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A class of unambiguous state discrimination problems achievable by separable

measurements but impossible by local operations and classical communication

Scott M. Cohen∗

Department of Physics, Portland State University, Portland OR 97201

We consider an infinite class of unambiguous quantum state discrimination problems on multipar-
tite systems, described by Hilbert space H, of any number of parties. Restricting consideration to
measurements that act only on H, we find the optimal global measurement for each element of this
class, achieving the maximum possible success probability of 1/2 in all cases. This measurement
turns out to be both separable and unique, and by our recently discovered necessary condition for lo-
cal quantum operations and classical communication (LOCC), it is easily shown to be impossible by
any finite-round LOCC protocol. We also show that, quite generally, if the input state is restricted
to lie in H, then any LOCC measurement on an enlarged Hilbert space is effectively identical to
an LOCC measurement on H. Therefore, our necessary condition for LOCC demonstrates directly
that a higher success probability is attainable for each of these problems using general separable
measurements as compared to that which is possible with any finite-round LOCC protocol.

PACS numbers: 03.65.Ta, 03.67.Ac

I. INTRODUCTION

In a recent paper [1], we proved a necessary condition (reproduced as Theorem 1, below) that a multi-party
quantum measurement can be implemented by local operations and classical communication (LOCC) in any
finite number of rounds of communication. It is easily seen that such measurements must be separable—
that is, the measurement operators must all be tensor products—and our Theorem 1 provides a strong, and
quite general, constraint on the set of product operators representing any measurement implemented by
finite-round LOCC. We also showed that the condition of Theorem 1 is extensively violated by separable
measurements, a violation limited only by the size of the system, as measured by the number of parties
involved.
Despite the generality of Theorem 1, we were unable, at the time of writing, to provide examples of

separable measurements having obvious practical interest, and which violate the conditions of that theorem.
A reasonable criticism, then, was that the theorem was “primarily of mathematical value with physical
implications wanting” [2]. Here, we remedy this deficiency by providing an infinite class of physically
motivated examples where the theorem can be directly used to demonstrate the LOCC-impossibility of these
specific operational tasks, each of which can, nonetheless, be implemented by separable measurements.
Our examples involve the optimal unambiguous discrimination of quantum states, a subject pioneered by

Ivanovic [3], Dieks [4], and Peres [5]. This is one method of extracting information from non-orthogonal
states, wherein due to this non-orthogonality, the information cannot be obtained perfectly. There are
numerous scenarios that involve the extraction of information under such conditions, including quantum
cryptography and quantum key distribution [6]. It is therefore a subject of considerable significance in
quantum information processing, with implications for both theory and experiment, and its study remains
robust to this day [7–10].
In the scenario of unambiguous state discrimination, a quantum system is prepared in one of a given set of

states, and the aim is to perform measurements on that system in order to determine in which state it was
prepared. It is required that the error probability is zero—one can never guess one state when it happens to
be another—which means that when the states are not mutually orthogonal, there must be an inconclusive
outcome, one for which the given state remains unknown.
Chefles [11] has shown that the states in the given set can be unambiguously discriminated if and only

if they are linearly independent, and then the measurement involves the reciprocal set of states, see be-
low. When the states form a symmetric set and the a priori probabilities are all equal, then an optimal

∗Electronic address: cohensm52@gmail.com

mailto:cohensm52@gmail.com


2

measurement—one achieving the maximum possible success probability—was obtained in [12]. Later, Eldar
[13] showed that the problem of finding an optimal measurement for an arbitrary set of linearly independent
pure states can be formulated as a semidefinite programming problem.
We will assume that the quantum system under consideration is made up of P spatially separated parts,

and that the separate parties utilize LOCC in order to discriminate the states. Chefles [14] found a condition,
valid for both separable measurements and for LOCC, which is necessary and sufficient that a set of states
can be unambiguously discriminated. The equivalence of LOCC and the full set of separable measurements
for this question is not obvious, even though every LOCC is also separable [15]. The reason is the existence
of separable measurements that cannot be implemented by LOCC, a discovery first made in [16]. Of course,
this result of [14] does not say that for unambiguous state discrimination, use of the full set of separable
measurements is equivalent to using only LOCC, because there is still the question of finding an optimal
measurement. Along these lines, it was shown in [17] that the success probability with general separable
measurements can exceed that for LOCC for a pair of two-qubit states, one pure and the other mixed. As
far as we are aware, this is the only known example of a separation between separable measurements and
LOCC for unambiguous state discrimination. Here, we provide an infinite set of new examples showing
such a separation, all of which only involve pure states, including one case involving two qubits. For these
examples, we use Theorem 1 to show that LOCC cannot achieve as high a success probability as is possible
with separable measurements. This then accomplishes a main goal of this paper, which is to demonstrate
the utility of Theorem 1.
Consider a multipartite system of P parts, described by Hilbert space H = H1 ⊗ · · · ⊗ HP of overall

dimension D, and a separable measurement on H consisting of N measurement operators Kj = K(1)
j ⊗ · · · ⊗

K(P )
j satisfying Kj ≥ 0 and

∑

j Kj = I, with I the identity on H. Following the ideas in [1], we consider the

convex cones generated by the set of local operators {K(α)
j }, for each α. As the number of operators is finite,

these are polyhedral cones, having a finite number of extreme rays.1 Let us count the distinct extreme rays

in the convex cone generated by the set of local operators {K(α)
j }, for each party α, and define this number

to be eα. Then, the following theorem was proved in [1].

Theorem 1. For any finite-round LOCC protocol of P parties implementing a separable measurement

corresponding to the N distinct positive product operators {Kj = K(1)
j ⊗ . . .⊗K(P )

j }Nj=1, it must be that

P∑

α=1

eα ≤ 2(N − 1), (1)

where eα is the number of distinct extreme rays in the convex cone generated by operators {K(α)
j }Nj=1, and

the sum includes only those parties for which at least one of these local operators is not proportional to the
identity.

In [1], we presented separable measurements consisting of a set of product operators {Ψk}Nk=1 for every D
and prime N > D, for which the upper bound in this theorem is violated maximally, satisfying

∑
eα = PN ,

thus demonstrating a very strong difference between separable measurements and LOCC. In Section II, we use
these same operators to construct sets of states for which the optimal global measurement for unambiguous
state discrimination is separable and (for present purposes, effectively) unique, see Theorem 4, and which
cannot be implemented by finite-round LOCC, a result that follows immediately from Theorem 1. Theorem 4
states further that the optimal probability of success, which is achievable by a separable measurement, cannot
be achieved using finite-round LOCC, even when applied to an enlarged Hilbert space. In Section III, we
give a proof of Theorem 4, and then we offer our conclusions in Section IV.

1 A ray is a half-line of the form {λK̂
(α)
j

|λ ≥ 0}. An extreme ray of a convex cone is a ray that lies in the cone but cannot be

written as a positive linear combination of other rays in that cone.
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II. SEPARABLE MEASUREMENTS THAT ARE STRICTLY BETTER THAN LOCC

Consider any prime number N ≥ 5 and a multipartite system having overall dimension D = N − 1. The
number of parties P can be chosen in any way consistent with the prime factorization of D—this choice is
generally not unique, but it is unimportant for our present purposes. Let Hα be the Hilbert space describing
party α’s subsystem, and the overall Hilbert space is then H = H1 ⊗H2 ⊗ . . .HP . Define states

|Ψj〉 = |ψ(1)
j 〉 ⊗ . . .⊗ |ψ(P )

j 〉, j = 1, . . . , N, (2)

with

|ψ(α)
j 〉 = 1√

dα

dα−1∑

mα=0

e2πijpαmα/N |mα〉, (3)

where dα is the dimension of Hα, with parties ordered such that d1 ≤ d2 ≤ · · · ≤ dP , and overall dimension
D = d1d2 · · · dP . Here, p1 = 1 and for α ≥ 2, pα = d1d2 · · · dα−1, and |mα〉 is the standard basis for party α.
It was shown in [1] that

I =
D

N

N∑

j=1

Ψj , (4)

where Ψj = |Ψj〉〈Ψj |.
We will choose D of the |Ψj〉 and then show they are a basis of the full space. First note that diagonal

unitary

U (α) =

dα−1∑

mα=0

e2πipαmα/N |mα〉〈mα|

permutes the states |ψ(α)
j 〉. That is, U (α)|ψ(α)

j 〉 = |ψ(α)
j+1〉, and we have set |ψ(α)

N+1〉 = |ψ(α)
1 〉. Therefore,

U = U (1) ⊗ · · · ⊗ U (P ) permutes the |Ψj〉, showing that the latter N states are a symmetric set. (Note,
however, that the chosen D = N − 1 states are not a symmetric set.) As a consequence, it does not matter
which of the N states we omit in choosing a basis of the full D-dimensional space—any conclusions reached
by omitting one could equally well have been reached by omitting any other—so without loss of generality,
we will choose to omit |Ψ1〉.
Let us then define two sets of states,

SΨ = {|Ψj〉}Nj=2, (5)

and

SΦ = {|Φj〉}Nj=2, (6)

each set reciprocal to the other. [Given (2) and (3), this reciprocity is how the |Φj〉 are to be determined,
see (8) below.] Our aim is to unambiguously discriminate SΦ. Existence of a reciprocal set of states requires
that the original set is linearly independent, so we must demonstrate that the D states of SΨ possess this
property. Actually, the following lemma is more general than what we need.

Lemma 2. Given a prime number N and any D ≤ N , any subset I ⊆ [1, . . . , N ] of D or fewer of the states
|Ψj〉, defined in (2), constitutes a linearly independent set.

Proof. Consider

0 =
∑

j∈I

cj |Ψj〉

=

d1−1∑

m1=0

· · ·
dP−1∑

mP=0




∑

j∈I

cje
2πij

∑
α
pαmα/N



 |m1 . . .mP 〉

⇐⇒ 0 =
∑

j∈I

cje
2πij

∑
α
pαmα/N ∀m1, . . . ,mP . (7)
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By an argument similar to that following Eq. (6) of [1], one sees that
∑

α pαmα takes on each value ranging
from 0 to D − 1, and each of these values corresponds to a unique set of the indices, mα. Choosing any
|I| values of k = k ({mα}) =

∑

α pαmα from (7), we can represent these |I| constraints as M~c = 0, where

the jth component of ~c is cj , and |I| × |I| matrix M has components Mkj = e2πijk/N . It is clear that M

is a sub-matrix of the N × N matrix Ω = (ωjk)N−1
j,k=0, with ω = e2πi/N a primitive root of unity. Then, by

Chebotarëv’s theorem on roots of unity [18], M is invertible. This implies that cj = 0 ∀j ∈ I and that the
set {|Ψj〉}j∈I is linearly independent, which completes the proof. �

Given states |Ψj〉, the reciprocal states |Φj〉 are defined by the relations

〈Ψk|Φj〉 = δjk〈Ψj |Φj〉 ∀j, k = 2, . . . , N. (8)

The set of states SΦ, given with a priori probabilities ηj , can be unambiguously discriminated [11] by the
measurement M ({wj}) consisting of operators {wjΨj}Nj=2 and one additional “failure” operator,

Πf = I −
N∑

j=2

wjΨj. (9)

To find an optimal measurement, the weights wj are chosen so as to minimize the probability of failure,

Pr(f) =

N∑

j=2

ηjTr (ΠfΦj) , (10)

with Φj = |Φj〉〈Φj |.
Note that since the D chosen |Ψj〉 are linearly independent and a basis of the full Hilbert space H, their

reciprocal states |Φj〉 are also linearly independent and a basis of H. Therefore, since 〈Ψk|Φj〉 = 0 ∀j 6= k,
if for some k we replace |Φk〉 by |Ψk〉 in the basis formed by the states in SΦ, we will still have a basis of
H. This means that if we exclude |Φk〉 from the set SΦ, the only positive operator that annihilates all of the
remaining states is Ψk, up to multiplicative factors. Hence, we have the following corollary to Lemma 2.

Corollary 3. The only positive operators acting on H that will unambiguously identify |Φk〉 are those pro-
portional to Ψk defined in (2). This implies that the only such measurements unambiguously discriminating
the set SΦ are those of the form M ({wj}) defined above (9), and the only freedom available for optimizing
these measurements lies in the choice of the wj.

In the next section, we will prove the following theorem.

Theorem 4. If a priori probabilities ηj = 1/D ∀j, then the optimal global measurement, Mopt, for unam-
biguous discrimination of the set of states that is reciprocal to any D = N − 1 of the states defined in (2)
is

(i) separable;

(ii) unique, when restricting to measurements that act only on H;

(iii) consists of measurement operators DΨj/N, j = 1, . . . , N ; and

(iv) achieves Pr(f) = 0.5;

In addition, Pr(f) > 0.5 for this task when using any finite-round LOCC protocol.

The last statement in this theorem requires the following lemma, which is proved in the appendix.

Lemma 5. Given a multipartite system of P parties described by Hilbert space H, consider any enlargement
of H to H′. Then, for any LOCC protocol L implementing a measurement on H′ that involves input
states that are supported only on H, there exists an effectively identical LOCC measurement on H which
accomplishes precisely what is accomplished by L.
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Before moving on to the proof of Theorem 4, let us give an explicit example, providing expressions for the
states, |Φj〉, in the case of two qubits with N = 5. These four states are

|Φ2〉 =
1

√

5 +
√
5

(

−e−2πi/5|00〉+ (1 + e−2πi/5)|01〉 − (1 + e2πi/5)|10〉+ e2πi/5|11〉
)

,

|Φ3〉 =
1

√

5 +
√
5

(
e2πi/5

2 cos(2π/5)
|00〉 − |01〉 − eπi/5|10〉+ (1 + e−2πi/5)|11〉

)

,

|Φ4〉 =
1

√

5 +
√
5

(

(1 + e2πi/5)|00〉 − eπi/5|01〉+ eπi/5|10〉 − (1 + e2πi/5)|11〉
)

,

|Φ5〉 =
1

√

5 +
√
5

(

|00〉+ e2πi/5

2 cos(2π/5)
|01〉+ (1 + e2πi/5)|10〉 − e−2πi/5|11〉

)

. (11)

We note that these states are all entangled, their reduced density matrices having Von Neumann entropy
approximately equal to 0.3, the same for all four states. The optimal measurement to unambiguously
discriminate this set of states is given by operators DΨj/N, j = 1, 2, 3, 4, 5, with

|Ψ1〉 =
1

2

(

|00〉+ e4πi/5|01〉+ e2πi/5|10〉+ e−4πi/5|11〉
)

,

|Ψ2〉 =
1

2

(

|00〉+ e−2πi/5|01〉+ e4πi/5|10〉+ e2πi/5|11〉
)

,

|Ψ3〉 =
1

2

(

|00〉+ e2πi/5|01〉+ e−4πi/5|10〉+ e−2πi/5|11〉
)

,

|Ψ4〉 =
1

2

(

|00〉+ e−4πi/5|01〉+ e−2πi/5|10〉+ e4πi/5|11〉
)

,

|Ψ5〉 =
1

2
(|00〉+ |01〉+ |10〉+ |11〉) . (12)

The failure operator in this case is Πf = DΨ1/N . We now proceed to the proof of Theorem 4.

III. PROOF OF THEOREM 4

We begin by noting that Lemma 5 applies to any number of parties, including when there is only one.
Therefore, if we find an optimal global measurement under the restriction that it acts only on H, then this
measurement is also optimal without such a restriction. Then, according to Corollary 3, we can find an
optimal measurement by considering M ({wj}), defined by (9) and the sentence which precedes it, and then
minimizing the probability of failure over all choices of the weights, wj . Inserting (4) into (9), we have

Πf =
D

N

N∑

j=1

Ψj −
N∑

j=2

wjΨj ,

=
D

N
Ψ1 +

N∑

j=2

(
D

N
− wj)Ψj . (13)

For each l 6= 1, define a dual basis for the D states obtained by omitting |Ψl〉 from the full set {|Ψj〉}Nj=1.

Denote these bases—one basis for each l—as |ξ(l)k 〉, which satisfy

〈ξ(l)k |Ψj〉 = δjk ∀j, k 6= l. (14)

Let us first show that
∣
∣
∣〈ξ(l)k |Ψl〉

∣
∣
∣ = 1. Recalling the comment in the sentence following (7), we have

0 =

N∑

j=1

e2πij/N |Ψj〉. (15)
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Since |ξ(l)k 〉 is orthogonal to |Ψj〉 ∀j 6= k, l, then multiplying (15) from the left by 〈ξ(l)k | yields

0 = e2πik/N + e2πil/N 〈ξ(l)k |Ψl〉, (16)

and the desired result follows immediately. Recalling that Πf ≥ 0, we now have from (13) that

0 ≤ 〈ξ(l)k |Πf |ξ(l)k 〉 = D

N
− wk + (

D

N
− wl)

∣
∣
∣〈ξ(l)k |Ψl〉

∣
∣
∣

2

,

(17)

or

wk + wl ≤
2D

N
, ∀k, l 6= 1, (18)

a result we will use below.
We now turn to the failure probability,

Pr(f) =
1

D

N∑

j=2

Tr (ΠfΦj) ,

=
1

D

N∑

j=2

Tr

([

I −
N∑

k=2

wkΨk

]

Φj

)

,

= 1− 1

D

N∑

j=2

qjwj , (19)

where we have used (9) followed by (8), and defined qj = |〈Φj |Ψj〉|2. The qj can be found by taking the
inner product of |Φk〉 with (15), obtaining

0 = e2πi/N 〈Φk|Ψ1〉+ e2πik/N 〈Φk|Ψk〉, (20)

which gives

qk = |〈Φk|Ψ1〉|2 . (21)

On the other hand, multiplying (4) by Φk and taking the trace, we have

N

D
= |〈Φk|Ψ1〉|2 + |〈Φk|Ψk〉|2 ,

= 2qk, (22)

having used (21) to obtain the last line. Hence,

qk =
N

2D
∀k = 2, . . . , N. (23)

Inserting this into (19), we have

Pr(f) = 1− N

2D2

N∑

j=2

wj . (24)

Let us now see what happens if ∃k(wk > D/N). Then,

N∑

j=2

wj =

N∑

2=j 6=k

wj + wk

≤
N∑

2=j 6=k

(
2D

N
− wk) + wk

= (N − 2)
2D

N
− (N − 3)wk

< (D − 1)
2D

N
− (D − 2)

D

N
=
D2

N
, (25)
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where we used (18) to obtain the second line, and the fact that D = N − 1 to get the last inequality.
Therefore, the maximum of this sum has wj = D/N ∀j = 2, . . . , N , because in this case

N∑

j=2

wj =
D2

N
. (26)

Maximizing this sum minimizes Pr(f), see (24), and since by (4) the latter choice of wj is a valid com-
plete measurement—having measurement operators {DΨj/N}Nj=1, with Πf = DΨ1/N—this is therefore our
optimal global measurement. From (24), we see that this measurement achieves

Pr(f) = 0.5, (27)

which is thus our optimal probability of failure. As each Ψj is a product operator, this measurement is
clearly separable. By Corollary 3 along with the fact, just demonstrated, that there is one and only one
set of {wj} that minimizes Pr(f), it is also the unique optimal measurement whose action is restricted to
H. Since every operator in this measurement is a tensor product of positive, rank-1 operators on P parties,
and noting that rank-1 positive operators are extreme rays in the convex cone of all positive operators and
therefore must be extreme in the convex cone generated by any set of positive operators, each local part

ψ
(α)
j of each Ψj is extreme in the collection of all ψ

(α)
j , for each party α. We thus see that eα = N ∀α, and

the sum of extreme rays yields
∑

α eα = PN > 2(N − 1), an extensive violation of Theorem 1. Therefore,
it is not possible to implement this measurement by finite-round LOCC acting on H.
By Lemma 5 we see that for these input states and any LOCC measurement on an enlarged Hilbert space,

there is an effectively identical LOCC measurement on H. The phrase “effectively identical” means that
the two measurements have the same set of outcomes (excluding those outcomes that can never occur, see
the appendix), where each outcome in the measurement on the enlarged space has the same probability
(and output state) as the corresponding outcome in the other measurement, which is a measurement that
acts only on H. Therefore, if there is a finite-round LOCC measurement on the enlarged Hilbert space that
achieves the optimal probability of success, then its “effectively identical” counterpart, which achieves the
same probabilities, is a finite-round LOCC measurement on H that also achieves that optimal probability of
success. This is a contradiction, since we’ve just seen that no such measurement on H exists, implying there
is no such LOCC measurement on the enlarged Hilbert space, either.2 We therefore see that no finite-round
LOCC protocol can be optimal, including those that act on an enlarged Hilbert space, and this completes
the proof of Theorem 4.

IV. CONCLUSIONS

We have presented a class of problems involving the unambiguous discrimination of quantum states, and
have shown in Theorem 4 that for each element in this class, there exists an optimal, separable measurement,
achieving the minimum possible failure probability of 0.5, which is the unique such measurement that acts
only on the space H spanned by the set of states to be discriminated. We then demonstrated the utility of
Theorem 1 of [1], a recently discovered necessary condition that a separable measurement can be implemented
by finite-round LOCC, by using the latter theorem to (easily) prove that this separable measurement cannot
be implemented by LOCC in any finite number of rounds. Finally, we showed that any LOCC measurement
on an enlarged Hilbert space must also be strictly less than optimal. We note that this class of problems is
infinitely large, having at least one element for each prime number N . (Generally it will, in fact, have more
than one element for any givenN , as long as D = N−1 is not the product of two primes.) Therefore, we have
solved an infinite set of unambiguous discrimination problems, each of which has an optimal measurement
that is separable, but for which there is no finite-round LOCC measurement that is optimal. Due to a result
of [19], this class of problems includes an infinite number of examples for each number of parties, P , and we
have included an explicit example here for the simplest system of two qubits, see (11).

2 Note that since Theorem 1 only provides a necessary condition for LOCC, it may well be the case that the measurement on

H′ satisfies the bound in that theorem, even when that measurement cannot be implemented by LOCC.
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If the parties are given multiple copies of the chosen state,

|Φ⊗n
j 〉 =

n copies
︷ ︸︸ ︷

|Φj〉 ⊗ · · · ⊗ |Φj〉, (28)

then one can use the same arguments used above for a single copy to also show that there exists an optimal
global measurement that is separable and that achieves the minimum possible Pr(f) = 2−n. This optimal
measurement consists of the Nn measurement operators {(D/N)nΨj1 ⊗Ψj2 ⊗ · · · ⊗Ψjn , jk = 1, . . . , N ∀k},
and one can easily show that this measurement cannot be implemented by finite-round LOCC, again by
using Theorem 1. However, there are now an infinite number of other measurements that act only on the
original Hilbert space and also achieve this same Pr(f), and we do not at present know whether any of these
are separable, let alone if they are LOCC. It is thus an open question whether or not LOCC is as good as
separable measurements for these states in the multiple-copy scenario.
For the single-copy case considered in this paper, we conjecture that the set of states SΦ cannot be

optimally unambiguously discriminated by LOCC even with an infinite number of rounds of communication.
We have discussed why we believe this is so in the conclusions of [1]. As an early step toward proving this
conjecture, we have recently managed to prove a result which implies the following conclusion about the
optimal measurement for this task, Mopt of Theorem 4: if there exists an LOCC protocol implementing
Mopt, then every branch of this protocol must continue for an infinite number of rounds. That is, in any
such protocol, no outcome of any intermediate measurement can be terminal—the parties must continue
measuring forever no matter what outcomes have been obtained in earlier rounds. While this result does
not in itself prove the conjecture, it does strengthen our belief that Mopt cannot be implemented by LOCC
even with an infinite number of rounds, and we hope to find a full proof of this result in the not-too-distant
future.
Acknowledgments — The author would like to thank Li Yu for helpful comments, and an anonymous referee
for asking about the possibility of measurements on an enlarged Hilbert space, a question which led directly
to Lemma 5. This work has been supported in part by the National Science Foundation through Grant No.
1205931.

Appendix: Proof of Lemma 5

Consider any measurement on the enlarged Hilbert space H′ and suppose the Kraus operators for that
measurement are the set {Kj}. Define Π = Π1 ⊗ Π2 ⊗ . . . to be the projector (from H′) onto the original
system H. Then, the set of Kraus operators, {KjΠ, I

′ − Π}, is a complete measurement on H′, where I ′ is
the identity operator on H′. There is no guarantee that I ′ −Π is a product operator, but one can write

I ′ −Π = (I ′1 −Π1)⊗ I ′2 ⊗ . . .⊗ I ′P +Π1 ⊗ (I ′2 −Π2)⊗ I ′3 ⊗ . . .⊗ I ′P + . . .

+Π1 ⊗Π2 ⊗ . . .⊗ΠP−1 ⊗ (I ′P −ΠP ), (A.1)

which as we will see in a moment is a sum of product operators that, along with Π, can be implemented
by LOCC. Now suppose the measurement under consideration, which acts on the larger space, can be
implemented by LOCC using, say, protocol L. Then, consider the LOCC protocol consisting of protocol L
preceded by a series of measurements as follows: Party 1 starts out by doing a two-outcome measurement
{Π1, I

′
1 −Π1}. If she gets the second outcome, they terminate the protocol, but otherwise party 2 measures

{Π2, I
′
2−Π2}. If he gets the second outcome, they terminate, but otherwise party 3 measures {Π3, I

′
3−Π3},

and so on until all parties have done this, after which they proceed with protocol L. Now, since we consider
only input states supported on H, I ′1 − Π1 has zero probability of occurrence, as do the other outcomes
I ′α − Πα for each party α. Under these circumstances, the modification of protocol L becomes an LOCC
measurement acting on the original space H alone, which has the exact same probabilities as does protocol
L, and in fact, the output state for each branch of the protocol is also identical in the two cases.
Or perhaps it is more precise to put it this way: Since outcomes I ′α − Πα have zero probability of suc-

cess, nothing changes if we simply begin at the point where Π has been implemented (after all P parties
have performed their two-outcome measurements {Πα, I

′
α − Πα}). From a purely technical perspective, we

can’t really do this on the enlarged space, because then the POVM elements don’t represent a complete
measurement, but we can certainly do this on the original space instead of the enlarged one. Then this is
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an LOCC measurement on H, which achieves the exact same result as does protocol L. Indeed in a matrix
representation, we can write Π = diag (IH, 0H⊥) and

KjΠ =
(

K̃j 0̃
)

, (A.2)

where IH is the identity operator on H, K̃j is an operator that acts only on H, and 0H⊥ and 0̃ are zero
operators that act only on H⊥, which we define to be the orthogonal complement of H in H′. Note that
whereas 0H⊥ is a square matrix, K̃j and 0̃ need not be square; they may map to a space larger or smaller
than that on which they act, but both map to the same output space, say Hout, which is also the output
space for the operator on H′ that we started with, Kj . Then the matrix K̃j represents an operator that acts

on H (and whose output is Hout), and the collection of these operators constitutes a measurement {K̃j}
acting only on H, which is effectively identical to the measurement {Kj} when the latter acts only on inputs

that are confined to H. That is, measurement {K̃j}, which is a measurement that acts only on H, achieves
exactly what is achieved when {Kj} acts on inputs that are confined to H. This completes the proof. �
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