHz [24, 25, 42], κ1/2π = 10 MHz, κ2/2π = 1

kHz, κm/2π = 10 Hz [43], γ/2π = 5 kHz [44, 45], G/2π = 1 MHz,

and gc/2π = 1 MHz. (b) The dependence of the fidelity F (solid

curve) and Pg (dashed curve) on the optical cavity decay rate κ1 at 1

K temperature. The other parameters are the same as Fig. (a).

For quantum networking of SQs through the optical decay

channel, all the other dissipation channels contribute to noise,

and the fidelity F of the quantum interface can be estimated

by the relative ratio of the optical decay rate to the total dissi-

pation rate

F =
κ̃1

κ̃1 + (n̄2 + 1)κ̃2 + (n̄m + 1)κ̃m + (n̄2 + 1)γ
, (7)

where we have taken n̄1 ≈ 0 at the optical frequency. The ex-

perimental parameters typically satisfy G ∼ κ1 ≫ κ2, κm, γ. In

this case, κ̃1 ≈ 4g2/κ1, κ̃2 ≈ 4g2κ2/κ
2
1
, and κ̃m ≈ g2κm/G

2. In

Fig. 4, we show the fidelity as a function of the system tem-

perature and the decay rate of the optical cavity. It is found

that the fidelity is around 99% under typical values of the ex-

perimental parameters as listed in the figure caption.

Typically the SQ system is operated around 20 mK tem-

perature, where the ground state cooling is achieved di-

rectly through thermal equilibrium. However, with an opto-

mechanical interface, the system temperature may increase

due to heating by the black-body radiation from the optical

window. Here, we show that even under 1 K temperature,
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the state can still be initialized through the opto-mechanical

sideband cooling. Another requirement for the system tem-

perature is that the quasi-particle density in the superconduct-

ing circuit should be small, otherwise it will induce dissipa-

tion of the SQ. The quasi-particle density is proportional to

e−1.76Tc/T , where Tc is the critical temperature of the supercon-

ductor [46]. For niobium, the critical temperature Tc is about

9.3 K, for which the quasi-particle density is negligible at 1

K temperature. For aluminum, the Tc is about 1.2 K, where

the quasi-particles can be neglected only at temperature in the

order of 0.1 K.

In summary, we have proposed a scheme to realize a quan-

tum network of SQs base on the opto-mechanical quantum

interface. The interface can couple the SQs to optical pho-

tons with widely tunable carrier frequencies and pulse shapes.

The same interface can also be used for fast initialization of

the SQs at 1 K temperature through opto-mechanical sideband

cooling.
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Appendix A: Effective linear Hamiltonian

The Hamiltonian of the system takes the form H = H0 +

HI + Hdrive, where

H0 =

∑

i=1,2

ωia
†
i
ai + ωma†mam + ωeσee,

HI =

∑

i=1,2

gia
†
i
ai(am + a†m) + gc(σeg + σge)(a2 + a

†
2
),

and

Hd =

∑

i=1,2

(
Ωi

2
e−iωLit+h.c.)(ai+a

†
i
)+(
Ω
′

2
e−iωL2

t
+h.c.)(σge+σeg).

The SQ is assumed to couple resonantly with the SR with

ω2 = ωe. The detuning ∆i = ωi − ωLi
= ωm. Under the

condition that Ωi < 4ωi, the Hamiltonian Hd can be approxi-

mated as

H′d =
∑

i=1,2

(
Ωi

2
aie
−iωLi t + h.c.) + (

Ω
′

2
e−iωL2

t
+ h.c.)(σge + σeg).

We take the rotating wave frame that H′
0
= H0 − ωm(a

†
1
a1 +

a
†
2
a2. The Hamiltonian in rotating wave frame reads

HR =ωm

∑

p=1,2,m

a†pap +

∑

i=1,2

[gia
†
i
ai(am + a†m) + (

Ωi

2
ai + h.c.)]

+ ωeσee + (gca2e−iωL2
t
+
Ω
′

2
e−iωL2

t
+ h.c.)(σge + σeg)

(A1)

We assume that the decay rates κi for mode ai (i=1,2) are

much less than the driving detuning ∆ = ωm. Under the driv-

ing, the steady state amplitude of the mode ai is given by

αi ≃ Ωi/2ωm. In order to compensate the effect of classi-

cal driving on SQ, we set Ω′∗ = 2α2gc = Ω2gc/ωm. In the

limit that αi ≫ 1, the Hamiltonian Eq. (A1) can be expanded

with ai − αi

Hom =

∑

i=1,2

[

ωma
†
i
ai +Gi(a

†
i
+ ai)(am + a†m)

]

+ ωeσee

+ ωma†mam + (gca2e−ωL2
t
+ h.c.)(σeg + σge).

(A2)

Under the rotating wave approximation (ωm ≫ Gi, gc), the

whole Hamiltonian in the interaction picture is given by

HI =

(

G1a
†
1
+G2a

†
2

)

am + gcσega2 + h.c.. (A3)

Here we take the parameters we used in Fig. 4 as an ex-

ample to make sure that the rotating wave approximation is

valid. In experiments, the typical parameters are as follows:

ω1/2π = 200 THz, ω2/2π = 10 GHz, and ωm/2π = 10 MHz

[24, 25, 42], κ1/2π = 10 MHz, κ2/2π = 1 kHz, κm/2π = 10

Hz, γ/2π = 5 kHz [44, 45], g/2π = 1 kHz, and gc/2π = 1

MHz. The microwave driving strengths are assumed to be

Ω = 20 GHz. The steady state amplitude α = 1000 and

Ω
′
= Ω ∗ gc/ωm = 2 GHz. The effective coupling between

a2 and am is G2 = α2g2 = 1 MHz. With proper driving on

optical cavity mode a1, we can also get the effective coupling

strength G1 = 1 MHz. Therefore rotating wave approximation

condition ωm ≫ Gi, g2 is fulfilled.

Appendix B: Effective Langevin Equation for SQ.

In order to derive the effective Langevin Equation for the

SQ, we write down the Langevin equations of the systems

ȧ1 = −iGam −
κ1

2
a1 +

√
κ1ain

1 (B1)

ȧ2 = −iGam + igσge −
κ2

2
a2 +

√

k2ain
2 (B2)

ȧm = −iG(a1 + a2) − γm

2
am +

√
κmain

m (B3)

σ̇ge = igσza2 −
γ

2
σge +

√
γσzσ

in
ge (B4)

In the limit that G ≫ g, κ1, κ2, κm, we can adiabatically elimi-

nate am and a1,2 modes. Let’s solve am from Eq. (B1) in term

of a1,

am =
1

iG

(

−κ1
2

a1 +
√
κ1ain

1

)

, (B5)

Then we can solve the a2 from Eq. (B2) in term of a1

a2 =
κ1

κ2
a1 −

2

κ2

√
κ1ain

1 +
2igσge

κ2
+

2
√
κ2

ain
2 .

Let’s solve a1 from Eq. (B3) and get the expression of a2,

a1 =
1

i
(

G +
γmκ1
4G

)

(

−iGa2 +
iγm

2G

√
κ1ain

1 +
√
γmain

m

)

.
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Inserting a1 into the expression of a2, we get that

a2 =
−8G2√κ1

κ2(4G2 + κmκ1)
ain

1 −
4iGκ1

√
κm

κ2(4G2 + κmκ1)
ain

m

+
2igσge

κ2
+

2
√
κ2

ain
2

(B6)

We get that

a2 =
1

4G2(κ1 + κ2) + γmκ1κ2
[−8G2√κ1ain

1 − 4iGκ1
√
κmain

m

+ (8G2
+ 2κmκ1)

√
κ2ain

2 + i(8G2
+ 2κmκ1)gσge]

(B7)

Finally we get the effective Langevin equation for σge is

σ̇ge = −
(

2g2
+ g2κmκ1/2G2

(κ1 + κ2) + κmκ1κ2/4G2
+
γ

2

)

σge

+
−2ig

√
κ1σz

(κ1 + κ2) + κmκ1κ2/4G2
ain

1

+
i(2 + κmκ1/2G2)g

√
κ2σz

(κ1 + κ2) + κmκ1κ2/4G2
ain

2

+
gκ1
√
κm/G

(κ1 + κ2) + κmκ1κ2/4G2
σza

in
m +
√
γσzσ

in
ge (B8)

It is easy to verify that the effective Langevin equation (B8)

fulfills the Einstein relation.

The effective Langevin equation (B8) for σge can be rewrit-

ten as

σ̇ge = −
γeff

2
σge +

√
γeffσza

in
eff, (B9)

where γeff and ain
eff

are defined as

γeff = γ +
16G2g2

+ 4g2κmκ
2
1

4G2(κ1 + κ2) + κmκ1κ2
,

and

ain
eff =[

−2ig
√
κ1

(κ1 + κ2) + κmκ1κ2/4G2
ain

1 +
i(2 + κmκ1/2G2)g

√
κ2

(κ1 + κ2) + κmκ1κ2/4G2
ain

2

+
gκ1
√
κm/G

(κ1 + κ2) + κmκ1κ2/4G2
ain

m +
√
γain

2 ]/
√
γeff.

(B10)
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