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In quantum information theory, there is an explicit mapping between general unitary dynamics
and Hermitian ground state eigenvalue problems known as the Feynman-Kitaev Clock Hamilto-
nian. A prominent family of methods for the study of quantum ground states are quantum Monte
Carlo methods, and recently the full configuration interaction quantum Monte Carlo (FCIQMC)
method has demonstrated great promise for practical systems. We combine the Feynman-Kitaev
Clock Hamiltonian with FCIQMC to formulate a new technique for the study of quantum dynam-
ics problems. Numerical examples using quantum circuits are provided as well as a technique to
further mitigate the sign problem through time-dependent basis rotations. Moreover, this method
allows one to combine the parallelism of Monte Carlo techniques with the locality of time to yield
an effective parallel-in-time simulation technique.

I. INTRODUCTION

Understanding the evolution of quantum systems is
a central problem in physics and the design of emerg-
ing quantum technologies. However, exact simulations
of quantum dynamics suffer from the so-called curse of
dimensionality [1]. That is, the dimension of the Hilbert
space grows exponentially with the size of the physical
system. An effective remedy for the curse of dimension-
ality in some classical systems has been the use of Monte
Carlo methods, which in many cases has an error with re-
spect to number of samples that is independent of the di-
mension of the simulated system [2]. Unfortunately this
favorable scaling is often lost in quantum systems of inter-
est due to the emergence of the famous sign problem. In
particular, it has hindered the use of Monte Carlo meth-
ods for fermionic systems, where it is sometimes called
“the fermion sign problem”, and for real-time dynamics
of general quantum systems, where it is known as “the
dynamical sign problem”. The generic sign problem has
been proven to belong to the computational complexity
class NP-Complete [3], and recent studies of complexity
have refined knowledge about the computational power
of sign-problem free (or “stoquastic”) Hamiltonians [4, 5].
However, these results do not preclude the effective use of
these methods on many interesting instances of physical
problems.

In particular, despite the generic challenges of the sign
problem, Monte Carlo methods have been used with
great success in the study of electronic systems, providing
a standard of accuracy in quantum chemistry and con-
densed matter [6–10]. In some of these methods, such as
fixed node diffusion Monte Carlo, the use of a trial wave-
function allows one to approximately remove the compli-
cations of the sign problem at the cost of a small bias in
the resulting energy. One alternative to such an approx-
imation is the use of interacting walker methods [11],
which attempt to solve the problem exactly without the
bias introduced by a trial function. Recently, Booth et. al
introduced an interacting walker method in the discrete
basis of Slater determinants called Full Configuration In-

teraction Quantum Monte Carlo (FCIQMC) [12]. The
sign problem in the context of this algorithm has been
studied in some detail [13–15] and it has been successfully
applied to both small molecular systems of chemical in-
terest and extended bulk systems [16, 17].

The use of Monte Carlo methods to study the real-time
dynamics of generic quantum systems has been compar-
atively less prevalent [18]. The dynamical sign problem
may become more severe both with the size of the system,
and duration for which it is simulated [19–21]. Despite
these challenges, advances are being made in the treat-
ment of these problems, including hybridization of Monte
Carlo techniques with other methods [22–26].

The sign problem has been studied in the context of
quantum computation, where it is known that a suffi-
cient condition for efficient probabilistic classical simula-
tion of the adiabatic evolution of a quantum system using
Monte Carlo methods is that the Hamiltonian governing
the quantum system is sign problem free (also known
as stoquastic) and frustration free [4, 5, 27]. Projector
Monte Carlo algorithms have been developed specifically
for this type of problem [4, 28]. Moreover, the use of
tools from quantum information allows any generic uni-
tary evolution of a quantum system to be written as the
ground state eigenvalue problem of a Hermitian Hamil-
tonian [29–31]. In this work, we exploit this equivalence
to adapt the interacting walker method introduced by
Booth et. al [12] to treat the dynamical sign problem
with a method designed for the fermion sign problem.

The paper is organized as follows. First, we review the
time-embedded discrete variational principle [31] and de-
rive from it the Clock Hamiltonian [29–31], which are the
essential tools for writing a general unitary evolution as a
ground state eigenvalue problem of a Hermitian Hamilto-
nian. We then review the FCIQMC method and adapt it
for application to the Clock Hamiltonian. A discussion of
the theoretical and practical manifestation of the dynam-
ical sign problem in this setting follows with numerical
examples from quantum computation. Finally, we intro-
duce a general framework of basis rotations which can
be used to ameliorate the sign problem and study the



2

performance of this method when used in parallel com-
putation.

II. DYNAMICS AS A GROUND STATE
PROBLEM

It has been shown that any unitary quantum evolution
may be formulated as a ground state eigenvalue problem
with applications to classical simulation of quantum sys-
tems [31]. We briefly review the relevant results here so
that this work remains self-contained.

Consider a quantum system that is described at dis-
crete time steps t by a normalized wavefunction |Ψt〉.
The dynamics of this system are described by a sequence
of unitary operators {Ut} such that Ut |Ψt〉 = |Ψt+1〉 and

U†t |Ψt+1〉 = |Ψt〉. In the case of simulating Hamiltonian
dynamics, these Ut could be obtained from a Suzuki-
Trotter factorization of the total evolution [32, 33]. How-
ever, we stress that explicit construction of a full unitary
operator Ut is never required, only the ability to effi-
ciently evaluate matrix elements between different phys-
ical states as detailed in a previous work [31]. From the
properties of unitary evolution, the following is clear:

2− 〈Ψt+1|Ut |Ψt〉 − 〈Ψt|U†t |Ψt+1〉 = 0. (1)

Moreover, if the wavefunctions at each point in time
are only approximately known (but normalized) then∑

t

(
2− 〈Ψt+1|Ut |Ψt〉 − 〈Ψt|U†t |Ψt+1〉

)
≥ 0 (2)

where equality holds only in the case where the wavefunc-
tion represents an exact, valid evolution of the quantum
system. To consider all moments in time simultaneously,
we extend the physical Hilbert space with an ancillary
quantum system to denote time. This ancillary time reg-
ister takes on integer values t and is orthonormal such
that 〈t′|t〉 = δt,t′ . With this construction, we see that by
defining

H′ =
1

2

(∑
t

I ⊗ |t〉 〈t| − Ut ⊗ |t+ 1〉 〈t|

−U†t ⊗ |t〉 〈t+ 1|+ I |t+ 1〉 〈t+ 1|
) (3)

which acts on the composite system-time Hilbert space,
all valid time evolutions minimize

S =
∑
t,t′

〈t′| 〈Ψt′ |H′ |Ψt〉 |t〉 . (4)

Note that we have adopted the convention of script let-
ters for operators acting in the system-time Hilbert space
such as H′ as opposed to operators only acting on the
system such as Ut. The time-embedded discrete varia-
tional principle immediately follows, which simply states

that this quantity is stationary under variations of the
wavefunction δ |Ψt〉 for all valid time evolutions, or

δS = δ
∑
t,t′

〈t′| 〈Ψt′ |H′ |Ψt〉 |t〉 = 0 (5)

To select a particular evolution of interest, one may
introduce a penalty operator that fixes the state of the
system at a given time. Typically, this might represent a
known initial state, and this operator in the system-time
Hilbert space is given by

C0 = (I − |Ψ0〉 〈Ψ0|)⊗ |0〉 〈0| . (6)

The minimization of a Hermitian quadratic form con-
strained to have unit norm is equivalent to the eigenvalue
problem for the corresponding Hamiltonian. We intro-
duce the Lagrange multiplier λ to enforce normalization.
As both S and C0 are Hermitian by construction, mini-
mization of

L =
∑
t,t′

〈t′| 〈Ψt′ |H′ + C0 |Ψt〉 |t〉

− λ

∑
t,t′

〈t′| 〈Ψt′ |Ψt〉 |t〉 − 1

 (7)

is equivalent to solving for the eigenvector corresponding
to the smallest eigenvalue of the Hermitian operator

H = H′ + C0 (8)

which we refer to as the Clock Hamiltonian. This Hamil-
tonian has a unique ground state with eigenvalue 0 given
by the history state,

|Φ〉 =
1√
T

∑
t

|Ψt〉 ⊗ |t〉 (9)

which encodes the entire evolution of the quantum sys-
tem. Thus, the quantum dynamics of the physical system
can be obtained by finding the ground state eigenvector
of H.

III. FCIQMC FOR THE CLOCK HAMILTONIAN

The Full Configuration Interaction Quantum Monte
Carlo (FCIQMC) method was introduced by Booth et.
al as a method to accurately find the ground state for
electronic structure problems in a basis of Slater determi-
nants without appealing to the fixed node approximation
to eliminate the fermion sign problem [12]. We review the
basics of the theory behind this method and show how it
can be adapted for the Clock Hamiltonian H, such that
it simulates the full time evolution of a quantum system.

Let |Φi〉 and λi be the eigenvectors and corresponding
eigenvalues of H. Any vector |Ψ〉 in the system-time
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Hilbert space acted upon by H can be decomposed in
terms of the eigenvectors of H such that

|Ψ〉 =
∑
i

ci |Φi〉 (10)

It follows that for any |Ψ〉 not orthogonal to the ground
state of the Clock Hamiltonian, |Φ0〉, that

lim
τ→∞

e−τH |Ψ〉 = lim
τ→∞

∑
i

e−τλici |Φi〉 ∝ |Φ0〉 (11)

Because H trivially commutes with itself, we may break
this operator into the successive application of many op-
erators, such that for a large number of slices N of a finite
τ ,

e−τH =
(
e−

τ
NH
)N ≈ (1− δτH)

N
(12)

where δτ = τ/N . Note that the linearized time propa-
gator used here is both simple to implement for discrete
systems as well as unbiased in the final (τ → ∞) result
given some restrictions on δτ [34]. Thus with a prescrip-
tion to stochastically apply the operator

G = (1− δτH) (13)

repeatedly to any vector in the system-time Hilbert
space, we can simulate the quantum dynamics of
the physical system. τ is sometimes interpreted as
imaginary-time by analogy to the Wick-rotated time-
dependent Schrödinger equation, however we will only
refer to τ as “simulation time” here, to avoid confusion
with the simultaneous presence of real and imaginary-
time.

To represent a vector in the system-time Hilbert space,
we introduce discrete walkers represented by {i, t} with
associated real and imaginary integer weights R({i, t})
and I({i, t}). These walkers correspond to a single
system-time configuration. The indices correspond to
a system state |i〉 at time t with a complex integer
weight defined by its real and imaginary components,
W ({k, t}) = R({k, t})+ iI({k, t}). Given a collection set
of these walkers, the corresponding normalized vector is
given by

|Ψ〉 =
1

K

∑
{i,t}

W ({i, t}) |i〉 ⊗ |t〉 (14)

where K is the normalization constant given by the sum
of the absolute value of all the complex integer walker
weights

K =
∑
{i,t}

|W ({i, t})|. (15)

We also use this notation to define matrix elements for
an operator O between a state |i〉 |t〉 and |j〉 |t′〉 as

O{j,t′},{i,t} = 〈j| 〈t′| O |i〉 |t〉 (16)

To stochastically apply the operator G to a vector rep-
resented by a set of such walkers, the following four steps
are used, adapted from the original implementation by
Booth et. al:

1. Spawning: This step addresses the off-diagonal el-
ements of G. For each walker {i, t}, we consider
Nr = R({i, t}) real parents and Ni = I({i, t})
imaginary parents, both with the correct associated
sign. For each of the real parents Ni, we select a
coupled state at an adjacent time and attempt to
spawn a real child and imaginary child {j, t′} with
probabilities

pRs ({j, t′}|{i, t}) =
δτ
∣∣R(H{j,t′},{i,t})

∣∣
pgt(t

′, t)pgs({j, t′}|{i, t})
(17)

pIs ({j, t′}|{i, t}) =
δτ
∣∣I(H{j,t′},{i,t})

∣∣
pgt(t

′, t)pgs({j, t′}|{i, t})
(18)

with corresponding signs

SR = −sign(R(H{j,t′},{i,t})) (19)

SI = −sign(I(H{j,t′},{i,t})) (20)

and for each of the imaginary parents Ni we select
a coupled state at an adjacent time and attempt to
spawn a real child and imaginary child {j, t′} with
probabilities

pRs ({j, t′}|{i, t}) =
δτ
∣∣I(H{j,t′},{i,t})

∣∣
pgt(t

′, t)pgs({j, t′}|{i, t})
(21)

pIs ({j, t′}|{i, t}) =
δτ
∣∣R(H{j,t′},{i,t})

∣∣
pgt(t

′, t)pgs({j, t′}|{i, t})
(22)

with corresponding signs

SR = sign(I(H{j,t′},{i,t})) (23)

SI = −sign(R(H{j,t′},{i,t})) (24)

where probabilities ps > 1 are handling by deter-
ministically spawning bpsc walkers and spawning
an additional walker with probability ps − bpsc.
δτ is the simulation time step and may be used
to control the rate of walker spawning. The func-
tions pgt(t

′, t) and pgs({j, t′}|{i, t}) are the prob-
ability of suggesting a walker at the new time t′

and of the particular state j respectively. For the
Clock Hamiltonian, an efficient choice of the time
generation function, pgt(t

′, t) is t′ = t ± 1 with
equal probability unless the walker is at a time
boundary, in which case it should move inward with
unit probability. The state generation probability
pgs({j, t′}|{i, t}) should be chosen based on knowl-
edge of the structure of Ut such that connected
states may reach each other. In this work we use a
uniform distribution where states connected by Ut
are selected randomly with equal probability, how-
ever this can be refined using knowledge of Ut.
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In this case, where {j, t′} 6= {i, t}, the matrix el-
ements H{j,t′},{i,t} may be written more explicitly
as

H{j,t′},{i,t} =


− 1

2 〈j|Ut |i〉 t′ = t+ 1

− 1
2 〈j|U

†
t |i〉 t′ = t− 1

0 otherwise

(25)

2. Diagonal Death/Cloning: This step addresses the
application of the diagonal of G. In this step, for
each parent walker {i, t} (not yet including child
walkers spawned in the last step), calculate

pd({i, t}) = δτ(H{i,t},{i,t} − S) (26)

where S is a shift that is used to control the pop-
ulation in the simulation. Now for each real and
imaginary parent Nr and Ni associated with {i, t},
if pd > 0, the parent is destroyed. If pd < 0, the
parent is cloned with a probability |pd|, handling
instances of greater than unit probabilities as in
the previous step.

In the case of the Clock Hamiltonian, the diagonal
matrix elements take on a simple form

H{i,t},{i,t} =


1/2 + (1− |〈i|Ψ0〉|2) t = 0

1/2 t = T − 1

1 otherwise

(27)

3. Annihilation: In this step, all previously existing
and newly spawned walkers are searched, and any
which match are combined such that both their real
and imaginary components are summed. In the
event that any walker ends up with 0 total weight,
it is removed entirely from the simulation. In the
case of the Clock Hamiltonian, it is advantageous
to store walkers grouped by time, such that in par-
allel implementations the simulation can be easily
split along this dimension. This will be elaborated
upon later. Within each group it is advisable to use
any natural ordering present on the basis states to
enable binary search that can locate identical walk-
ers in a time that is logarithmic in the number of
walkers at a given time. Alternatively one can use
hash tables to facilitate annihilation [35].

A single iteration of the above algorithm is cartooned
in Fig. 1. By using this procedure, the operator G is iter-
atively applied until the state of walkers is equilibrated at
some simulation time τ > τeq, with a number of walkers
Nw. The average of some observable O may be estimated
at simulation time τ according to

〈O〉 (τ) =
〈Φ(τ)|O |Φ(τ)〉
〈Φ(τ)|Φ(τ)〉 (28)

By averaging over the simulation time τ and correcting
for the autocorrelation time of the quantity 〈O〉 using

SpawningDiagonal 
Death

Annihilation

FIG. 1. (Color online) A schematic representation of a single
iteration of the FCIQMC algorithm for the Clock Hamilto-
nian. The larger squares represent real-time, and sub-squares
represent the possible quantum states occupied by either posi-
tive (blue) or negative (red) walkers. In each iteration, the set
of parents spawns potential children to adjacent times, with
parentage being indicated by dotted lines. Simultaneously the
set of parent walkers are considered for diagonal death. Fi-
nally, the remaining set of parents and spawned children are
combined, allowing walkers with opposing signs at the same
state and time to annihilate.

standard statistical procedures, the average may be con-
verged to the desired precision. In general, however, the
simulation time averaged quantity 〈O〉τ may be biased
due to the sign problem [13–15]. This bias may be re-
moved to an arbitrary degree by increasing the number of
walkers Nw such that the state remains sign-coherent be-
tween steps. The number of walkers required to remove
the bias to a given precision depends both on the sever-
ity of the sign problem and the amount of Hilbert space
the physical problem occupies [13–15]. To this end, we
define a problem-dependent number nc such that when
Nw > nc, the time averaged quantity 〈O〉τ is accurate to
the desired precision. Because this is an NP-Complete
problem, one must expect that in general, nc is on the
order of the dimension of the Hilbert space, D, that is,
it grows exponentially with the size of the system and
linearly with real-time. However, for many systems of
interest in ground state problems it has been found that
nc << D [15–17], and one might expect the same to be
true for some dynamical problems. We now turn our at-
tention to the scaling and properties of nc for dynamical
systems.
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IV. MANIFESTATION OF THE SIGN
PROBLEM

The conditions for the efficient simulation of a Hamil-
tonian on a classical computer have been studied in the
context of quantum complexity theory. It is known that
if a Hamiltonian is frustration free and has real, non-
positive off-diagonal elements in a standard basis (sto-
quastic) that it may be probabilistically simulated to a
set precision in a time that is polynomial in the size of
the system [4, 5].

For practical purposes, there are limitations on the
system operators one may simulate. In particular, the
system operators must be the sum of a polynomial num-
ber of terms. This simply originates from the need to
be able to efficiently evaluate matrix elements of a given
state. The interaction of at most k particles, or k−local
interactions, in the physical system is a sufficient but not
necessary condition for this to be true. The Clock Hamil-
tonian construction has also been recently generalized to
open quantum systems [36], where even in this case a
2−local construction is generally possible with the use of
gadgets. Alternatively, if the Clock Hamiltonian is con-
structed from a sequence of unitary gates that act on at
most k qubits in quantum computation, then the Clock
Hamiltonian will also satisfy this requirement.

The presence of frustration in interacting systems can
cause the autocorrelation time of measured observables
to diverge exponentially, rendering their efficient simula-
tion intractable even in cases where the Hamiltonian is
bosonic or sign problem free [3, 37]. It has been proven
generally that the Clock Hamiltonian is frustration free,
with a unique ground state separated from the first ex-
cited state with a gap of O(1/T 2) where T is the number
of discrete time steps being considered at once.

If an operator is stoquastic (or sign problem free), then
the off-diagonal elements that correspond to transitions
in a Monte Carlo simulation all be non-positive. The op-
erator G will contain only positive transition probabilities
in this case and have a ground state corresponding to a
classical probability distribution by the Perron-Frobenius
theorem [4, 5]. In the context of the FCIQMC method
introduced, this means that walkers will never change
signs throughout the simulation, and all averages will be
sign-coherent and unbiased independent of the number of
walkers Nw. In the Clock Hamiltonian, the off-diagonal
elements correspond to the set of unitary operators with

their adjoints {Ut, U†t }, and the penalty term C0. For the

standard computational initial state (|0〉⊗N ), the penalty
term C0 has a fixed sign, and thus the Clock Hamilto-

nian is stoquastic if {Ut, U†t } represented in the standard
basis has all real positive entries, yielding non-positive
off-diagonal entries in the Clock Hamiltonian.

Given the ubiquity of k−local interactions in physical
problems and the rigorous proof that the Clock Hamilto-
nian is frustration free, we will take these two conditions
as given and consider more carefully the stoquastic con-
dition. Consider a simple example of a unitary evolution

that may be simulated on a classical computer efficiently,
namely reversible classical computational. All reversible
classical circuits may be expressed in terms of Toffoli gate
sequences, which is unitary and acts to switch a target bit
conditional on the state of two control bits. In the stan-
dard computational basis it has a representation given
by

Tof =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(29)

The Clock Hamiltonian when constructed with unitary
Toffoli gates is stoquastic and nc ≈ 1. More explicitly,
each Ut is a Toffoli gate acting on different qubits for all
times t. Although a stoquastic Hamiltonian is sufficient
for this to be the case, it is not a necessary condition.
To see this, consider a slightly different set of unitary
operators, namely the standard Pauli group gates, Xi,
Yi, and Zi in combination with the CNOT gate. These
gates have the following unitary representations in the
standard computational basis

X =

(
0 1
1 0

)
(30)

Y =

(
0 −i
i 0

)
(31)

Z =

(
1 0
0 −1

)
(32)

CNOT =

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (33)

Considering for now only the computational basis we sim-
ulate in (a restriction we later lift), it is clear that given
the complex entries and varying signs of the off-diagonals,
that a Clock Hamiltonian built from this gate set will not
be stoquastic if even a single Y or Z gate is used. How-
ever these gates also have the property that they map
single configurations to single configurations, and as as
a result no interference occurs, yielding all sign coherent
averages and nc ≈ 1. We call this type of transforma-
tion, which is configuration number preserving, “quasi-
classical”, in contrast to classical which we define as con-
figuration number preserving as well as phase preserving.
Thus a stoquastic Clock Hamiltonian is a sufficient, but
not necessary condition for the simulation procedure to
be sign-problem free.

Consider a slightly more general local rotation R pa-
rameterized by an angle θ

R(θ) =

(
cos θ sin θ
− sin θ cos θ

)
(34)
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In this case, the value of nc as a function of system size is
more complex. These represent the real-time evolutions
of local spin Hamiltonians for systems of spin- 12 particles.

0 1 2 3 4 5 6 7 8

Mean number of walkers

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

〈σ
z
〉

×105

FIG. 2. (Color online) Computed expectation value for Sz for
a single qubit at the final time in the simulation as a func-
tion of the average number of walkers kept in the simulation.
There are 11 total qubits in the simulation. It is apparent
the system exhibits a sharp transition between a totally sign
incoherent sampling where all averages become zero, and a
sign coherent region where the averages begin to converge to
the appropriate value.

In Fig. 2 we consider a single rotation R(θ) with
θ = 5π/32 applied uniformly to 11 qubits initialized to

|0〉⊗N . This sequence of rotations could be applied uni-
formly to all qubits at once, as the individual operations
trivially commute. However, maintaining the locality of
the operations, that is, allowing each gate to act only on
a single qubit facilitates the sampling procedure by re-
stricting the number of connected states for each walker
to those that may be generated by local transformations
on each qubit. In contrast, the application of all rota-
tions simultaneously in principle connects each walker to
2N states, which can make it difficult to take advantage
of structure present in the specific rotations.

As the Clock Hamiltonian in this simulation is nei-
ther stoquastic nor quasi-classical, one observes a sign-
incoherent region for a small number of walkers, where
all averages tend towards 0, until some critical thresh-
old Nw > nc is reached where a transition occurs to
sign-coherent sampling, and the average converges to the
true value. We note that some implementations of the
FCIQMC algorithm have used the diagonal shift S as a
proxy for convergence [12], but we did not observe a sim-
ilar plateau trend here. The history state being sampled
in this case is given by

|Ψ〉 =
∑
t

1√
T

(R(θ) |0〉)⊗t |0〉⊗T−t |t〉 (35)

The formal structure of this evolution is quite similar
for all values of θ, however the states that result can
exhibit quite different features with respect to the sign
problem in sampling. In Fig. 3 we examine the same
circuit, but include many different rotation angles. One
sees that not only does the value nc change as a function
of rotation angle, but the rate of the transition is quite
different as well, favoring sharper, earlier transitions for
rotations that are closer to quasi-classical (θ = 0).

0 1 2 3 4 5 6 7 8

Mean number of walkers

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

〈σ
z
〉
×105

0
π/16
π/8
3π/16

FIG. 3. (Color online) Computed expectation value for Sz for
a single qubit at the final time in the simulation as a function
of the average number of walkers kept in the simulation and
the rotation angle used in the simulation. The rotation angle
θ is indicated by the line label. The simulation contains 11
total qubits for all rotation angles. One sees that the closer
the rotation is to quasi-classical, the sharper and earlier the
transition to sign coherent sampling.

V. MITIGATING THE SIGN PROBLEM

In the last section we considered the impact of sign
problem as it related to local rotations (or the dynamics
of distinguishable non-interacting particles). The appar-
ent challenges in this domain are unsettling given that
trivial solutions are known for this problem. Here we
propose a simple scheme to mitigate the sign problem to
an arbitrary extent using preliminary computation.

It is known that the sign problem is generically basis
dependent. To this end we propose an analogous ap-
proach to the interaction picture in quantum dynamics,
where the walkers at each point in time are expressed in
a new basis determined by a generic time-dependent uni-
tary rotation given by {Bt}. The evolution operators are
also dressed by this change such that in the new basis,
the Clock Hamiltonian is constructed from the rotated
operators given by

U ′t = B†t+1UtBt (36)
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|0〉 R(θ) •

|0〉 R(θ) •

|0〉 R(θ) •

|0〉 R(θ)

· · ·
FIG. 4. (Color online) The quantum circuit diagram for the
circuit used to test the efficacy of time-dependent local rota-
tions in ameliorating the sign problem. The angle used in this
case is θ = 0.49. We compare the results from this circuit as a
function of the number of controls that are removed from the
NOT gates (crossed circle here), and whether time dependent
local basis rotations are utilized. The controls are removed
from the end of the circuit first.

Moreover, the computation of any Hermitian observ-
able O must also take into consideration the new basis,
such that

〈O〉 (τ) =
〈Φ(τ)| B†tOBt |Φ(τ)〉
〈Φ(τ)|Φ(τ)〉 (37)

If one finds a set of {Bt} that renders the Clock Hamil-
tonian stoquastic or quasi-classical, the resulting Hamil-
tonian may be sampled readily. One expects that in gen-
eral, finding this basis must be at least as difficult as
solving exactly the problem of the quantum evolution.
In fact, it is easy to see that one may choose the exact
evolution as the set of basis rotations, and that this ren-
ders the Clock Hamiltonian stoquastic and trivial, such
that the evolution is dictated by the identity at all times.
Of course the price one must pay for this is that the com-
putation of observables requires the full evolution to be
known.

However, as was seen above, it is not necessary for
the Clock Hamiltonian to be rendered completely triv-
ial. Even approaching a quasi-classical Hamiltonian in
an approximate sense can greatly reduce the sampling
costs. For some instances, one may find an approximate
set of rotations that make the Clock Hamiltonian nearly
stoquastic or quasi-classical, and the remainder of the
sign problem can be handled by maintaining a reason-
able number of walkers Nw in the simulation. As an
example of this procedure, we consider the simple case
where {Bt} are determined entirely by the local rotations
in a quantum circuit. Specifically, for local rotations,
Bt =

∏0
t′<t Ut′ , where Ut′ is replaced by I for two- or

more qubit operations. It is clear that for circuits con-
sisting of only local rotations, as in the previous section,
this is equivalent to exact evolution and the resulting
Clock Hamiltonian becomes trivial (U ′t = I ∀ t′). To
study how this works in the non-trivial case, we examine

a similar circuit of local rotations, but now with a vari-
able number of CNOT gates included. This elucidates to
what extent the use of basis rotations can mitigate the
sign problem when they are not an exact solution to the
dynamics considered. A depiction of this circuit is given
in Fig. 4.
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FIG. 5. (Color online) The mean value of a spin observable is
plotted as a function of the mean number of walkers labeled
by the number of CNOT gates both with local basis rotation(-
Rot) and without. It is seen that even for a relatively high
proportion of CNOT gates, the rotated basis performs far
better than the non-rotated basis, requiring a lower number
of walkers to reach sign-coherent sampling.

In Fig. 5 we consider a simple quantum circuit consist-
ing of a series of local rotations followed by NOT gates,
with a variable number of the NOT gates under control.
With the given rotation angle (θ = 0.49), these are en-
tangling operations not covered by the simple local basis
rotation scheme we use here. However, it is seen that
even for 8 controlled NOT gates, the use of local basis
rotations dramatically reduces the number of walkers re-
quired to reach sign-coherent sampling, indicating this
scheme can be computationally effective even for sim-
ulations containing a considerable fraction of two-qubit
entangling operations. In this figure, the 4 and 8 CNOT
simulations in the unrotated basis suffer similar biases
due to the fact that local rotations are capable of mak-
ing the sign problem difficult independent of the number
of CNOT operations. The rotated basis is able to re-
pair much of the sign problem introduced by the local
rotations, but is less efficient on the 8 CNOT problem in
comparison with the 4 CNOT problem. Further tests of
more complex quantum circuits are needed to determine
the efficiency of different rotation schemes as a function
of the structure of the quantum circuit.
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(a)

(b)

FIG. 6. (Color online) A schematic representation of the
communication patterns the annihilation step of interacting
walker Monte Carlo schemes, where the boxes represent dif-
ferent MPI processes and the ellipsis represents the rest of
the processes. In the case of the Clock Hamiltonian (a), a
time domain decomposition allows one to restrict communi-
cation to only nearest neighbor processes, facilitating simple,
constant time communication amenable to the architecture
of modern parallel computers. In the more general case (b),
a clear partitioning may not be readily achievable, and all
processes may need to communicate with all other processes,
creating a bottleneck.

VI. PARALLEL-IN-TIME SCALING

Monte Carlo methods are often championed as the ul-
timate parallel algorithms, associated with the phrase
“embarrassingly parallel”. Given the evolution of mod-
ern computational architectures towards many-core ar-
chitectures with slower clock speeds, Monte Carlo will
continue to play a growing role in the numerical simula-
tion of physics at the boundaries of our computational
capabilities. Interacting walker Monte Carlo methods,
can be more difficult to parallelize effectively due to the
annihilation step where communication of walkers is un-
avoidable.

In contrast to the most general interacting walker al-
gorithm, which may require heavy communication be-
tween all processes, the FCIQMC method applied to the
Clock Hamiltonian may take advantage of time-locality
to create an efficient parallel-in-time algorithm using the
standard method of domain decomposition in time. Us-
ing this construction, only processes containing adjacent
times need to communicate their child walkers, which
may be done simultaneously in a time that is constant
for the number of processes involved. This remains true
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FIG. 7. (Color online) A scaling study of our method im-
plementation with a fixed total problem size (strong scaling),
showing parallel efficiencies and speedups. The simulation
consisted of 11 qubits with 128 time points generated by
consecutive local rotations with θ ≈ 0.098. The simulation
maintained on average 106 walkers in each simulation-time
step and the wall clock time was measured to the point of an
equivalent number of statistical samples.

so long as the number of time steps under consideration
is larger than the number of processes in use, which is
typically the case. In the case that the number of pro-
cesses is much greater than the number of timesteps, this
scheme may still be used by blocking multiple processors
to each time, and utilizing an all-to-all communication
pattern within each block only. The difference between
these two communication patterns is highlighted in Fig.
6.

To demonstrate the scaling properties of this approach,
we consider the scaling as a function of the number of
processors for fixed total problem size, or strong scaling,
with our implementation. This benchmarking is done
on a standard Linux cluster composed of AMD Opteron
6376 processors. The parallel speedup with respect to
single core time as a function of the number of processors
is given in Fig 7. Here, we see that we are able to combine
the parallelism of Monte Carlo with the locality of time-
decomposition to achieve practical parallel efficiencies of
over 95% with 2 processors and 70% with 8 using a simple
MPI implementation on a commodity cluster.

VII. CONCLUSIONS

In this work we reviewed the mapping between uni-
tary dynamics and ground state eigenvalue problems. We
then showed how the FCIQMC method, a technique orig-
inally designed to ameliorate the fermionic sign problem
for ground state electronic systems, could be applied to
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quantum dynamics problems as a direct result of this
mapping. This establishes a potential research direction
for explicit connections between the fermionic and dy-
namical sign problems that plague quantum Monte Carlo
simulations, and provides a pathway for the transfer of
tools between the two domains.

The numerical consequences of the dynamical sign
problem in this context were studied using a few basic
quantum circuits. It was found that even local rota-
tions can exhibit a severe sign problem depending on
the form of the rotation and how different it is from a
quasi-classical operation. We then introduced a general
method analogous to the interaction picture in dynamics
or natural orbitals in the study of eigenstates that uses
basis rotations to mitigate the difficulty of the problem.
The costs and benefits of different types of rotations re-
quire further research, however we showed that even local
rotations can have a significant benefit for non-trivial cir-
cuits. Finally, we discussed the structure of the problem
in the context of parallel-in-time dynamics, and showed
high parallel efficiencies with only a basic MPI implemen-

tation on a commodity cluster.

Overall, we believe this is a promising new method
for the simulation of quantum dynamics. It clarifies the
bridge between dynamics and ground state problems and
is capable of effectively utilizing parallel computing archi-
tectures. While we have only demonstrated it for quan-
tum circuits, we believe it will be generally useful for the
study of quantum dynamics.
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