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Information about the interaction of a many-electron quantum system with its environment,
we show, is encoded within the one-electron density matrix (1-RDM). While the 1-RDM from
an ensemble many-electron quantum system must obey the Pauli exclusion principle, the 1-RDM
must obey additional constraints known as generalized Pauli conditions when it corresponds to a
closed system describable by a single wave function. By examining the 1-RDM’s violation of these
generalized Pauli conditions, we obtain a sufficient condition at the level of a single electron for a
many-electron quantum system’s openness. In an application to exciton dynamics in photosynthetic
light harvesting we show that the interaction of the system with the environment (quantum noise)
relaxes significant constraints imposed on the exciton dynamics by the generalized Pauli conditions.
This relaxation provides a geometric (kinematic) interpretation for the role of noise in enhancing
exciton transport in quantum systems.

PACS numbers: 31.15.-p, 03.65.Yz

The Pauli exclusion principle requires that the occu-
pations of the orbitals lie between zero and one. These
Pauli conditions hold for one-electron reduced density
matrices (1-RDMs) from both open and closed quantum
systems [1, 2]. More than 40 years ago, it was recog-
nized that there are additional conditions on the 1-RDM
for closed quantum systems [3, 4]. Recently, these addi-
tional constraints, known as generalized Pauli conditions,
have been systematically derived for arbitrary numbers
of electrons and orbitals [5, 6] and applied to closed, time-
independent systems such as atoms and molecules [7–11].
In this Communication we use the violation of the gen-

eralized Pauli conditions to quantify the interaction of a
quantum system with its environment. The violation,
we show, provides a sufficient condition for the openness

of any many-electron quantum system that is computable

from knowledge of only the 1-RDM. In principle, the 1-
RDM can be computed from experiment [12], computa-
tion [13–20], or any combination of experiment and com-
putation. Here we demonstrate this condition through
calculations of exciton dynamics in photosynthetic light
harvesting. The results show that environmental noise
relaxes significant constraints imposed on the exciton dy-
namics by a closed quantum system, providing a geo-
metric interpretation for the role of noise in enhancing
exciton transport. The sufficient condition, computable
from only the 1-RDM, is potentially applicable to a wide
variety of open many-electron quantum systems.
Integrating the N -electron density matrix over all elec-

trons save one generates the one-electron reduced density
matrix (1-RDM), which gives the probability of finding
one electron for all possible configurations of the other
N − 1 electrons [1]. The eigenfunctions of the 1-RDM
are known as the natural orbitals φi, and its eigenval-
ues are known as the natural orbital occupation numbers

∗ damazz@uchicago.edu

ni [21]. The generalized Pauli conditions, also known
as pure N -representability conditions can be written as
linear inequalities on the ordered set of natural orbital
occupation numbers ni. For 3 electrons in 6 spin orbitals
these conditions are

n1 + n6 = n2 + n5 = n3 + n4 = 1 (1)

n5 + n6 − n4 ≥ 0, (2)

where ni ≥ ni+1 [3, 5]. The union of the inequalities
(and equalities) forms a convex set (polytope). The oc-
cupation numbers ni are ordered from highest to lowest
because in the absence of ordering the occupation num-
bers form a non-convex set. Sets of orbital occupation
numbers {ni} that lie either inside or on the bound-
ary of the the polytope are compatible with at least
one closed (or pure) 3-electron quantum system, but sets
of orbital occupation numbers {ni} that lie outside the
polytope are only compatible with an open (or ensemble)
3-electron quantum system. Consequently, the violation
of the above generalized Pauli conditions provides a suffi-
cient, although not necessary condition, for the openness
of a 3-electron quantum system.
Generalization of the above results to N electrons pro-

vides the solution to the pure N -representability problem
of the 1-RDM [5]:
Theorem 1: For N electrons in r orbitals a diagonal,
eigenvalue-ordered 1-RDM 1D, constrained to trace to
N , is derivable from the integration of at least one pure

N -electron density matrix (pure N -representable) if and
if 1D ∈ P 1

(N,r) where P
1
(N,r) is the convex polytope whose

facets are defined by Pauli and generalized Pauli condi-
tions.
Proof: The proof is given by Klatchko in Ref. [5].
Similarly, the solution of the ensemble N -

representability problem for the 1-RDM [2] can be
summarized as follows:
Theorem 2: For N electrons in r orbitals a diagonal,
eigenvalue-ordered 1-RDMs 1D, constrained to trace
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to N , is derivable from the integration of at least
one ensemble N -electron density matrix (ensemble
N -representable) if and if 1D ∈ E1

(N,r) where E1
(N,r) is

the convex polytope whose facets are defined by Pauli
conditions.
Proof: The proof is given by Coleman in Ref. [2].
We present a corollary to these two theorems for

open N -electron quantum systems. Because the N -
representability of an RDM is invariant to unitary trans-
formations of the orbitals, this corollary can be applied
to an arbitrary non-diagonal 1-RDM by its unitary trans-
formation to a diagonal eigenvalue-order 1-RDM [2]:
Corollary: If 1D ∈ E1

(N,r) \ P
1
(N,r), then the 1-RDM is

only derivable by integration from an ensemble (open)
N -electron density matrix.
Proof: The set inclusion 1D ∈ E1

(N,r) \ P 1
(N,r) implies

from Theorems 1 and 2 that the 1-RDM is ensemble N -
representable but not pure N -representable.
To use the generalized Pauli conditions to quantify a

quantum system’s interaction with its environment, we
introduce a Euclidean metric δ to compute the short-
est distance of a given set of orbital occupation num-
bers to the boundary of the convex polytope of pure N -
representable occupation numbers. Occupation numbers
are pure N -representable if and only if they represent
at least one pure N -electron quantum system. We will
refer to δ as the pure distance. For a system of 3 elec-
trons in 6 orbitals we compute the δ by solving the fol-
lowing constrained optimization by sequential quadratic
programming [22]:

δ(t) = σ min
~p∈R6

||~n− ~p|| (3)

such that pi+1 ≤ pi for all i, (4)
∑

i
pi = 3, (5)

0 ≤ pi ≤ 1 for all i, (6)

pi + p7−i = 1 for all i, (7)

p4 − p5 − p6 = 0. (8)

Eqs. (4) and (5) represent the ordering and trace condi-
tions, respectively. Eq. (6) contains the Pauli exclusion
principle for each of the occupation numbers. Finally,
Eqs. (7) and (8) express the generalized Pauli conditions
for a system of three electrons in six orbitals. R

6 is the
space of real vectors of length six. The symbol σ is cho-
sen as either +1 or −1 to denote whether the distance to
the boundary is from a set of occupation numbers inside
the polytope or outside the polytope, respectively.
We demonstrate the use of the generalized Pauli con-

ditions for open, time-dependent systems by applying
them to exciton transport in photosynthetic light har-
vesting where environmental interactions play an impor-
tant role [23–28]. In particular, we look at the three
chromophore subsystem of the Fenna-Matthews-Olson
(FMO) complex which has been shown to have a quan-
tum efficiency similar to that of the full seven chro-
mophore network [26]. Each chromophore is modeled

as a single electron with access to two states, ground and
excited. We model the time evolution of the exciton den-
sity matrix of the N -electron system ND by the quantum
Liouville equation

d

dt
ND = −

i

h

[

Ĥ,ND
]

+ L̂
(

ND
)

, (9)

in which the Lindblad operator L̂ given in Ref. [26] ac-
counts for environmental interactions including dephas-
ing, dissipation, and transfer of the exciton to the sink.
The site and coupling energies of the chromophores that
define the effective Hamiltonian as well as the rate pa-
rameters for dissipation, dephasing and sink transfer are
taken from previous work [23, 26–28].
At time t = 0 a photon excites the electron of chro-

mophore 1 (or site 1), producing an exciton that travels
the network, oscillating between sites 1 and 2, and even-
tually exits the FMO complex by entering the reaction
center (sink). The nature of the Hamiltonian constrains
the number of excitations in the system to one [23]. As
seen in previous work [23–25], because chromophores 1
and 2 have similar energies, the exciton oscillates between
these sites; furthermore, the coherences decay in time
due to environmental effects with the excitation gradu-
ally exiting the system as it returns to its ground-state
configuration.
The degree to which the system interacts with its en-

vironment can be examined from the idempotency of the
N -electron (exciton) exciton density matrix:

γ(t) =
[

Tr(ND(t))− Tr(ND(t)
2
)
]

. (10)

The γ(t) is nonzero if and only if the quantum sys-
tem is open. While γ(t) provides a definitive answer
to whether the system is open, it requires knowledge of
the N -electron (exciton) density matrix. The N -electron
density matrix can be readily computed for some model
quantum systems, but its cost for many realistic quantum
systems scales exponentially with system size.
Table 1 shows the 1-electron and N -electron indicators

of environmental effects, the pure distance δ(t) and the
idempotency criterion γ(t), in the presence and the ab-
sence of environmental interactions. At t = 0, just after
the first chromophore is excited, the three-chromophore
network is in a pure (closed) state. In the absence of envi-
ronmental effects the system remains inside the pure set
for all time t. In fact, its spectrum of occupation num-
bers lies on the boundary of the set except when strong
correlation due to degeneracy in the populations of sites 1
and 2 pushes the occupation spectrum inside the set. In
the presence of environmental effects the system becomes
open (ensemble) for t > 0 which is reflected in both the
nonzero idempotency γ(t) and the negative pure distance
δ(t). At 500 fs, for example, the idempotency γ is pos-
itive with a value of 0.6603 and the pure distance δ is
negative with a value of −0.1454. By 10 ps, when the
N -electron density matrix begins to regain idempotency
with γ decreasing to 0.0089, δ shows that the spectrum of
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TABLE I. The 1-electron and N-electron indicators of envi-
ronmental effects, the pure distance δ(t) and the idempotency
criterion γ(t), are shown in the presence and the absence of
environmental interactions. In the presence of environmental
effects the system becomes open (ensemble) for t > 0 which
is reflected in both the nonzero idempotency γ(t) and the
negative pure distance δ(t).

Idempotency criterion γ(t) Pure distance δ(t)
Time (fs) No Bath Bath No Bath Bath

0 1× 10−15 0.0000 1× 10−15 0.0000
100 1× 10−15 0.3777 1× 10−15 -0.0231
200 1× 10−15 0.5408 1× 10−15 -0.0695
300 1× 10−15 0.6107 1× 10−15 -0.1139
400 1× 10−15 0.6405 1× 10−15 -0.1515
500 1× 10−15 0.6603 1× 10−15 -0.1454
1000 1× 10−15 0.6712 1× 10−15 -0.0072
10000 1× 10−15 0.0089 1× 10−15 0.0003

natural occupation numbers reenters the polytope of pure
1-RDMs with δ = 0.0003. Importantly, δ can be positive
for nonzero γ because the negative pure distance δ is a
sufficient but not a necessary condition for openness.
Figure 1 compares the pure distance δ(t) as a time-

dependent indicator of the openness of a quantum system
for both closed (no bath) and open (with bath) quan-
tum systems for times in the range 0-3 ps. In the closed
system the pure distance is always nonnegative, and in
the open system the pure distance is frequently negative.
An important feature of Fig. 1 is that positive spikes in
pure distance, representing the movement of occupation
numbers inside the polytope, occur at times when the
entanglement between sites 1 and 2 is maximal. This co-
incidence demonstrates the interplay between openness
and entanglement [29, 30]. The openness of quantum
systems (namely, its interaction with the environment)
is typically evident in the occupation numbers of the 1-
RDM, but when a quantum system is strongly entan-
gled, the evidence of openness in the 1-RDM disappears.
Higher RDMs are required in such cases to obtain a cer-
tificate for the openness of the system. Systems with
greater entanglement between homogeneous components,
previous results indicate, require greater environmental
noise for maximal efficiency [31]. The present results in-
dicate that in systems that are strongly correlated or en-
tangled greater noise is required to force the 1-RDM to
explore the larger set of occupation numbers associated
with open quantum systems.
The system’s trajectory in population space (the space

of natural occupation numbers) provides a dynamical
map of quantum information as it flows though the sys-
tem, which can be analyzed for openness with the gener-
alized Pauli conditions. In Fig. 2, we see the trajectory
with femtosecond resolution for the duration of 10 ps for
(a) closed and (b) open systems. Each axis represents
the population in the excited states of one of the three
chromophores (sites). Even though there are 6 occupa-
tion numbers, only three of them are unique since on each

FIG. 1. (Color online) The pure distance δ(t) is compared for
closed and open quantum systems for a time range of 0-3 ps.
In the closed system the pure distance is always nonnegative,
and in the open system the pure distance is frequently neg-
ative. An important feature is that positive spikes in pure
distance, representing the movement of occupation numbers
inside the polytope, coincide with the times when sites 1 and
2 are maximally entangled.

chromophore the occupation numbers of the orbital pairs
are constrained by the exciton Hamiltonian to sum to
one. The trajectory in time starts with the excitation at
site 1, denoted in the figure by the big green (dark gray)
sphere at the coordinate (1,0,0). Points along the tra-
jectory are color coded in green (dark grey) and orange
(light grey) to denote points that lie inside and outside

of the polytope of pure occupation numbers, respectively.
The closed system in (a) remains pure (closed) through-
out its trajectory (note that all points on the trajectory
are green); the exciton in (a) oscillates between sites 1
and 2, never reaching the reaction center. When envi-
ronmental noise is added through dissipation, dephasing,
and sink terms, we observe in (b) that the quantum sys-
tem moves immediately from a closed 1-RDM (green or
dark grey) to an open 1-RDM (orange or light grey).

The trajectory of occupation numbers provides a visual
demonstration of how environmental noise facilitates the
transport of the exciton to site 3 from which it can enter
the sink. Environmental noise, it has been observed, can
enhance exciton transport in a quantum system [23–25].
Typically, the enhancement is characterized by the dy-
namics of the quantum system. The pure and ensemble
sets of the 1-RDM provide a kinematic, rather than a
dynamic, interpretation of the enhancement. From the
1-RDM perspective we observe that the role of the noise
is to increase the size of the set of 1-RDMs that is accessi-
ble to the quantum system. The enlargement of the set of
1-RDMs arises from the violation of the generalized Pauli
conditions in the presence of environmental interactions.
Importantly, the change in set size is kinematic, and yet
it facilitates the dynamic transfer of exciton population
through the system to the sink.

Understanding the degree to which a quantum system
interacts with its environment is critical because this in-
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FIG. 2. (Color online) The system’s trajectory in the exciton
population space is shown for (a) closed and (b) open systems.
Points along the trajectory are color coded in green (dark
grey) and orange (light grey) to denote points that lie inside

and outside of polytope of pure (closed) occupation numbers,
respectively. While the closed system in (a) remains pure
(closed) throughout its trajectory, the open system explores
a larger space of occupation numbers than the closed system
as it relaxes to its ground state.

teraction can significantly influence its energies and prop-
erties. The openness of a quantum system can be com-
puted through its N -electron density matrix. Determi-
nation of the N -electron density matrix by either theory
or experiment, however, is challenging and difficult be-
cause the matrix scales exponentially with the system
size [1, 32]. In this Communication we have shown that
the openness of a quantum system is encoded directly in
the 1-RDM. Unlike the N -electron density matrix the 1-
RDM scales as a polynomial in the number of electrons in
the quantum system. While for an open system the occu-
pation numbers of the 1-RDM are bounded by zero and
one by the well-known Pauli exclusion principle [2, 33],

for a closed system the occupation numbers of the 1-RDM
are bounded by a more stringent set of inequalities known
as generalized Pauli conditions [3–5]. Importantly, these
generalized conditions significantly restrict the physically
realistic occupation numbers for closed quantum systems
beyond the usual Pauli conditions. By studying their
violation for an open quantum system, we are able to
ascertain the openness of a quantum system from the 1-
RDM alone. The generalized Pauli conditions become
more numerous and complicated for N > 3, and further
work is needed to make their application more practi-
cal. Although we use the Euclidean metric to define the
distance to the boundary of P 1

(N,r) [34], we could also

employ other metrics such as the trace distance or the
Bures metric, which is related to quantum fidelity [35].

The role of environmental interactions or quantum
noise is to relax the generalized Pauli conditions, allow-
ing the quantum system to explore a much larger set of
trajectories in the natural-orbital occupation numbers.
Traditionally, noise is viewed in terms of its effect on the
dynamics of the system [23–26]. The present work, how-
ever, shows that there is also a fundamental kinematic
interpretation in terms of the geometry of the 1-RDM
sets [34]. As seen in the application to photosynthetic
light harvesting, the noise expands the set of allowable
1-RDMs from its pureN -representable set to its ensemble
N -representable set [1, 18], which significantly expands
the set of trajectories in orbital occupations by which the
exciton can move through the chromophore network and
thereby allows the exciton to travel efficiently to the re-
action center for its conversion to chemical energy. The
sufficient condition encoded in the 1-RDM for an open
quantum system provides physical insight through its or-
bital occupations into the ramifications of environment
interactions and openness in quantum mechanics. Exper-
imentally, it may be possible to apply generalized Pauli
conditions to probe the system-bath interactions in a va-
riety of physical and chemical systems. The present work
represents a step towards a broader use of the 1-RDM and
its occupation numbers in the study of the interaction of
open quantum systems with their environments.
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