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Abstract

We study the shear viscosity of a dilute Fermi gas as a function of the scattering length in

the vicinity of the unitarity limit. The calculation is based on kinetic theory, which provides a

systematic approach to transport properties in the limit in which the fugacity z = nλ3/2 is small.

Here, n is the density of the gas and λ is the thermal wave length of the fermions. At leading

order in the fugacity expansion the shear viscosity is independent of density, and the minimum

shear viscosity is achieved at unitarity. At the next order medium effects modify the scattering

amplitude as well as the quasi-particle energy and velocity. We show that these effects shift the

minimum of the shear viscosity to the Bose-Einstein condensation (BEC) side of the resonance, in

agreement with the result of recent experiments.

PACS numbers: 03.75.Ss, 05.60.-k, 51.20.+d, 67.85.Lm
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I. INTRODUCTION

Cold fermionic gases provide a unique arena for the study of strongly correlated matter.

In these systems the s-wave interaction between atoms can be controlled by altering an

external magnetic field. The dimensionless parameter that governs the interaction is kFa,

where a is the s-wave scattering length and kF is the magnitude of the Fermi momentum. In

a homogeneous Fermi gas the latter is related to the particle density by n = k3F/(3π
2). The

Fermi momentum also defines a temperature scale, the Fermi temperature by TF = k2F/(2m).

Tuning the system into a Feshbach resonant state corresponds to the limit kFa → ∞. In

this regime the interaction cross section is limited only by unitarity. Equilibrium and non-

equilibrium properties of the dilute Fermi gas at unitarity have been investigated in a number

of experiments, for example [1–4].

In the unitarity limit the dilute Fermi gas is a scale and conformally invariant non-

relativistic many-body system [5]. At high temperature T it behaves like a weakly interacting

gas [6], but in the low T limit it is a strongly correlated quantum fluid, which shares many

interesting properties with other strongly interacting systems. An important example is

nearly perfect fluidity, which has also been observed in the relativistic quark-gluon plasma [7,

8].

Detuning the system away from unitarity, scale invariance is lost. At low T and positive

a a Bose-Einstein condensate (BEC) of strongly bound diatomic molecules is formed [9–11].

On the atomic side of the resonance, i.e. for negative a, a Bardeen-Cooper-Schrieffer (BCS)

superfluid state is realized at low T . The crossover between the BEC and BCS regimes

is known to be smooth [12, 13]. As the temperature is increased the superfluid Fermi

gas undergoes a phase transition to a normal fluid. On the BEC side this is the Einstein

transition, which occurs at a critical temperature Tc ∼ TF . In the BCS regime the critical

temperature is exponentially small compared to TF . The maximum transition temperature

Tc/TF is achieved slightly on the BEC side of the BEC-BCS crossover.

It is natural to ask how transport properties of the fluid change along the BEC-BCS

crossover. The bulk viscosity, for example, vanishes at unitarity but is expected to be non-

zero on either side of the Feshbach resonance. In kinetic theory bulk viscosity is thought

to arise from scale invariance breaking encoded in the density dependence of the effective

fermion mass [14]. The shear viscosity, on the other hand, is expected to be large in the
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BCS and BEC limits and become minimal close to unitarity. Indeed, kinetic theory in the

high temperature limit predicts that the shear viscosity has a minimum exactly at unitarity

[15]. Experimental measurements of the shear viscosity at unitarity and at temperatures

close to the phase transition have been reported in [16–18]. These experiments obtain values

for η/s, the ratio of shear viscosity to entropy density, that are only a few times larger than

the conjectured universal bound η ≥ ~ s/(4πkB) [19]. Recent measurements [20] indicate,

however, that the kinematic viscosity η/n is minimized on the molecular side of the BEC-

BCS crossover.

In this work we study the dependence of the shear viscosity on kFa in kinetic theory.

Kinetic theory can be viewed as a systematic expansion in the fugacity z = nλ3/2 of the

gas. Here, n/2 is the density per spin state and λ = [(2π~)/(mT )]1/2 is the thermal de

Broglie wave length. At leading order in the fugacity the shear viscosity is independent of z

and has a minimum at kFa→ ∞ [15]. This minimum at unitarity is a simple consequence of

the maximum in the vacuum cross section at resonance. We will show that including medium

effects in the scattering amplitude shifts the minimum away from unitarity. The physical

reason for this behavior is related to Pauli blocking in the in-medium scattering amplitude,

which is more efficient on the BCS side. Formally, the minimum in the shear viscosity arises

from the competition between (λ/a)2 and z(λ/a) corrections to η. We will show that it is

possible to compute all one- and two-body effects of order O(z(λ/a)). In addition to in-

medium corrections to the scattering amplitude, these terms arise from medium corrections

to the quasi-particle energy and velocity.

Kinetic theory based on atomic degrees of freedom is reliable in the limits of high temper-

ature, T ≫ TF , or weak coupling, kF |a| ≪ 1. Previous investigations have indicated that at

unitarity kinetic theory is applicable at temperatures as low as T/TF ≃ 0.4 [15, 21, 22]. This

condition is satisfied for part of the data reported in [20]. Early studies of medium effects

were reported in [23, 24]. Medium effects are also included in the T -matrix approaches of

Enss et al. [25] and Levin et al. [26, 27].

This paper is structured as follows: in Sect. II we introduce a quasi-particle description

for the dilute Fermi gas near unitarity. In Sect. IIIA we discuss the kinetic theory calculation

of the shear viscosity. A simple model based on medium-corrections to the cross section is

described in Sect. III B, and a systematic expansion in powers of z and (λ/a) is given in

Sect. III C. We conclude in Sect. IV, and relegate details of the expansion to two appendices.
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II. QUASI-PARTICLE DESCRIPTION

In this section we introduce a quasi-particle model for the dilute Fermi gas near unitarity.

The effective Lagrangian for non-relativistic spin 1/2 fermions interacting via a short range

potential is

L = ψ†
(

i∂0 +
∇2

2m

)

ψ − C0

2

(

ψ†ψ
)2
, (1)

where the coupling C0 is determined by the s-wave scattering length a. In the weak coupling

limit we find C0 = 4πa/m. In the high temperature limit thermodynamic properties of the

gas can be computed as a systematic expansion in the fugacity z, cf. [6]. This is the well

known virial expansion. The pressure is given by

P =
νT

λ3
(

z + b2z
2 + . . .

)

, (2)

with ν = 2 for two spin degrees of freedom. The second virial coefficient is obtained by

summing the two-particle interaction to all orders. Near unitarity we get

b2 = − 1

4
√
2
+

1√
2

(

1 +

√
2

π

λ

a
+ . . .

)

, (3)

which is valid on either side of the resonance. The temperature dependence of b2(T ) is a mea-

sure for the scale invariance breaking. Given P (µ, T ) we can compute other thermodynamic

properties. The particle density n = (∂P )/(∂µ)T is given by

n =
ν

λ3
(

z + 2b2z
2 + . . .

)

, (4)

and the entropy density s = (∂P )/(∂T )µ is

s =
5

2

ν

λ3

(

z

[

1− 2

5

µ

T

]

+ b2z
2

[

1− 4

5

µ

T

]

+
2

5
Tb′2z

2 + . . .

)

. (5)

We can construct a quasi-particle model consistent with these results by computing the

fermion self-energy at order z. This corresponds to summing the two-body interaction

with a fermion in the heat bath to all orders. The fermion dispersion relation is given by

Ep = E0
p + ∆Ep with E0

p = p2/(2m) and ∆Ep = ReΣ(p), where m is the mass parameter

and p is the magnitude of the momentum. The real part of the on-shell fermion self-energy

near unitarity reads

ReΣ(p) = − 8T√
π

1

p
FD

(

p√
2mT

)

z

a
, (6)
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where FD(p̃) is Dawson’s integral and p̃ = p/
√
2mT . The momentum-dependence in ∆Ep

modifies the quasi-particle velocity as ~vp = ~∇pEp = ~v 0
p + ∆~vp, where ~v

0
p = ~p/m is the

velocity of a free particle and

∆~vp =
~p

m
G(p̃)z

a
, G(p̃) = 2

π

λ

p̃3
(

FD(p̃)[1 + 2p̃2]− p̃
)

. (7)

As a consistency check we can verify that the (z/a)-dependence of the quasi-particle prop-

erties is compatible with the equation of state controlled by the second virial coefficient. In

kinetic theory the enthalpy E + P can be written as [14]

E + P = ν

∫

dΓp

(

1

3
~p · ~vp + Ep

)

fp , (8)

where dΓp = d3p/(2π)3 and fp(~x, t) is the quasi-particle distribution function. From Eq. (8),

we can compute in equilibrium the O(z(λ/a))-shift in the enthalpy due to the change in the

quasi-particle energy and velocity discussed above. We get

∆ (E + P ) =
2ν

3

∫

dΓp
p2

2m

(

∆vp
v0p

)

f̂ 0
p + ν

∫

dΓp∆Ep

(

1− 5

3

p2

2mT

)

f̂ 0
p , (9)

where f̂ 0
p = z e−E0

p/T is the equilibrium distribution function for the non-interacting system.

Using Eqs. (6) and (7) we find

∆ (E + P ) =
2

π

λ

a
z2
νT

λ3
. (10)

This result can be compared to the virial expansion. We use the thermodynamic identity

E+P = µn+sT with n and s given above and determine O(λ/a) corrections to the enthalpy

from the second virial coefficient given in Eq. (3). The result agrees with Eq. (10).

III. SHEAR VISCOSITY FROM KINETIC THEORY

A. Chapman Enskog expansion

We compute the shear viscosity by matching the expression for the dissipative contribu-

tion to the stress tensor in fluid dynamics to the result in kinetic theory. In fluid dynamics

we write

δΠij = −ησij − ζδij∇kuk, σij = ∇iuj +∇jui −
2

3
δij∇kuk , (11)
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where ~u is the fluid velocity, η is the shear viscosity, and ζ is the bulk viscosity. In kinetic

theory δΠij is expressed in terms of the non-equilibrium part δfp = fp−f 0
p of the distribution

function. We have

δΠij = ν

∫

dΓp p
ivjp δfp . (12)

In the classical limit it is convenient to define an off-equilibrium function ψp by fp = f 0
p (1−

ψp/T ) where f
0
p = z e−(Ep−~p·~u)/T . The function ψp is determined by the Boltzmann equation

Dfp ≡
(

∂

∂t
+ ~vp · ~∇x + ~F · ~∇p

)

fp = C . (13)

In Eq. (13), Dfp denotes the streaming term in which ~F = −~∇xEp is the force acting

on the quasi-particles between collisions, and C is the collision operator term. In the high

temperature limit the collision term is dominated by two-body scatterings. Linearizing in

the off-equilibrium function ψp we get [28]

C =
f 0
p1

T

∫ 4
∏

i=2

dΓpi f
0
p2w(1, 2; 3, 4) (ψp1 + ψp2 − ψp3 − ψp4) , (14)

where w(1, 2; 3, 4) = (2π)4 δ(3)(~p1+ ~p2− ~p3− ~p4) δ(Ep1+Ep2 −Ep3 −Ep4)|A|2 is the transition
rate and |A|2 is the absolute square of the scattering amplitude.

In order to determine the shear viscosity we expand ψp in gradients of the thermodynamic

variables. This is known as the Chapman-Enskog expansion. At linear order in gradients

of ~u we can write ψp = χij(p) σij , where we have dropped terms that contribute to the bulk

viscosity [14]. In the local rest-frame of the fluid we find

T

f 0
p1

(Df 0
p1
) =

1

2
vip1p

j
1 σij =

1

2m
pi1p

j
1

(

1 + G(p̃1)
z

a

)

σij = C[χij(p1)] σij , (15)

where, using Eq. (14),

C[χij(p1)] σij =

∫ 4
∏

i=2

dΓpif
0
p2
w(1, 2; 3, 4)

(

χij(p1) + χij(p2)− χij(p3)− χij(p4)
)

σij . (16)

The linearized Boltzmann equation in the shear channel can be written as

1

2m

〈

χij(p1)
∣

∣

∣
(p1)ij

(

1 + G(p̃1)
z

a

)〉

=
〈

χij(p1)
∣

∣

∣
C [χij(p1)]

〉

, (17)

where pij = pipj − 1
3
δij p

2 with pijσij = pipjσij . We have also defined an inner product on

the space of linearized distribution functions

〈a(p)|b(p)〉 =
∫

dΓp f
0
p a(p)b(p) . (18)
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The shear part of the stress tensor can be written as

δΠij = − ν

mT

∫

dΓp1 f
0
p1
χ(p1)

(

1 + G(p̃1)
z

a

)

pi1p
j
1p

kl
1 σkl , (19)

where we have defined χij(p) = pijχ(p). Using pijpij = pipjpij =
2
3
p4 and Eq. (17) we finally

obtain

η =
ν

10m2T

〈

χij(p1)
∣

∣

∣
(p1)ij

(

1 + G(p̃1) za
)

〉2

〈

χij(p1)
∣

∣

∣
C [χij(p1)]

〉 . (20)

This expression determines η for the off-equilibrium function χ(p) that solves the linearized

Boltzmann equation.

By writing η in the specific form given in Eq. (20) one obtains a lower bound on the

shear viscosity for a given trial function χ(p). The actual result for η can then be found

by maximizing Eq. (20) over all trial functions. In practice, χ(p) is expanded in a series of

generalized Laguerre polynomials which is known to converge rapidly. Truncating this series

at leading order, i.e. using χ(p) = 1 as a trial function, was shown to provide already an

excellent approximation, accurate to better than 2%, for the shear viscosity at unitarity [24].

We will therefore use this truncation in the following.

B. In-medium cross section

Medium effects influence the shear viscosity in a variety of ways. The medium modifi-

cation of the quasi-particle velocity impacts the streaming term in Eq. (15), and the stress

tensor in Eq. (19). Both of these contribute to the numerator in Eq. (20). The matrix

element of the collision operator in the denominator is affected by medium modifications of

the quasi-particle energy that enters into the distribution functions and the transition rate

w(1, 2; 3, 4). Moreover, medium effects modify also the squared scattering amplitude |A|2.
In order to explore these effects we begin with a simple model calculation in which we

take into account medium effects in the scattering amplitude, and thus in the cross section,

only. The absolute square of the vacuum scattering amplitude is

|A|2 = 16π2

m2

a2

a2q2 + 1
, (21)

where ~q = (~p2 − ~p1)/2 is the relative momentum between two scattering particles. In terms

of the zero range Lagrangian given in Eq. (1) the amplitude arises from the sum of all two-

body scattering diagrams. These diagrams form a geometric series and A = C0/(1−Π0C0),
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where Π0 is the two-particle polarization function. In dimensional regularization we find

Π0(q) = −imq/(4π) and C0 = 4πa/m. At leading order in the fugacity medium effects arise

from Pauli-blocking of the fermion lines in Π0. We can write Π = Π0 + δΠ with [23, 24]

δΠ(P, q) = −
∫

d3k

(2π)3

f̂ 0
|~P/2+~k| + f̂ 0

|~P/2−~k|
(q2 − k2)/m+ iǫ

, (22)

which depends on both the relative momentum q and the total momentum ~P = ~p1 + ~p2.

The real and imaginary parts of the in-medium polarization function are given by

Im δΠ =
z

π
m2T

e−P 2/(8mT )

P
e−q2/(2mT ) sinh(Pq/(2mT )) , (23)

Re δΠ = −2z

π2
m2T

e−P 2/(8mT )

P

∫ ∞

0

dx
xe−x2

sinh(Px/
√
2mT )

(q2/(2mT )− x2)
, (24)

where the integral in Eq. (24) is a Cauchy principle value integral. The full in-medium

scattering amplitude squared is

|A|2 = 16π2

m2

1
(

q − 4π
m
Im δΠ

)2
+
(

1
a
− 4π

m
Re δΠ

)2 , (25)

which agrees with the “broad-resonance” expression discussed in [23]. Phenomenological

consequences of this result were also discussed in [23]. The important observation in our

context is that, whereas the squared vacuum amplitude is even in a, the in-medium expres-

sion has odd corrections of order O(z(a/λ)).

The calculation of the shear viscosity based on the in-medium scattering amplitude is

now straightforward. We define the total and relative momenta in the initial and final state

as ~P = ~p1 + ~p2 and ~P ′ = ~p3 + ~p4, as well as ~q = (~p1 − ~p2)/2 and ~q ′ = (~p3 − ~p4)/2. The

vector ~P can be aligned along the z-axis, and the integration over d3P ′ is performed by

using the condition for total momentum conservation. This leaves three angular integrals,

d cos θq d cos θq′ dφ, where

~P · ~q = Pq cos θq, ~P · ~q ′ = Pq′ cos θq′ , ~q · ~q ′ = qq′ [cos θq cos θq′ + sin θq sin θq′ cosφ] . (26)

Finally, the integration over dq′ can be performed by making use of the condition for

energy conservation q2/m − q′2/m = 0. Inside the integral the off-equilibrium factor

χij(p1) (χ
ij(p1) + χij(p2)− χij(p3)− χij(p4)) can be symmetrized in the in- and out-going

momenta. We find

1

4

(

χij(p1) + χij(p2)− χij(p3)− χij(p4)
)2

= q4 + q′4 − 1

3
(q2 − q′2)2 − 2q2q′2 cos2Θ , (27)
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FIG. 1: (Color online) Left panel: Scaled shear viscosity difference from unitarity (η − η∞)/η∞

as a function of x = 1/(kF a) for different values of t = T/TF . The shear viscosity is computed

from the in-medium cross section containing only the influence of Re δΠ. Furthermore, medium

corrections to the quasi-particle energy and velocity are neglected. Right panel: Shear viscosity η

scaled by the particle density n from Eq. (4) as a function of t for different values of x.

where ~q ·~q ′ = qq′ cosΘ. The matrix element of the linearized collision operator is then given

by

〈χij|C[χij ]〉 = z2
m

6π5

∫ ∞

0

dP

∫ ∞

0

dq P 2q7e−P 2/(4mT )e−q2/(mT )|A|2 . (28)

The remaining integrations can be performed numerically. The integral in the numerator of

Eq. (20) is 〈χij(p)|pij〉 = 5z(mT )7/2/
√
2π3.

Numerical results are shown in Fig. 1. In the left panel we focus on the difference η−η∞,

where η∞ is the shear viscosity at unitarity. In this difference medium corrections that are

independent of a cancel. We plot the dimensionless quantity η/η∞ − 1 as a function of

1/(kFa) for different values of T/TF . In the right panel of Fig. 1 we show the behavior of

η/n as a function of T/TF for three different values of 1/(kFa) on the BEC side.

Our results can be compared to recent measurements reported by the North Carolina

State University group [20]. Elliott et al. studied dissipative corrections to the expansion

of a dilute Fermi gas for several different values of 1/(kFa) near unitarity. The results

are reported in terms of a trap averaged kinematic shear viscosity 〈η/n〉. It is difficult to

compare these results directly to our calculations for a homogeneous gas because performing

the trap average involves a poorly constrained cutoff on the spatial integral over the shear

viscosity. However, the results of Elliott et al. are quite remarkable, even on a qualitative
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level. They find that 〈η/n〉 has a minimum on the BEC-side of the resonance. As the

temperature of the cloud increases, this minimum is shifted toward the unitarity limit. At

a given value of kFa, 〈η/n〉 increases with temperature on the BEC side, and decreases on

the BCS side. This behavior is consistent with a (λ/a)2 dependence that dominates at high

temperature, and competes with a z(λ/a) contribution that becomes more important as the

temperature is lowered. On a more quantitative level, Elliott et al. study the expanding gas

at a cloud energy Ẽ/EF = 1 and find a minimum of 〈η/n〉 at 1/(kFa) ≃ 0.18. Here, Ẽ is a

virial theorem based measure of the cloud energy. For exactly harmonic traps Ẽ = Etot/N ,

where Etot is the total energy (internal plus potential) of the cloud. In the high temperature

limit we expect Etot = 3NT .

The results shown in Fig. 1 are consistent with these findings. The figure in the left panel

demonstrates that we observe a minimum of η/η∞ − 1 on the BEC side. The minimum

shifts toward unitarity with increasing temperature. Moreover, on the BCS side the scaled

difference decreases with increasing temperature, while on the BEC side, close to unitarity,

it increases with increasing T . The figure in the right panel shows that η/n is independent

of 1/(kFa) for large T/TF , and that the sensitivity to 1/(kFa) grows with decreasing tem-

perature. On the BEC side η/n drops with increasing 1/(kFa) even beyond the point where

a minimum was observed in the left panel. This is a consequence of the decrease of n with

increasing 1/(kFa) as predicted by Eq. (4).

C. Expansion in z(λ/a)

As discussed above, in-medium effects influence the shear viscosity in several ways.

In addition to the effects of the in-medium scattering amplitude, the medium modifica-

tion of the quasi-particle energy affects the energy conserving delta function and the fi-

nal state momenta. With the interaction included, energy conservation implies q2 − q′2 =

mF(P, q2, q′2, θq, θq′) with

F = ∆Ep(P, q
′2, cos θq′) + ∆Ep(P, q

′2,− cos θq′)

−∆Ep(P, q
2, cos θq)−∆Ep(P, q

2,− cos θq) , (29)

see Appendix A for details. We can solve this equation for q′2 order-by-order in the fugacity

and perform the integration over dq′ in the matrix element of the collision operator up to

10



-0.2 -0.1 0 0.1 0.2
x

0

0.05

η/
η 

  −
1

t = 1
t = 2
t = 3

∞

FIG. 2: (Color online) Scaled shear viscosity difference (η − η∞)/η∞ as a function of x = 1/(kF a)

for different values of t = T/TF . This figure shows the result of a systematic expansion to order

O((λ/a)2) and O(z(λ/a)), see Eq. (32).

order O(z). This amounts to

〈χij |C[χij]〉 =
2

(2π)6

∫ ∞

0

dP

∫ ∞

0

dq

∫ 1

−1

d cos θq

∫ 1

−1

d cos θq′

∫ 2π

0

dφ P 2q2 f 0
p1
f 0
p2
|A|2

×
{

mq5(1− cos2Θ)

(

1− m
∂F
∂q′2

∣

∣

∣

∣

q′2=q2

)

+
3

2
mq3(1− cos2Θ)∆(q′2)

}

, (30)

where f 0
p = z e−Ep/T contains medium effects through ∆Ep and ∆(q′2) = − mF|q′2=q2.

Medium corrections to the numerator of Eq. (20) arise from modifications of the quasi-

particle energy and velocity. We find

〈χij(p)|pij (1 + G(p̃)z/a)〉 = z(2mT )7/2

3π2

∫ ∞

0

dy y6e−y2e−ReΣ(
√
2mTy)/T

{

1 + G(y)z
a

}

. (31)

Equations (30) and (31) contain all the terms needed to compute the dependence of η on

(λ/a) at leading order in z. Close to unitarity we can expand

η − η∞
η∞

= c0

(

λ

a

)2

+ c1 z

(

λ

a

)

+ . . . . (32)

Details of the calculation of c0 and c1 are described in Appendix B. We find

c0 =
1

4π
≃ 0.07958 , c1 ≃ −0.03325 , (33)

where the value of c1 is the result of a numerical calculation. The final result for c1 involves

subtle cancellations between several effects. We showed in the previous section that the
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in-medium cross section alone leads to a minimum of the shear viscosity on the BEC side,

corresponding to a negative contribution to c1. In contrast, corrections to the quasi-particle

velocity give a positive contribution to c1. This effect is largely cancelled by corrections to

the quasi-particle energy, see Appendix B. The final result of Eq. (32) is shown in Fig. 2.

We observe that the complete result to O((λ/a)2) and O(z(λ/a)) is remarkably similar to

Fig. 1, which only includes the in-medium cross section.

IV. CONCLUSIONS AND OUTLOOK

In summary, we studied the influence of in-medium effects on the scattering length de-

pendence of the shear viscosity in the dilute Fermi gas near unitarity. To zeroth order in the

fugacity, η only depends on (λ/a)2, and the minimum occurs at unitarity. Medium effects

give, however, corrections of order O(z(λ/a)), and the minimum of (η − η∞)/η∞ shifts to

the BEC side. The main effect that causes this behavior is Pauli blocking in the in-medium

cross section. Our results are in qualitative agreement with the experimental observations

recently reported in [20]. More detailed comparisons will require an improved understanding

of how to average the shear viscosity over the trap.

In our calculation we focused on one- and two-body effects, and truncated the system-

atic expansion in z and (λ/a) at order O((λ/a)2) and O(z(λ/a)). As demonstrated in

Sect. III B, a simple model involving only in-medium scattering can be studied at any value

of z and (λ/a), although the applicability of kinetic theory becomes questionable for z & 1

or (λ/a) & 1. Note that the former condition arises from the applicability of kinetic theory

in a homogeneous system, whereas the latter condition arises in the context of applying ki-

netic theory to a finite system, in which the mean free path must be small compared to the

system size. We have not considered three-body collisions, which are expected to contribute

to the shear viscosity at O(z). Vacuum terms in the three-body amplitude can contain

terms of O(1/(qa)), which would contribute to the shear viscosity at O(z(λ/a)). There is

no experimental evidence for three-body effects in transport coefficients, but a theoretical

estimate is certainly desirable.

The results presented in this work rely on kinetic theory and are limited to temperatures

significantly above the phase transition. Near Tc quantum statistics and pseudogap effects

are likely to be important. These effects can be incorporated into kinetic theory, but a

12



diagrammatic framework along the lines of [25–27] is likely to be more reliable.
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Appendix A: Condition for energy conservation

The matrix element of the collision operator in Eq. (20) can be written as

〈χij|C[χij ]〉 =
2

(2π)6

∫ ∞

0

dP

∫ ∞

0

dq

∫ 1

−1

d cos θq

∫ 1

−1

d cos θq′

∫ 2π

0

dφP 2q2 f 0
p1
f 0
p2
|A|2

×
∫ ∞

0

dq′q′2
[

q4 + q′4 − 2q2q′2 cos2Θ− 1

3
(q2 − q′2)2

]

δ
(

q2/m− q′2/m−F
)

. (A.1)

We change variables from dq′ to dq′2 and use the energy conserving delta function to evaluate

the q′2-integral up to leading order in z. For this purpose we solve the condition q2/m −
q′2/m = F(P, q2, q′2, θq, θq′) for q′2 order-by-order in the fugacity. Since mF is of order

O(z(λ/a)), we can replace q′2 in F by the solution at O(z0), i.e. q′2 = q2, and find q′2 =

q2 (1 + ∆(q′2)/q2) with the z(λ/a)-correction

∆(q′2) = − mF|q′2=q2 = m

(

∆Ep(P, q
2, cos θq) + ∆Ep(P, q

2,− cos θq)

−∆Ep(P, q
2, cos θq′)−∆Ep(P, q

2,− cos θq′)

)

, (A.2)

where

∆Ep(α, β, γ) = − 8T√
π

1

p(α, β, γ)
FD

(

p(α, β, γ)√
2mT

)

z

a
, (A.3)

p(α, β, γ) =

√

α2

4
+ β + α γ

√

β (A.4)

such that ∆(q′2) = 0 for q2 = 0. With this, the integral over dq′2 can be evaluated. We find

1

2

∫ ∞

0

dq′2
√

q′2
[

q4 + q′4 − 2q2q′2 cos2Θ− 1

3
(q2 − q′2)2

]

δ
(

q2/m− q′2/m− F
)

= mq5(1− cos2Θ)−m2q5(1− cos2Θ)
∂F
∂q′2

∣

∣

∣

∣

q′2=q2
+

3

2
mq3(1− cos2Θ)∆(q′2) + . . . , (A.5)
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where the first term is of O(z0) and the second and third term are of O(z). Since ∂F/∂q′2

is already of O(z), it suffices to evaluate this factor at q′2 = q2.

Appendix B: Systematic expansion

Ignoring all medium effects in Eq. (20), in particular using Eq. (21) for the squared

scattering amplitude, one obtains for the shear viscosity

η0 =
15

28
√
π
(mT )3/2J −1 (B.1)

with

J =

∫ ∞

0

dq̃
q̃5e−2q̃2

1 + 1/(2mTa2q̃2)
=

1

8

(

1− 1

2mTa2
+ . . .

)

, (B.2)

where q̃ = q/
√
2mT . In-medium corrections alter this result as η = η0 + ∆η. Since η in

Eq. (20) is of the form η = A/B, one can determine ∆η to leading order in the deviations

from η0 = A0/B0 as ∆η = ∆A/B0 − η0∆B/B0. At unitarity, one finds from Eq. (20) to

leading order in z

η∞ =
15π

8
√
2

1

λ3

(

1− 25
√
2√
π
z

∫ ∞

0

dP̃

∫ ∞

0

dq̃ P̃ q̃4 e−3P̃ 2/4e−3q̃2 sinh(P̃ q̃)

)

. (B.3)

The second term is associated with Im δΠ in |A|2 and leads to in-medium corrections that

cancel in the difference η − η∞.

The term ∆A arises from the change in the quasi-particle velocity as well as the energy

which enters the distribution function f 0
p inside the numerator-integral. We find to leading

order
(∆A/B0)

η∞
=

8

3π
z

(

λ

a

)

, (B.4)

which gives a non-vanishing contribution to the scaled difference (η − η∞)/η∞. This tends

to decrease (η − η∞)/η∞ for a < 0 and to increase it for a > 0, i.e. to shift the minimum to

the atomic side of the resonance.

The term ∆B is associated with the collision operator. The real part of δΠ gives a

contribution of O(z(λ/a)) which is positive for a < 0 and negative for a > 0. The imaginary

part of δΠ contributes at O(z(λ/a)2) in the scaled difference, which we have neglected

throughout. The distribution functions f 0
p1
f 0
p2

in Eq. (30) give an order O(z(λ/a)) term

which is positive for a < 0 and negative for a > 0. Finally, the medium corrections to the
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energy conserving delta function give rise to two terms, cf. Eq. (A.5), which are both of

O(z(λ/a)) and decrease (increase) the scaled difference for a < 0 (a > 0).

With this, the scaled difference can be expanded systematically in powers of z and (λ/a)

as
η − η∞
η∞

= c0

(

λ

a

)2

+ c1 z

(

λ

a

)

+ . . . (B.5)

with c0 = 1/(4π) and

c1 =
8

3π
+

32
√
2

π2
I1 −

16
√
2

π3/2
I2 −

9√
2π5/2

I3 −
4
√
2

π3/2
I4 . (B.6)

In Eq. (B.6), the integrals are given by

I1 =

∫ ∞

0

dP̃

∫ ∞

0

dq̃ P̃ q̃3 e−3P̃ 2/4e−2q̃2
∫ ∞

0

dx
xe−x2

sinh(P̃ x)

(q̃2 − x2)
, (B.7)

I2 =

∫ ∞

0

dP̃

∫ ∞

0

dq̃

∫ π

0

dθq P̃
2q̃5 sin θq e

−P̃ 2/2e−2q̃2

×
[

FD(p(P̃ , q̃
2, cos θq))

p(P̃ , q̃2, cos θq)
+
FD(p(P̃ , q̃

2,− cos θq))

p(P̃ , q̃2,− cos θq)

]

, (B.8)

I3 =

∫ ∞

0

dP̃

∫ ∞

0

dq̃

∫ π

0

dθq

∫ π

0

dθq′

∫ 2π

0

dφ P̃ 2q̃3 sin θq sin θq′ (1− cos2Θ)

× e−P̃ 2/2e−2q̃2∆C(P̃ , q̃, θq, θq′) , (B.9)

I4 =

∫ ∞

0

dP̃

∫ ∞

0

dq̃

∫ π

0

dθq′ P̃
2q̃4 sin θq′ e

−P̃ 2/2e−2q̃2C ′(P̃ , q̃, θq′) (B.10)

with p(α, β, γ) defined in Eq. (A.4) and

∆C(P̃ , q̃, θq, θq′) =
FD(p(P̃ , q̃

2, cos θq′))

p(P̃ , q̃2, cos θq′)
+
FD(p(P̃ , q̃

2,− cos θq′))

p(P̃ , q̃2,− cos θq′)

− FD(p(P̃ , q̃
2, cos θq))

p(P̃ , q̃2, cos θq)
− FD(p(P̃ , q̃

2,− cos θq))

p(P̃ , q̃2,− cos θq)
, (B.11)

C ′(P̃ , q̃, θq′) =
p(P̃ , q̃2, cos θq′)− [1 + 2(p(P̃ , q̃2, cos θq′))

2]FD(p(P̃ , q̃
2, cos θq′))

2(p(P̃ , q̃2, cos θq′))3

×
(

2q̃ + P̃ cos θq′
)

+
p(P̃ , q̃2,− cos θq′)− [1 + 2(p(P̃ , q̃2,− cos θq′))

2]FD(p(P̃ , q̃
2,− cos θq′))

2(p(P̃ , q̃2,− cos θq′))3

×
(

2q̃ − P̃ cos θq′
)

. (B.12)

By evaluating the above integrals numerically, we find I1 ≈ −0.02194, I2 ≈ 0.23899, I3 ≈
−0.00059 and I4 ≈ −0.18650. In c1, the first and the third term are both large compared to
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the others, but of opposite sign. It is interesting to note that these together with the fourth

and fifth term basically cancel each other, leaving the z(λ/a)-dependence of (η − η∞)/η∞

determined by the second term in c1 which is related to Re δΠ in the in-medium cross section.
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