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We study two species of particles in two dimensions interacting by isotropic short-range potentials
with the interspecies potential fine-tuned to a p-wave resonance. Their universal low-energy physics
can be extracted by analyzing a properly constructed low-energy effective field theory with the
renormalization group method. Consequently, a three-body system consisting of two particles of one
species and one of the other is shown to exhibit the super Efimov effect, the emergence of an infinite
tower of three-body bound states with orbital angular momentum ℓ = ±1 whose binding energies
obey a doubly exponential scaling, when the two particles are heavier than the other by a mass
ratio greater than 4.03404 for identical bosons and 2.41421 for identical fermions. With increasing
the mass ratio, the super Efimov spectrum becomes denser which would make its experimental
observation easier. We also point out that the Born-Oppenheimer approximation is incapable of
reproducing the super Efimov effect, the universal low-energy asymptotic scaling of the spectrum.

PACS numbers: 67.85.Pq, 03.65.Ge, 11.10.Hi

I. INTRODUCTION

When quantum particles interact by a short-range
potential with a scattering length much larger than
the potential range, they may form universal bound
states whose properties are independent of microscopic
physics [1–3]. Besides universal N -boson bound states
in one dimension [4] and in two dimensions [5], the most
remarkable example is the Efimov effect in three dimen-
sions, which predicts the emergence of an infinite tower
of three-boson bound states with orbital angular momen-
tum ℓ = 0 whose binding energies obey the universal
exponential scaling [6].
Recently, new few-body universality was discovered at

a p-wave resonance in two dimensions [7], which predicts
the emergence of an infinite tower of three-fermion bound
states with orbital angular momentum ℓ = ±1 whose
binding energies obey the universal doubly exponential
scaling

En ∝ exp
(

−2e3πn/4+θ
)

(1)

for sufficiently large n ∈ Z. It is, to the best of our
knowledge, the first physics phenomenon exhibiting the
doubly exponential scaling similarly to the hyperinflation
in economics [8]. This super Efimov effect summarized in

TABLE I. Comparison of the Efimov effect versus the super
Efimov effect [7].

Efimov effect Super Efimov effect

Three bosons Three fermions

Three dimensions Two dimensions

s-wave resonance p-wave resonance

ℓ = 0 ℓ = ±1

Exponential scaling Doubly exponential scaling

Table I stimulated further theoretical studies in the hy-
perspherical formalism [9, 10] and its mathematical proof
was provided in Ref. [11]. On the other hand, from the
experimental perspective, the doubly exponential scaling
of the binding energies makes the experimental observa-
tion of the super Efimov spectrum challenging.

In this paper, we extend the super Efimov effect to
mass-imbalanced systems, motivated by the fact that the
usual Efimov spectrum becomes denser with increasing
the mass ratio [12, 13]. This advantage recently made it
possible to observe up to three Efimov resonances in ul-
tracold atom experiments with a highly mass-imbalanced
mixture of 6Li and 133Cs [14, 15]. Correspondingly, we
shall consider two species of particles in two dimensions
interacting by isotropic short-range potentials with the
interspecies potential fine-tuned to a p-wave resonance.

We first construct an effective field theory in Sec. II
that properly captures universal low-energy physics of
the system under consideration. This low-energy effec-
tive field theory is then employed in Sec. III to analyze
a three-body problem consisting of two particles of one
species and one of the other with the renormalization
group method. Consequently, such a three-body system
is shown to exhibit the super Efimov effect when the
two particles are heavier than the other by a mass ra-
tio greater than 4.03404 for identical bosons and 2.41421
for identical fermions. We also find that the super Efi-
mov spectrum indeed becomes denser with increasing the
mass ratio which would make its experimental observa-
tion easier. Finally, we point out in Sec. IV that the
Born-Oppenheimer approximation is incapable of repro-
ducing the super Efimov effect, the universal low-energy
asymptotic scaling of the spectrum, and Sec. V is devoted
to summary and conclusion of this paper. For readers un-
familiar with our renormalization group analysis of the
low-energy effective field theory, an explicit model analy-
sis is also presented in Appendix to confirm the predicted
super Efimov effect.
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II. LOW-ENERGY EFFECTIVE FIELD THEORY

Two species of particles in two dimensions interacting
by isotropic short-range potentials are described by

H = −
∑

i=1,2

∫

dxψ†
i (x)

~
2
∇

2

2mi
ψi(x)

+
1

2

∑

i,j=1,2

∫

dxdy Vij(|x− y|)ψ†
i (x)ψ

†
j (y)ψj(y)ψi(x).

(2)

We assume that the interspecies potential V12(r) is fine-
tuned to a p-wave resonance while the intraspecies poten-
tials V11(r) and V22(r) are not. Below we set ~ = 1 and
denote total and reduced masses of the two species by
M ≡ m1 +m2 and µ ≡ m1m2/(m1 +m2), respectively.

In order to construct an effective field theory that prop-
erly captures universal low-energy physics of the system
described by the Hamiltonian (2), low-energy properties
of p-wave scattering in two dimensions need to be under-
stood. Potential-independent insights can be obtained
from the effective-range expansion for the scattering T -
matrix in a p-wave channel [16, 17]:

iT12 =
2i

µ

2p · q
− 1

ap
− 4µε

π ln
(

Λp√
−2µε

)

−∑∞
n=2 Cn(−2µε)n

.

(3)

Here ε ≡ E − k2/(2M)+ i0+ is the collision energy with
k being a center-of-mass momentum, p and q are initial
and final relative momenta, respectively, while ap is the
scattering area, Λp is the effective momentum, and Cn

are higher-order shape parameters. In the low-energy
limit ε → 0, the scattering T -matrix (3) right at a p-
wave resonance ap → ∞ reduces to an inspiring form
of

iT12 → 2p · q −π
2µ2 ln

(

Λp√
−2µε

)

i

E − k2

2M + i0+
. (4)

We thus find that the last factor iD(k) = i/[E −
k2/(2M) + i0+] has exactly the same form as a prop-
agator of free particle whose mass is M , which indicates
that the low-energy limit of the resonant p-wave scatter-
ing in two dimensions is always described by a propa-
gation of dimer as depicted in Fig. 1 [18]. Correspond-
ingly, the middle factor (ig)2 = −π/[2µ2 ln(Λp/

√−2µε)]
is interpreted as a p-wave coupling of two scattering
particles with the dimer, which has logarithmic energy-
dependence and becomes small toward the low-energy
limit ε→ 0.

It is then straightforward to write down an effective
field theory based on the above low-energy properties of
the resonant p-wave scattering in two dimensions, which

→iT12

FIG. 1. Low-energy limit of the resonant p-wave scattering
in two dimensions reduces to a propagation of dimer (double
line) with energy-dependent couplings (dots) [see Eq. (4)].
The solid and dashed lines represent propagators of particles
of species 1 and 2, respectively.

reads

L0 =
∑

i=1,2

ψ†
i

(

i∂t +
∇

2

2mi

)

ψi +
∑

i,j=1,2

vij
2
ψ†
iψ

†
jψjψi

+
∑

σ=±
φ†σ

(

i∂t +
∇

2

2M
− ε0

)

φσ

+ g
∑

σ=±
φ†σψ2

(

−im2

M

−→∇σ + i
m1

M

←−∇σ

)

ψ1

+ g
∑

σ=±
ψ†
1

(

−im1

M

−→∇−σ + i
m2

M

←−∇−σ

)

ψ†
2φσ (5)

with ∇± ≡ ∇x ± i∇y. The couplings vij represent s-
wave components of the interspecies and intraspecies in-
teractions, which generally exist without fine-tunings and
contribute to low-energy scatterings. We note that the
intraspecies s-wave coupling v11 (v22) disappears if the
particle ψ1 (ψ2) obeys the Fermi statistics. The last
three terms in the Lagrangian density (5) represent the
p-wave component of the interspecies interaction, which
is described by a propagation of dimer φσ with intrin-
sic angular momentum σ = ±1 as observed above [18].
The interspecies p-wave resonance ap → ∞ is achieved
by fine-tuning the bare detuning parameter ε0 according
to the relationship 1/ap = Λ2/π−2ε0/(µg2) with Λ being
a momentum cutoff.
The low-energy effective field theory is not yet com-

plete because there are marginal three-body and four-
body couplings that can be added to the Lagrangian den-
sity (5) [7, 19]. Three-body and four-body scatterings in
our low-energy effective description are represented by s-
wave couplings between a particle ψi and a dimer φσ and
between two dimers, respectively, which are provided by

L′ = u1
∑

σ=±
ψ†
1φ

†
σφσψ1 + u2

∑

σ=±
ψ†
2φ

†
σφσψ2

+ w
∑

σ=±
φ†σφ

†
−σφ−σφσ + w′

∑

σ=±
φ†σφ

†
σφσφσ . (6)

The three-body couplings ui correspond to the three-
body scatterings with total angular momentum ℓ = ±1,
while the four-body couplings w and w′ correspond to
the four-body scatterings with ℓ = 0 and ℓ = ±2, respec-
tively. We note that w′ disappears if the p-wave dimer
φσ obeys the Fermi statistics. The sum of the above
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(a)

(b)

FIG. 2. Feynman diagrams to renormalize the interspecies
two-body couplings (a) g and (b) v12. The intraspecies two-
body couplings v11 and v22 are renormalized by Feynman di-
agrams similar to (b).

two Lagrangian densities L = L0+L′ now completes the
low-energy effective field theory including all marginal
couplings (vij , g, ui, w, w

′) consistent with rotation and
parity symmetries and the interspecies p-wave resonance,
which can be employed to extract universal low-energy
physics of the system under consideration (2).

III. RENORMALIZATION GROUP ANALYSIS

A. Two-body sector

The effective-range expansion for the scattering T -
matrix indicated that the interspecies p-wave coupling
g has logarithmic energy-dependence. This running of
the coupling is achieved in the low-energy effective field
theory (5) by its renormalization [7, 19]. The Feynman
diagram that renormalizes g is depicted in Fig 2(a) and
the running of g at a momentum scale κ ≡ e−sΛ is gov-
erned by the renormalization group equation:

dg

ds
= −µ

2

π
g3 ⇒ g2(s) =

1
1

g2(0) +
2µ2

π s
. (7)

We thus find that the interspecies p-wave coupling in the
low-energy limit s = lnΛ/κ → ∞ indeed becomes small
logarithmically as g2 → π/(2µ2s) in agreement with the
observation from the effective-range expansion (4).
Similarly, the interspecies and intraspecies s-wave cou-

plings vij are renormalized by a type of Feynman dia-
grams depicted in Fig. 2(b). The renormalization group
equations that govern the running of vij and their solu-
tions are provided by

dv12
ds

=
µ

π
v212 ⇒ v12(s) =

1
1

v12(0)
− µ

π s
(8)

for the interspecies coupling and

dv11
ds

=
m1

2π
v211 ⇒ v11(s) =

1
1

v11(0)
− m1

2π s
(9)

dv22
ds

=
m2

2π
v222 ⇒ v22(s) =

1
1

v22(0)
− m2

2π s
(10)

for the intraspecies couplings assuming the Bose statis-
tics obeyed by the particle field ψi. Therefore, these
s-wave couplings in the low-energy limit s → ∞ also
become small logarithmically as v12 → −π/(µs), v11 →
−2π/(m1s), and v22 → −2π/(m2s), all of which turn out
to be negative indicating effective repulsion regardless of
their initial signs for vij(0), i.e., attractive or repulsive
potentials.

B. Three-body sector

We now turn to the renormalization of the three-body
couplings ui in Eq. (6). Without loss of generality, we
focus on the renormalization group flow of u1 because
that of u2 is simply obtained by the exchange of labels
1 ↔ 2. In addition to the contribution from the wave
function renormalization of φσ field, there are six distinct
diagrams that renormalize u1 as depicted in Fig. 3. Ac-
cordingly, after straightforward calculations [7, 19], the
renormalization group equation that governs the running
of u1 is found to be

du1
ds

= −2µ2

π
g2u1 +

8µ4ν1
πm2

2

g4 +
2µ2

π
g2v12

+
4µ2

π
g2v11δ±+ ±

4µ2ν1
πm2

g2u1 +
ν1
π
u21, (11)

where the upper (lower) sign corresponds to the case of
bosonic (fermionic) ψ1 field and νi ≡ miM/(mi +M) is
the reduced mass of a particle of species i and a dimer.
Each diagram in Fig. 3 contributes to the (a) second, (b)
third, (c) fourth, (d,e) fifth, (f) sixth term in the right
hand side of Eq. (11), while its first term originates from
the wave function renormalization of φσ field depicted in
Fig. 2(a).
By substituting the low-energy asymptotic forms of the

two-body couplings g and vij obtained from Eqs. (7)–(9),
the renormalization group equation (11) can be solved
analytically and the three-body coupling u1 in the low-
energy limit s→∞ is provided by

su1(s)→ ∓
π

m2
− πγ

ν1
cot[γ(ln s− θ)]. (12)

Here θ is a non-universal constant depending on initial
conditions for g, vij , and u1 at a microscopic scale s ∼ 0,

while γ ≡
√

ν21/m
2
2 − ν1/µ− (4ν1/m1)δ±+ is the univer-

sal exponent expressed in terms of m1 and m2 as

γ =

√

(m1 +m2)(m3
1 −m2

1m2 − 11m1m2
2 − 5m3

2)

(2m1 +m2)m2
(13)

in the case of bosonic ψ1 field (upper sign) and

γ =
(m1 +m2)

√

m2
1 − 2m1m2 −m2

2

(2m1 +m2)m2
(14)

in the case of fermionic ψ1 field (lower sign).
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(a)

(b)

(c)

(d)

(f)

(e)

FIG. 3. Feynman diagrams to renormalize the three-body coupling u1.

When γ is real, the low-energy asymptotic solution
(12) for su1 is a periodic function of ln s and diverges
at ln sn = πn/γ + θ. These divergences in the renormal-
ization group flow of the three-body coupling u1 indicate
the existence of an infinite tower of characteristic energy
scales En ∝ κ2n = e−2snΛ2 in the three-body system con-
sisting of two particles of species 1 and another particle
of species 2 with total angular momentum ℓ = ±1. As
was confirmed in Ref. [7], these energy scales correspond
to binding energies of the three particles which leads to
the super Efimov spectrum

En ∝ exp
(

−2eπn/γ+θ
)

(15)

for sufficiently large n ∈ Z. This super Efimov effect
emerges when the majority species 1 is heavier than
the minority species 2 and the critical mass ratio is
found to be m1/m2 = 4.03404 from Eq. (13) when
the two particles are identical bosons and m1/m2 =

FIG. 4. Universal scaling factor eπ/γ as a function of the
mass ratio m1/m2 for two identical bosons (upper curve) and
fermions (lower curve) with the universal exponent γ deter-
mined in Eqs. (13) and (14), respectively. The horizontal

dashed line indicates e3π/4 ≈ 10.55 corresponding to the uni-
versal scaling factor for three identical fermions [7].

2.41421 from Eq. (14) when the two particles are iden-
tical fermions. In both cases, the universal exponent γ
increases monotonously with increasing the mass ratio
m1/m2, which makes the super Efimov spectrum (15)
denser as seen in Fig. 4 for the logarithmic energy ra-
tio lnEn+1/ lnEn → eπ/γ determined by the universal
scaling factor.
So far we considered the most general case where in-

terspecies and intraspecies s-wave interactions vij exist
when they are possible. For the purpose to examine the
Born-Oppenheimer approximation in the succeeding sec-
tion, it is more convenient to consider the simplest case
where all s-wave interactions are artificially switched off.
By setting vij = 0 in the renormalization group equation
(11), the universal exponent γ in the low-energy asymp-
totic solution (12) for the three-body coupling u1 is mod-
ified into

γ =
ν1
m2

=
m1(m1 +m2)

(2m1 +m2)m2
. (16)

Because γ is always real without s-wave interactions, the
super Efimov effect emerges for any mass ratio m1/m2.
In particular, the super Efimov spectrum (15) becomes
independent of whether the two particles are identical
bosons or fermions. The super Efimov effect predicted in
this simple case will also be confirmed with an explicit
model analysis in Appendix.

C. Four-body sector

We then turn to the renormalization of the four-body
couplings w and w′ in Eq. (6). In addition to the con-
tribution from the wave function renormalization of φσ
field, there are four distinct diagrams that renormalize w
and w′ as depicted in Fig. 5. Accordingly, after straight-
forward calculations [7, 19], the renormalization group
equations that govern the running of w and w′ are found
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(a)

(b) (d)

(c)

FIG. 5. Feynman diagrams to renormalize the four-body couplings w and w′.

to be

dw

ds
= −4µ2

π
g2w + [(±1)1 + (±1)2]

4µ3

π
g4

+
2µ2

π
g2u1 +

2µ2

π
g2u2 +

M

π
w2 (17)

and

dw′

ds
= −4µ2

π
g2w′ + [(±1)1 + (±1)2]

2µ3

π
g4

+
2µ2

π
g2u1 +

2µ2

π
g2u2 +

M

π
w′2. (18)

Here the upper (lower) sign in (±1)i corresponds to the
case of bosonic (fermionic) ψi field and Eq. (18) assumes
the Bose statistics obeyed by the p-wave dimer field φσ.
Each diagram in Fig. 5 contributes to the (a) second, (b)
third, (c) fourth, (d) fifth terms in the right hand sides of
Eqs. (17) and (18), while their first terms originate from
the wave function renormalization of φσ field depicted in
Fig. 2(a).
While the renormalization group flows of the four-body

couplings w and w′ can be studied numerically [7], we
defer these analyses to a future work.

IV. BORN-OPPENHEIMER APPROXIMATION

It is well known that the Born-Oppenheimer approxi-
mation provides elementary and intuitive understanding
of the usual Efimov effect [20]. Therefore, it is worthwhile
to examine whether the Born-Oppenheimer approxima-
tion is useful as well to understand the super Efimov
effect.
In our system under consideration (2), the three-body

wave function Ψ(R, r) describing two particles of species
1 located at ±R/2 and another particle of species 2
located at r in the center-of-mass frame satisfies the
Schrödinger equation:
[

−∇
2
R

m1
− ∇

2
r

2m
+ V11(R) + V12(r+) + V12(r−)

]

Ψ(R, r)

= EΨ(R, r), (19)

where r± ≡ r±R/2 are interspecies separations andm ≡
2m1m2/(2m1 +m2) reduces to m2 at a large mass ratio

m1/m2 ≫ 1. The Born-Oppenheimer approximation is
based on the factorized wave function

Ψ(R, r) = Φ(R)ϕ(R; r), (20)

where the wave function ϕ(R; r) for the light particle
satisfies
[

− ∇
2
r

2m2
+ V12(r+) + V12(r−)

]

ϕ(R; r) = ε(R)ϕ(R; r)

(21)

with fixed locations of the two heavy particles and the
wave function Φ(R) for the two heavy particles in turn
satisfies

[

−∇
2
R

m1
+ V11(R) + ε(R)

]

Φ(R) = EΦ(R) (22)

with an effective potential ε(R) generated by the light
particle. Corrections to this Schrödinger equation (22)
scale as ∼ 1/m1 and thus they are usually negligible com-
pared to ε(R) ∼ 1/m2 at a large mass ratio m1/m2 ≫ 1.
For simplicity, we also neglect the intraspecies potential
V11(R) → 0 and consider only the p-wave component of
the interspecies potential V12(r).
The Schrödinger equation (21) with the binding energy

ε(R) ≡ −κ2/(2m2) potentially admits four bound state
solutions for the light particle, whose wave functions out-
side the potential range V12(r±)→ 0 are expressed as

ϕx
±(R; r) = K1(κr+) cos[arg(r+)− arg(R)]

∓K1(κr−) cos[arg(r−)− arg(R)] (23)

and

ϕy
±(R; r) = K1(κr+) sin[arg(r+)− arg(R)]

∓K1(κr−) sin[arg(r−)− arg(R)]. (24)

We note that ϕx,y
+ (R; r) [ϕx,y

− (R; r)] are even (odd) un-
der the exchange of the two heavy particles R → −R.
The interspecies p-wave resonance is achieved by impos-
ing the boundary condition on the light particle wave
function ϕ(R; r) ∝ 1/r± + O(r3±) at a short distance
r± ∼ 1/Λ≪ 1/κ,R, which leads to

ln(Λ/κ) = ±[K0(κR) +K2(κR)] (25)
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for ϕx
±(R; r) and

ln(Λ/κ) = ±[K0(κR)−K2(κR)] (26)

for ϕy
±(R; r). Because of K2(κR) > K0(κR) > 0, these

boundary conditions can be satisfied only for ϕx
+(R; r)

and ϕy
−(R; r) and their binding energies are found to

have the same asymptotic form of

ε±(R) = −
κ2±
2m2

→ − 1

m2R2 ln(RΛ)
(27)

for large separation RΛ → ∞ between the two heavy
particles.
We now solve the Schrödinger equation (22) for the

two heavy particles whose wave function can be taken as
Φ(R) = eiℓ arg(R)Φℓ(R) with ℓ corresponding to the total
angular momentum of the three particles. We first con-
sider an ℓ = 0 channel in which bound states are most
favored due to the absence of centrifugal barrier. Because
the total wave function (20) has to be symmetric (anti-
symmetric) under the exchange of the two heavy particles
R→ −R when they are identical bosons (fermions), only
ϕx
+(R; r) [ϕy

−(R; r)] is allowed for the light particle wave
function ϕ(R; r). Then the Schrödinger equation (22)
with the effective potential ε+(R) [ε−(R)] obtained in
Eq. (27) leads to an infinite tower of bound states whose
binding energies scale as [10, 21]

E(BO)
n ∝ exp

(

−m2π
2

2m1
n2

)

(28)

for sufficiently large n ∈ Z regardless of whether the two
heavy particles are identical bosons or fermions. On the
other hand, for higher partial-wave channels ℓ 6= 0, the
low-energy asymptotic scaling of the spectrum (28) is ter-

minated around E ∝ e−(2/ℓ2)m1/m2 where the centrifugal
barrier overcomes the effective potential (27).
The resulting spectrum from the Born-Oppenheimer

approximation differs from the super Efimov spectrum
(15) with the universal exponent (16) at a large mass
ratio m1/m2 ≫ 1,

En ∝ exp
(

−2e(2m2/m1)πn+θ
)

, (29)

which is the true low-energy asymptotic scaling of the
spectrum as was shown in the preceding section. In
addition, the Born-Oppenheimer spectrum (28) appears
in an ℓ = 0 channel, while the super Efimov spectrum
(29) appears in ℓ = ±1 channels and our analysis pre-
dicts no accumulation of infinite bound states toward
zero energy in other partial-wave channels. Therefore, we
conclude that the Born-Oppenheimer approximation for
three-body systems with p-wave resonant interactions in
two dimensions is incapable of reproducing the true low-
energy asymptotic scaling of the spectrum even at a large
mass ratio. This failure of the Born-Oppenheimer ap-
proximation may be understood in the following way [22].
When the two heavy particles are separated by a distance

R, their characteristic time scale is∼ m1R
2, while that of

the light particle is set by the inverse of its binding energy
∼ m2R

2 ln(RΛ) from Eq. (27). Therefore, even at a large
mass ratio, the light particle cannot adiabatically follow
the motion of the two heavy particles for sufficiently large
separation RΛ & em1/m2 where the Born-Oppenheimer
approximation fails. This argument, however, leaves the
possibility that the resulting spectrum (28) may appear
as an intermediate scaling for |E| & e−2m1/m2Λ2/µ.

V. SUMMARY AND CONCLUSION

In this paper, we extended the super Efimov effect to
mass-imbalanced systems (2) where two species of parti-
cles in two dimensions interact by isotropic short-range
potentials with the interspecies potential fine-tuned to
a p-wave resonance. Their universal low-energy physics
can be extracted by analyzing a properly constructed
low-energy effective field theory with the renormalization
group method [7, 19]. Consequently, a three-body sys-
tem consisting of two particles of one species and one of
the other is shown to exhibit the super Efimov spectrum,

En ∝ exp
(

−2eπn/γ+θ
)

(30)

for sufficiently large n ∈ Z, when the two particles are
heavier than the other by a mass ratio greater than
4.03404 for identical bosons [see Eq. (13)] and 2.41421 for
identical fermions [see Eq. (14)]. In particular, we found
that the universal exponent γ increases monotonously
with increasing the mass ratio which makes the su-
per Efimov spectrum denser and thus its experimental
observation would become easier with ultracold atoms.
For example, a highly mass-imbalanced mixture of 6Li
and 133Cs with their interspecies p-wave Feshbach res-
onances being observed [23] has the universal exponent
γ ≈ 10.7 corresponding to the logarithmic energy ratio of
lnEn+1/ lnEn → eπ/γ ≈ 1.34, which is significantly re-
duced compared to eπ/γ ≈ 10.55 with γ = 4/3 for three
identical fermions [7].
We also pointed out that the Born-Oppenheimer ap-

proximation is incapable of reproducing the super Efi-
mov effect, the universal low-energy asymptotic scaling
of the spectrum, even at a large mass ratio for three-body
systems with p-wave resonant interactions in two dimen-
sions. The possible reason for this failure of the Born-
Oppenheimer approximation was elucidated, while the
possibility for the resulting spectrum (28) to appear as
an intermediate scaling and then crossover to the asymp-
totic super Efimov scaling remains to be elucidated in a
future work.
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Appendix: Model confirmation of the super Efimov

effect

The above predictions from our renormalization group
analysis of the low-energy effective field theory are all
strict as well as universal because we do not need to spec-
ify the forms of interspecies and intraspecies potentials in
the Hamiltonian (2). However, since some readers may be
unfamiliar with our approach, we also present an explicit
model analysis to confirm the predicted super Efimov
effect by extending that in Ref. [7] to mass-imbalanced
systems.
For simplicity, we neglect the intraspecies potentials

V11(r), V22(r) → 0 and consider only the p-wave com-

ponent of the interspecies potential V12(r), which is as-
sumed to be in a separable form of

H =
∑

i=1,2

∫

dk

(2π)2
k2

2mi
ψ†
i (k)ψi(k)

− vp
∑

σ=±

∫

dkdpdq

(2π)6
χ−σ(q)χσ(p)ψ

†
1

(m1

M
k + q

)

× ψ†
2

(m2

M
k − q

)

ψ2

(m2

M
k − p

)

ψ1

(m1

M
k + p

)

(A.1)

with the p-wave form factor χ±(p) ≡ (px±ipy)e−p2/(2Λ2)

providing a momentum cutoff Λ. By summing an infinite
series of Feynman diagrams depicted in Fig. 6, the scat-
tering T -matrix for this model potential is computed as

iT12 =
2i

µ

2p · q e−(p2+q2)/(2Λ2)

2
µvp
− Λ2

π −
2µε
π e−2µε/Λ2E1

(

− 2µε
Λ2

) , (A.2)

where E1(w) ≡
∫∞
w
dt e−t/t is the first-order exponen-

tial integral. The interspecies p-wave resonance ap →∞
is achieved by fine-tuning the bare p-wave coupling vp
according to the relationship 1/ap = Λ2/π − 2/(µvp),
which is obtained by comparing the computed scattering
T -matrix (A.2) on shell with the effective-range expan-
sion (3).

We are now ready to analyze a three-body problem
consisting of two particles of species 1 and another par-
ticle of species 2 right at a p-wave resonance ap → ∞
in two dimensions. Their scattering T -matrix satisfies
a Skorniakov–Ter-Martirosian–type integral equation de-
picted in Fig. 7, which is expressed in the center-of-mass
frame as

Tσσ′(E;p,p′) = ±2µ e−
M2+m2

1

2M2
p
2+p

′2

Λ2 − 2m1
M

p·p
′

Λ2

p2 + p′2 + 2m1

M p · p′ − 2µE − i0+
(m1

M
p+ p′

)

−σ

(

p+
m1

M
p′
)

σ′

±
∫

dq

π

e−
M2+m2

1

2M2
p
2+q

2

Λ2 − 2m1
M

p·q

Λ2

p2 + q2 + 2m1

M p · q − 2µE − i0+

(

m1

M p+ q
)

−σ

∑

τ=±
(

p+ m1

M q
)

τ
Tτσ′(E; q,p′)

(

M2−m2
1

M2 q2 − 2µE − i0+
)

e
M2

−m2
1

M2
q2

Λ2 − 2µE+i0+

Λ2 E1

(

M2−m2
1

M2

q2

Λ2 − 2µE+i0+

Λ2

)

,

(A.3)

where the upper (lower) sign corresponds to the case of
bosonic (fermionic) ψ1 field and p (p′) is an initial (fi-
nal) momentum of a particle of species 1 with respect to
the other two particles scattering with an orbital angu-
lar momentum σ (σ′) = ±1. When the collision energy
E approaches a binding energy E → −κ2/µ < 0, the
above scattering T -matrix factorizes as Tσσ′(E;p,p′)→
Zσ(p)Z

∗
σ′ (p′)/(E+κ2/µ) and the resulting residue func-

tion Zσ(p) satisfies

Zσ(p) = ±
∫

dq

π

e−
M2+m2

1

2M2
p
2+q

2

Λ2 − 2m1
M

p·q

Λ2

p2 + q2 + 2m1

M p · q + 2κ2
×

(

m1

M p+ q
)

−σ

∑

τ=±
(

p+ m1

M q
)

τ
Zτ (q)

(

M2−m2
1

M2 q2 + 2κ2
)

e
M2

−m2
1

M2
q2

Λ2 + 2κ2

Λ2 E1

(

M2−m2
1

M2

q2

Λ2 + 2κ2

Λ2

)

.

(A.4)
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= +iT iT

FIG. 7. Feynman diagrams representing the three-body scattering T -matrix (A.3).

It is easy to see that Z+(p) = ei(ℓ−1) arg(p)z+(p) couples
to Z−(p) = ei(ℓ+1) arg(p)z−(p) with ℓ corresponding to the
total angular momentum of the three particles. Below we
focus on an ℓ = +1 channel in which the super Efimov
effect was shown to emerge, while solutions in an ℓ = −1
channel are simply obtained by the exchange of labels
+↔ −.
The two coupled integral equations (A.4) can be solved

analytically in the low-energy limit κ/Λ → 0 with the
leading-logarithm approximation [7, 24, 25]. We assume
that the integral is dominated by the region κ≪ q ≪ Λ
and split the integral into two parts, κ ≪ q ≪ p and
p ≪ q ≪ Λ, where a sum of p and q in the integrand is
replaced with whichever is larger. Accordingly, Eq. (A.4)
is simplified into

±z+(p)
γ

=

∫ p

κ

dq

q

z+(q)

lnΛ/q
+

∫ ǫΛ

p

dq

q

z+(q) + z−(q)

lnΛ/q
,

(A.5a)

±z−(p)
γ

=

∫ p

κ

dq

q

z+(q)

lnΛ/q
, (A.5b)

where γ ≡ Mm1/(M
2 −m2

1) coincides with the univer-
sal exponent (16) without s-wave interactions and ǫ < 1
is a positive constant. By changing variables to P ≡
ln lnΛ/p and Q ≡ ln lnΛ/q and defining λ ≡ ln lnΛ/κ,
η ≡ ln ln 1/ǫ, and ζ±(P ) ≡ z±(p), we obtain

±ζ+(P )
γ

=

∫ λ

P

dQ ζ+(Q) +

∫ P

η

dQ [ζ+(Q) + ζ−(Q)],

(A.6a)

±ζ−(P )
γ

=

∫ λ

P

dQ ζ+(Q). (A.6b)

These two coupled integral equations are solved by [7]

ζ+(P ) = cos[∓γ(P − λ)], (A.7a)

ζ−(P ) = sin[∓γ(P − λ)], (A.7b)

provided that the boundary condition ζ+(η) = ζ−(η) is
satisfied. This boundary condition leads to an infinite
tower of allowed binding energies λn = πn/γ + θ with
n ∈ Z for any mass ratio m1/m2 regardless of whether
the two particles are identical bosons or fermions, which
indeed confirms the predicted super Efimov effect (15).
We also solved the two coupled integral equations

(A.4) numerically with ℓ = ±1 at mass ratios m1/m2 =
5, 10, 20 and observed that obtained binding energies
asymptotically approach the predicted doubly exponen-
tial scaling for each mass ratio. See Table II for the ob-
tained binding energies at m1/m2 = 20 for two identical
bosons corresponding to the upper sign in Eq. (A.4).

TABLE II. Lowest seventeen three-body binding energies
En = −κ2

n/µ obtained from Eq. (A.4) for ℓ = ±1, m1/m2 =
20, and two identical bosons (upper sign). The logarithmic
energy ratios asymptotically approach the universal scaling
factor eπ/γ ≈ 1.358905074 with γ = 420/41 determined in
Eq. (16).

n ln(Λ/κn) ln(Λ/κn)/ ln(Λ/κn−1)

0 0.84492 —

1 1.4017 1.6590

2 2.5612 1.8272

3 4.3083 1.6821

4 6.5930 1.5303

5 9.5792 1.4529

6 13.513 1.4107

7 18.740 1.3868

8 25.742 1.3736

9 35.177 1.3665

10 47.939 1.3628

11 65.240 1.3609

12 88.720 1.3599

13 120.61 1.3594

14 163.92 1.3591

15 222.77 1.3590

16 302.73 1.3589

∞ — 1.358905074
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