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We investigate the interaction of metastable 2S hydrogen atoms with a perfectly conducting wall,
including parity-breaking S–P mixing terms (with full account of retardation). The neighboring
2P1/2 and 2P3/2 levels are found to have a profound effect on the transition from the short-range,
nonrelativistic regime, to the retarded form of the Casimir–Polder interaction. The corresponding P
state admixtures to the metastable 2S state are calculated. We find the long-range asymptotics of
the retarded Casimir–Polder potentials and mixing amplitudes, for general excited states, including
a fully quantum electrodynamic treatment of the dipole-quadrupole mixing term. The decay width
of the metastable 2S state is roughly doubled even at a comparatively large distance of 918 atom
units (Bohr radii) from the perfect conductor. The magnitude of the calculated effects is compared
to the unexplained Sokolov effect.

PACS numbers: 34.35.+a,31.30.jh,12.20.Ds,42.50.Ct

I. INTRODUCTION

The investigation of atom-wall interactions for atoms
in contact with conducting materials has a long his-
tory. Starting from the works of Lennard–Jones [1],
Bardeen [2], Casimir and Polder [3], and Lifshitz [4], re-
search on related matters has found continuously growing
interest over the last decades [5–8]. In the non-retarded
regime (close range), the interaction energy scales as
1/Z3 with the atom-wall distance Z, while for atom-
wall distances large in comparison to a typical atomic
wavelength, the interaction energy scales as 1/Z4 (see
Chap. 8 of Ref. [9]). The leading term is given by vir-
tual dipole transitions, while multipole corrections have
recently been analyzed in Ref. [10]. The symmetry break-
ing induced by the wall leads to dipole-quadrupole mix-
ing terms, which lead to admixtures to metastable lev-
els [11, 12]. While this effect has been analyzed in the
non-retarded van-der-Waals regime [11, 12], a fully quan-
tum electrodynamic calculation of this effect would be of
obvious interest.
This fact is emphasized by the curious observa-

tion of a long-range, and conceivably super-long-range
(micrometer-scale) interaction of metastable hydrogen
2S atoms with a conducting surface (the so-called
Sokolov effect, see Refs. [13–16]). It is not far-fetched
to suspect that this effect could be due to a quantum
electrodynamically induced tail of the dipole-quadrupole
mixing term in the atom-wall interaction. Namely, for
the hydrogen 2S atom, the neighboring 2P1/2 and 2P3/2

levels are removed only by the Lamb shift and fine-
structure, respectively, while it is known that virtual
states of lower energy can induce long-range tails in atom-
wall interactions, as well as in the Lamb shift between
plates (see Refs. [17–26]). The large admixtures typi-
cally induced in atomic systems when a metastable level
couples to nearly degenerate states of opposite parity sug-
gest that a closer investigation of the hydrogen system is
warranted. Atomic units with ~ = 4πǫ0 = 1 and c = 1/α
are used throughout this Rapid Communication, where
α is the fine-structure constant. The electron charge is

denoted as e in Sec. II, while we set e = 1 in Sec. III.

II. RETARDATION OF THE ATOM-WALL

INTERACTION

The quantum electrodynamic (QED) length-gauge in-
teraction

HI = −e~r · ~E − e

2
ri rj ∂Ei/∂rj + . . . , (1)

follows naturally from the formalism of long-wavelength
QED interaction Hamiltonian [27, 28] (~r denotes the elec-
tron coordinate). In contrast to the vector potential, the
electric field strength (operator) is gauge-invariant (this
point has given rise to some discussion, see Ref. [29]) and
reads as [cf. Eq. (2.3) of Ref. [20]]

~E(~r) =

∞
∫

0

dL

∫R2

d2k‖

π

√
ω
{

a1(~k, L)(k̂‖ × êz) sin(Lz)

+a2(~k, L)

[

k̂‖
iL

ω
sin(Lz)− êz

k‖

ω
cos(Lz)

]}

× ei
~k‖·~r‖ + h.c. , (2)

where ~r = ~r‖ + z êz with ~r‖ = x êx + y êy, while ~k‖ =

kx êx + ky êy, while ~k⊥ = kz êz, and L ≡ |~k⊥|. The com-

mutator relation is [as(~k‖, L), a
†
s′(

~k‖, L)] = δss′ δ
(2)(~k‖ −

~k′‖) δ(L− L′) for the annihilation and creation operators

as and a†s. In order to evaluate the interaction Hamilto-
nian (1), one shifts z → Z + z where Z is the coordinate
of the atom’s center (nucleus). The proton is at (0, 0,Z),
while the atomic electron coordinates are (x, y,Z + z).
The surface of the perfect conductor is in the xy plane,
i.e., in the plane described by the points (x, y, 0). The
unperturbed Hamiltonian H0 is the sum of the free ra-
diation field and the unperturbed atom [see Eq. (2.1)
of Ref. [20] and Eq. (3.2) of Ref. [30]]. For a refer-
ence ground state |n〉, second-order perturbation theory
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leads to a known result given in Eq. (8.41) of Ref. [9] or
Eq. (27) of Ref. [10], which involve the symmetric sum
with imaginary frequency in the argument of the dynam-
ics polarizability Π(±iω). The Wick rotation of the vir-

tual photon integration contour, leads to the symmetriza-
tion iω ↔ −iω but cannot be done for excited reference
states. We use second-order perturbation theory to eval-

uate ∆E = 〈n|(−e~r · ~E) [1/(En −H ′
0)] (−e~r · ~E)|n〉 and

obtain [cf. the discussion following Eq. (2.12) of Ref. [20]],

∆E
.
=

e2

2π
(P.V.)

∑

q

∞
∫

0

dL

∞
∫

L

dω cos(2LZ)
L2
(

∣

∣〈n|~r‖|q〉
∣

∣

2
+ 2 |〈n|z|q〉|2

)

+ ω2
(

∣

∣〈n|~r‖|q〉
∣

∣

2 − 2 |〈n|z|q〉|2
)

Eq + ω − i δ
, (3)

where the identity
∫R3 d

3k = 2
∫ 2π

0 dϕ
∫∞

0 dL
∫∞

0 dω ω , with ω =
√

~k2‖ + k2z and L = |kz | has been used in order to

transform the integration measure. The virtual states are denoted a |q〉, and their energy difference to the reference
state is denoted as Eq ≡ Eq − En. In contrast to the velocity gauge [20], there is no seagull term to consider, and it
is not necessary to add the electrostatic interaction with the mirror charges by hand [31]. It is an in principle well
known (see the remarks following Eq. (A.22) in Appendix A of Ref. [32]), but sometimes forgotten wisdom that the
Coulomb interaction does not need to be quantized in the velocity gauge, see Ref. [31]. The integration with respect
to ω leads to logarithmic terms [see the Appendix of Ref. [20]]. After the subtraction of Z-independent terms (the
subtraction is denoted by the

.
= sign), one obtains

I1(χ)
.
=

∫ ∞

0

dL cos(2LZ) ln(|Eq + L|) = Eq
(

π [1 − ε(Eq)]
2χ

− T (χ)

χ
− πΘ(−Eq)

2 sin2(χ2 )

χ

)

, (4a)

I2(χ)
.
= − ∂2I1

∂χ2
= Eq

(

π [ε(Eq)− 1] + χ

χ3
+

2− χ2

χ3
T (χ)− 2

χ2
U(χ) + πΘ(−Eq)

∂2

∂χ2

2 sin2(χ2 )

χ

)

, (4b)

T (χ) = sin(χ)Ci(χ)− cos(χ) Si(χ) +
π

2
cos(χ) , χ = 2|Eq| Z , ε(Eq) = Θ(Eq)−Θ(−Eq) . (4c)

Here, Ci(χ) = −
∫∞

χ dt cos(t)
t and Si(χ) =

∫ χ

0 dt sin(t)
t , and U(χ) = ∂

∂χT (χ), while T (χ) = χ−1 − ∂
∂χU(χ). We confirm

the result given in Eq. (2.18) of Ref. [20] and represent the “distance-dependent Lamb shift” as

∆E
.
=
e2

2π

∑

q

E3
q

{

(

∣

∣〈n|~r‖|q〉
∣

∣

2 − 2 |〈n|z|q〉|2
)

[

π [ε(Eq)− 1]

2χ
− 1

χ2
+

T (χ)

χ
+ πΘ(−Eq)

1− cos(χ)

χ

]

(5)

−
(

∣

∣〈n|~r‖|q〉
∣

∣

2
+ 2 |〈n|z|q〉|2

)

[

π [ε(Eq)− 1] + χ

χ3
+

2− χ2

χ3
T (χ)− 2

χ2
U(χ) + πΘ(−Eq)

∂2

∂χ2

1− cos(χ)

χ

]}

.

We should perhaps clarify that the Z-independent contribution to the Lamb shift (the ordinary “free-space Lamb
shift”) is absorbed in the subtraction procedure denoted here by the “

.
=” sign in Eqs. (4), (5), (7) and (8). The

Z-dependent position of the energy level is obtained after adding the “free-space Lamb shift” L and “free-space fine
structure” F given in Eq. (12) to the Z-dependent energy shifts given in Eqs. (5) and (8). In the nonretardation
limit, the Z-dependent results given in Eqs. (5) and (8) are replaced by the respective terms of the nonretarded
potential (11). This (somewhat subtle) point is not fully discussed in previous works on the subject [17–21] and
therefore should be mentioned for absolute clarity.

The term −χ−2 in the coefficient multiplying
∣

∣〈n|~r‖|q〉
∣

∣

2 − 2 |〈n|~z|q〉|2 vanishes after summing over the entire
spectrum of virtual states; it is obtained naturally in the length gauge and otherwise cancels a term in the expansion
of the energy shift for large χ (even before the application of the sum rule, which is crucial in velocity gauge [20]). The

off-diagonal mixing term leads to to the matrix element ∆M = 〈m|(−e~r · ~E) [1/(En −H0)
′](− e

2r
i rj (∂Ei/∂rj)|n〉 +

〈m|h.c.|n〉,

∆M =
e2

4π
(P.V.)

∑

q

∞
∫

0

dL

∞
∫

L

dω
L sin(2LZ)

Eq + ω − iδ

(

L2 〈n|T2|m〉 − ω2 〈n|T1|m〉
)

, (6a)

〈m|T1|n〉 = 〈m|z|q〉 〈q|~r 2
‖ − 2 z2|n〉+ 〈m|h.c.|n〉 , (6b)

〈m|T2|n〉 = 〈m|z|q〉 〈q|~r 2
‖ − 2 z2|n〉 − 2 〈m|~r‖|q〉 · 〈q|~r‖ z|n〉+ 〈m|h.c.|n〉 . (6c)
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After the subtraction of Z-independent terms, the following two results for J1(χ) =
∫∞

0 dLL sin(2LZ) ln(|Eq + L|)
and J2(χ) = −∂2J1(χ)/∂χ

2 supplement the analytic integrals given in Eq. (4),

J1(χ)
.
= E2

q

(

ε(Eq)
(

π

2χ2
− T (χ)

χ2
+

U(χ)

χ

)

− π

2χ2
+ πΘ(−Eq)

2 sin2(χ2 )− χ sin(χ)

χ2

)

, (7a)

J2(χ)
.
= E2

q

(

3 π

χ4
+ ε(Eq)

[

4χ− 3π

χ4
+

3 (2− χ2)

χ4
T (χ) +

χ2 − 6

χ3
U(χ)

]

− πΘ(−Eq)
∂2

∂χ2

2 sin2(χ2 )− χ sin(χ)

χ2

)

. (7b)

We can finally give the complete result for the mixing term ∆M , with full account of retardation, as a sum over
virtual states |q〉,

∆M
.
=
e2

4π

∑

q

E4
q

{

〈m|T1|n〉
[

ε(Eq)
(

4 + πχ

2χ3
− T (χ)

χ2
+

U(χ)

χ

)

− π

2χ2
+ πΘ(−Eq)

2 sin2(χ2 )− χ sin(χ)

χ2

]

(8)

+ 〈m|T2|n〉
[

ε(Eq)
(

3π − 4χ

χ4
+

3(χ2 − 2)

χ4
T (χ) +

6− χ2

χ3
U(χ)

)

− 3π

χ4
+ πΘ(−Eq)

∂2

∂χ2

2 sin2(χ2 )− χ sin(χ)

χ2

]}

.

The energy variable Eq is defined with respect to the reference state; i.e., if one evaluates the |m〉-state admixture to
the reference state |n〉, then one sets Eq = Eq −En. For excited reference states, both results for ∆E given in Eq. (5)
as well as for ∆M in Eq. (8) contain long-range retardation tails for excited reference states,

∆E = e2
∑

q

Θ(−Eq)
[

|〈n|~r‖|q〉|2
(

E2
q cos(2EqZ)

2Z − Eq sin(2EqZ)

4Z2
− cos(2EqZ)

8Z3

)

− |〈n|z|q〉|2
(Eq sin(2 Eq Z)

Z2
+

cos(2EqZ)

4Z3

)]

− 1

8 πZ4

(

2Π‖ +Π⊥

)

, Z ≫ 1

Eq
,

Π‖ =
1

2

∑

q,±

2

Eq
〈n|~r‖|q〉 · 〈q|~r‖|n〉 , Π⊥ =

∑

q,±

2

Eq
|〈n|z|q〉|2 , Π(ω) =

e2

3

∑

±

〈

n

∣

∣

∣

∣

ri
(

1

Eq ± ω

)

ri
∣

∣

∣

∣

n

〉

, (9)

where Π‖ and Π⊥ are the longitudinal and transverse static polarizabilities (for the ground state, Π⊥ = Π‖ = Π(0)).
The mixing term has the following long-range asymptotics,

∆M = e2
∑

q

Θ(−Eq) 〈m|~r‖|q〉 · 〈q|~r‖ z|n〉
(

−
E3
q sin(2Eq Z)

4Z −
3 E2

q cos(2Eq Z)

8Z2
+

3 Eq sin(2Eq Z)

8Z3
+

3 E4
q cos(2Eq Z)

16Z4

)

+ e2
∑

q

Θ(−Eq) 〈m|z|q〉〈q|~r 2
‖ − 2z2|n〉

(

E2
q cos(2Eq Z)

8Z2
− 3 Eq sin(2Eq Z)

16Z3
− 3 cos(2Eq Z)

32Z4

)

(10)

+
e2

πZ5

∑

q

1

Eq

(

−1

8
〈m|z|q〉 〈q|~r 2

‖ |n〉+
1

4
〈m|z|q〉 〈q|z2|n〉+ 3

8
〈m|~r‖|q〉 · 〈q|~r‖ z|n〉

)

+ 〈m|h.c.|n〉 , Z ≫ 1

Eq
.

The results (5) and (8) will now be applied to metastable hydrogen.

III. ADMIXTURES TO METASTABLE

HYDROGEN

A. Nonretarded admixture

The results given in Eq. (5) and (8) have a rather in-
volved analytic structure. In the short-range limit, these
results can be compared to the static interaction of the
electron and proton [33, 34] with their respective mir-
ror charges. This interaction leads to the following non-

retarded potential (from now on we set the elementary
charge e = 1),

V =
1

2

(

− 1

2(z + Z)
+

2
√

x2 + y2 + (z + 2Z)2
− 1

2Z

)

= −
~r2‖ + 2z2

16Z3
+

3z (~r2‖ + 2z2)

32Z4
+ . . . (11)

where we ignore terms of order 1/Z5 and higher [35, 36].
After some tedious, but straightforward algebra, one can
convince oneself that the terms of order Z−3 and Z−4
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are in agreement with the short-range asymptotics of the
results given in Eqs. (5) and (8), i.e., in the regime Z ≪
1/Eq, which is equivalent to the limit χ → 0.
For close approach of the atom to the wall, the interac-

tion energy is well described by the static potential (11),
which necessitates a diagonalization of the Schrödinger
Hamiltonian plus the nonretarded potential V (both “di-
agonal” interaction and Lamb shift/fine structure terms,
as well as “mixing” terms) in the basis of the |2S1/2〉,
|2P1/2〉 and |2P3/2〉 Schrödinger–Pauli wave functions
with magnetic projection µ = +1/2, to form the man-
ifestly coupled states |S1/2〉, |P1/2〉, and |P3/2〉. We de-
note the (free-space) fine-structure and the Lamb shift
interval as

F = 1.66× 10−6 a.u. , L = 1.61× 10−7 a.u. , (12)

respectively. According to the adiabatic theorem [37–39],
the |S1/2〉 state eigenvector has the form

|S1/2〉 ≈ aS |2S1/2〉+ a 1

2

|2P1/2〉+ a 3

2

|2P3/2〉 , (13a)

aS = 1 , a 1

2

=

√
3

2

15

LZ4
, a 3

2

=

√

3

2

15

F Z4
, (13b)

1/L ≫ Z ≫ 1/L1/4 , 1/Z ≫ Z ≫ 1/F1/4 , (13c)

where we ignore higher-order terms in the expansion in
inverse powers of Z. The absolute square of the admix-
ture is given by

Ξ =
675

2

(

1

F2
+

1

2L2

)

1

Z8
=

6.63× 1015

Z8
a.u. . (14)

The one-photon decay width of the 2P state is given as
Γ2P = 6.27×108 rad

s = 1.51×10−8 a.u., whereas the two-

photon decay width of 2S state reads Γ2S = 8.229 rad
s =

1.99× 10−16 a.u.. The effective decay rate Γeff at a dis-
tance Z is

Γeff = Γ2S + Γ2PΞ =

(

1.99× 10−16 +
1.01× 108

Z8

)

a.u..

(15)
We have Γeff = 2Γ2S for Z0 = 918 a.u.. The leading
(nonretarded) term in the atom-wall energy shift at this
distance amounts to −7Z−3

0 /2 = −4.52 × 10−9 a.u. and
approximates both the single-particle perturbative shift
given in Eq. (5) as well as the adiabatic energy of the
coupled |S1/2〉 state obtained from the diagonalization of
the potential (11) to within 10%. The atom-wall energy
at Z0 is equal to −29.7MHz and thus much smaller than
the Lamb shift and fine structure.
The admixture formulas for the coupled |P1/2〉 state

reads as

|P1/2〉 ≈ bS |2S1/2〉+ b1/2 |2P1/2〉+ b3/2 |2P3/2〉 , (16a)

bS = −
√

3

4

15

LZ4
, b 3

2

=
1

2
√
2

1

F Z3
, (16b)

FIG. 1. (Color.) The modulus-squared admixtures to the
coupled |S1/2〉 state are obtained from a diagonalization of
the potential (11) in the basis of |S1/2〉, |P1/2〉, and |P3/2〉
states, for close approach of the atom toward the wall. The
subscript j in Eq. (13) takes on the values j = S, as well as
j = 1/2 and j = 3/2 and denotes the state responsible for
the admixture. As the |S1/2〉 state approaches the wall, the
initially dominant |S1/2〉 state contribution (solid curve, j =
S) gradually fades and the |P1/2〉 admixture (short-dashed
curve, j = 1/2) increases, while a significant admixture of
the |P3/2〉 state (long-dashed curve, j = 3/2), is observed
only for close approach. The atom-wall interaction energy
becomes commensurate with the Lamb shift and fine structure
at Z ≈ 84 and at Z ≈ 184, respectively.

and b 1

2

= 1. The |P3/2〉 state reads as follows,

|P3/2〉 ≈ cS |2S1/2〉+ c1/2 |2P1/2〉+ c3/2 |2P3/2〉 , (17a)

cS = −
√

3

2

15

F Z4
, c 1

2

=
1

2
√
2

1

(L+ F)Z3
, (17b)

and of course c 3

2

= 1. For very close approach Z . 300,

higher-order terms in the expansion of the potential
V [see Eq. (11)] gradually become important. [These
are obtained by straightforward expansion of the poten-
tial (11).] Numerically determined admixtures of the cou-
pled |S1/2〉 are given in Fig. 1, therefore do not follow the
asymptotic formulas for very close approach.

B. Long-range tails

The oscillatory repulsive-attractive dominant term in
the long-range limit of the energy shift, for the 2S level,
goes as [see Eqs. (5) and (9)],

∆E2S ∼ 9L2 cos(2LZ)

2Z , Z ≫ 1

L , (18)

where we have isolated the leading term from Eq. (9),
setting Eq = −L and carrying the summation over the
virtual levels |q〉 = |2P1/2〉 with magnetic projections µ =
±1/2. Somewhat surprisingly, the oscillatory terms in
Eq. (10) vanish for virtual |2P1/2〉 states, so that the
long-range coupling to the lower-lying P state vanishes.
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The leading terms in the long-range asymptotics of the
admixture coefficients read as follows [see Eq. (13)],

a1/2 ∼ 3
√
3

πLF Z5
, Z ≫ 1

L , (19a)

a3/2 ∼ − 3 (3/2)
1/2 L3

F Z sin(2LZ) , Z ≫ 1

L . (19b)

The long-range asymptotic tail of the P3/2-state ad-
mixture has an oscillatory (1/Z)-form [see Eqs. (10)
and (19b)]. If this tail were not suppressed by the prefac-
tor L3/F , then it could have easily provided a theoretical
explanation for the Sokolov effect [13–16], because the
(1/Z)-interaction has the required functional form to de-
scribe a super-long-range term. The tail is created by vir-
tual |q〉 = |2P1/2〉 states in Eq. (10), which are energeti-
cally lower than the reference |2S〉 state. The prefactor of
the super-long-range tail of the admixture term depends
on details of the spectrum of the atomic system and could
be larger for other atoms. For the P1/2-state admixture

(term a1/2), retardation changes the 1/Z4 asymptotics

for short range to a 1/Z5 asymptotics at long range. A
full QED treatment of the admixture terms is required
for both results recorded in Eqs. (19a) and (19b).

IV. CONCLUSIONS

We can safely conclude that the curious observations
reported in [13–16] regarding super-long-range 2S–2P
mixing terms near metal surfaces cannot find an expla-
nation in terms of a long-range effect involving quantum
fluctuations. Both the energy shift (9) as well as the mix-
ing term (10) have long-range tails proportional to 1/Z,
but the energy numerator for the 2S–2P1/2 transition is
so small (Lamb shift, a 30 cm wavelength transition) that

the region in which the 1/Z terms dominate is restricted
to excessively large atom-wall separations where the sin-
gle power of Z in the denominator is sufficient to make
the interaction energy and admixture terms negligible.
(We should add that the inclusion of additional mirror
charges in a cavity as opposed to a wall can be taken into
account, in the short-range limit, by summing the mir-
ror charge interactions into a generalized Riemann zeta
function [40] and therefore cannot change the order-of-
magnitude of the admixture terms.)
If the observations reported in Refs. [13–16] had found

a natural explanation in terms of a QED effect, then
this might have had significant implications for a typ-
ical atomic beam apparatus [41] used in high-precision
spectroscopy of atoms, potentially shifting the frequency
of transitions involving 2S atoms in a narrow tube. For
atom-wall separations smaller than 1000 Bohr radii, sub-
stantial admixture terms are found, and the 1/Z8 scal-
ing of the effective 2S decay rate predicted by Eq. (14)
could be tested against an experiment. The clarification
of the parity-breaking admixture terms also is impor-
tant for other precision measurements in atomic physics
which involve metastable states, such as EDM and weak-
interaction experiments [42–47]. The fully retarded ex-
pression for the mixing term, given in Eq. (10), formu-
lates higher-order QED corrections to atom-wall interac-
tions beyond dipole order. Generalization of the formulas
to, e.g., the 23S1 mestable state of helium is straightfor-
ward. One just sums the interactions over the electron
coordinates.
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