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We connect explicitly the classical O(2) model in 1+1 dimensions, a model sharing important
features with U(1) lattice gauge theory, to physical models potentially implementable on optical
lattices and evolving at physical time. Using the tensor renormalization group formulation, we take
the time continuum limit and check that finite dimensional projections used in recent proposals
for quantum simulators provide controllable approximations of the original model. We propose
two-species Bose-Hubbard models corresponding to these finite dimensional projections at strong
coupling and discuss their possible implementations on optical lattices using a 87Rb and 41K Bose-
Bose mixture.
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I. INTRODUCTION

Recently, there has been a lot of interest in the pos-
sibility of building quantum simulators for lattice gauge
theory (LGT) using optical lattices [1–5]. The goal is to
engineer many-body systems with cold atoms that can
be built experimentally and that approximately evolve
according to some given quantum LGT Hamiltonian.
Achieving this goal would allow us to go beyond what can
be done with classical computing, namely overcoming the
sign problem of Quantum Chromodynamics (QCD) with
a chemical potential, establishing its phase diagram and
studying its real time evolution. Introducing a chemical
potential in QCD is necessary to describe physical situa-
tions where a nonzero quark density is needed such as the
early universe or heavy ion collisions. Building a quan-
tum simulator for QCD requires that we first systemat-
ically establish the viability of the approach by building
up on simple models sharing some of the basic features
of lattice QCD.

In the context of condensed matter, a proof of principle
that quantum simulating is possible has been given in
the case of the Bose-Hubbard model. For this simple
model, a remarkable level of quantitative agreement [6]
has been reached between state of the art quantum Monte
Carlo calculations and their experimental optical lattice
implementations. It would be very desirable to provide
a similar proof of principle in the context of LGT.

In this article, we propose an optical lattice setup and
accurate numerical methods to relate it to a simple model
that shares some important features (discrete imaginary
time, relativistic space-time symmetry, compact gauge
variables and a complex action) with interesting LGT
models, namely the classical O(2) in 1+1 dimensions
with a chemical potential. This model is described in
section II. The goal of the article is to discuss the op-
tical lattice implementation of one of the building block

of the Hamiltonian formulation of gauge theory, namely
the “quantum rotors” that are described in more detail
below, rather than discussing more specific aspects such
as the implementation of Gauss’s law for LGT models
involving these building blocks.

The connection between the classical O(2) in 1+1 di-
mensions and physical systems on optical lattices re-
quires three steps. First, we introduce new compu-
tational methods based on the tensor renormalization
group (TRG) method [7–10] to take the time continuum
limit (step 1, section II) and to calculate the effects of
finite dimensional truncations necessary for a physical
implementation (step 2, section III). We then construct
a two species Bose-Hubbard model which at second or-
der in degenerate perturbation theory can be matched
with the finite dimensional truncations and we propose
an experimental implementation using a 87Rb and 41K
Bose-Bose mixture (step 3, section IV). The O(2) model
is very well understood using classical computing [7–12]
and our goal is not to learn more about this model from
quantum simulations but rather to demonstrate that a
quantitative correspondence is possible.

One should be aware of the fact that in contrast to
the quantum Monte Carlo treatment of condensed mat-
ter models where space and time are completely inde-
pendent entities, the state of the art calculations in LGT
are performed using the Lagrangian formalism at discrete
imaginary time where space and time are completely in-
terchangeable. In LGT, the continuum limit is usually
taken in a way that preserves this relativistic symmetry
between space and time. The Hamiltonian representa-
tion provides the functional forms used to fit correlation
functions and a slightly better resolution in the time di-
rection is sometimes used, however, the time continuum
limit is not taken independently. Explicit Hilbert space
representations of the physical states and of their matrix
elements are mostly absent from today’s lattice QCD cal-
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culations. In our construction, the first step will be to
take the time continuum limit using the Lagrangian for-
mulation. Note that Lorentz symmetry can emerge near
criticality in the Hamiltonian formulation [13] and that
the classical O(2) model is often used as an effective the-
ory for the Bose-Hubbard model [14].

It is important to understand the similarity between
the infinite dimensional Hilbert spaces of the O(2) model
and U(1) LGT in the Hamiltonian formulation. In the
mid seventies, LGTs were developed in the Hamiltonian
formalism [15–18] using local gauge variables that live on
bonds connecting neighboring sites. For continuous and
compact symmetry groups, these gauge links are oper-
ators that live on an infinite Hilbert space and in the
appropriate basis look like classical group elements. In
U(1) LGT [16], gauge links are phases eiθ, which when
considered as operators, live in an infinite dimensional
Hilbert space spanned by the eigenstates |n〉 of the “an-
gular momentum” operator L = −i∂/∂θ with all positive
and negative integer eigenvalues n. The same “quan-
tum rotors” appear in the Hamiltonian formulation of
the O(2) model [17, 18].

For realistic implementations with cold atoms, it is
necessary to consider Hamiltonians where gauge links
are quantum operators that live in a finite rather than
infinite Hilbert space [19, 20]. In the U(1) example
this would mean the eigenvalues of L only take a finite
range of values. For this to occur naturally one restricts
the Hilbert space to be in a spin-s representation, i.e.,
n = −s,−(s− 1), ..0, ..(s− 1), s. Finite dimensional pro-
jections and quantum link variables have played an im-
portant role in recent proposals to simulate dynamical
gauge fields [1–3, 21, 22].

The common features of the O(2) model considered
here, and the U(1) gauge model can be understood by
comparing the TRG formulations of the two models [8].
In both cases, the Fourier expansion of exp (β cos(θ)) is
used which leads to the labeling of states by (positive
and negative) integers. However, the quantum numbers
are associated to plaquettes in the gauge case rather than
links in the spin case. The physics of the models is also
quite different. For instance, in 2+1 dimensions, the O(2)
spin model has a second order phase transition while the
U(1) gauge model has none.

II. THE MODEL AND ITS TIME CONTINUUM
LIMIT

The simplest model involving the quantum rotors de-
scribed above is the O(2) model in 1+1 dimensions. Its
partition function reads:

Z =

∫ ∏
(x,t)

dθ(x,t)

2π
e−S , (1)

with action

S =− βτ
∑
(x,t)

cos(θ(x,t+1) − θ(x,t) − iµ)

− βs
∑
(x,t)

cos(θ(x+1,t) − θ(x,t)). (2)

The meaning of the chemical potential µ [23] appears
clearly in the limit where βs is zero and we have decou-
pled quantum rotors with a discrete spectrum labeled
by nx at each site x (see Eq. (5)). Using these labels,
the chemical potential generates a contribution −µnx to
the energy at each site. The sites of the rectangular
Ns ×Nτ lattice are labeled as (x, t) and we assume peri-
odic boundary conditions in space and time.

When βτ � βs we obtain the time continuum limit [17,
18, 24] with an Hamiltonian connecting quantum rotors
on a lattice with βs acting as the coupling between the
spatial sites. In the ⊗x|nx〉 basis, it reads:

Ĥ =
Ũ

2

∑
x

L̂2
x − µ̃

∑
x

L̂x − J̃
∑
〈xy〉

cos(θ̂x − θ̂y) , (3)

with Ũ = 1/(βτa), µ̃ = µ/a and J̃ = βs/a, the sum
extending over sites x and nearest neighbors 〈xy〉 of the
space lattice and a is a lattice spacing.

The commutation relations [L, e±iθ̂] = ±e±iθ̂ show

that e±iθ̂ act like creation and annihilation operators.

However, there is no eigenstate of L annihilated by e−iθ̂.
At large µ, there is an effective truncation [25, 26] which
makes the eigenstates with negative eigenvalues irrele-
vant. For small value of µ, we will consider the quantum
link inspired truncation where the original operator al-
gebra is approximated by a spin-s representation with
|n| ≤ s.

Remembering the role played by the differential opera-
tor L = −i∂/∂θ in the construction of the spherical har-
monics, we replace L by L3, the third component of the
angular momentum in the SU(2) Lie algebra. Pursuing

the analogy, we replace e±iθ̂ by an operator proportional
to the raising and lowering operators L± in the spin-s
representation. In the case of spin-1, a comparison of the
matrix elements shows that the correspondence between
the two representations can be accomplished by properly
choosing the constant of proportionality.

III. NUMERICAL CALCULATION OF THE
PHASE DIAGRAM

We now discuss the phase diagram, the finite spin pro-
jection and the time continuum limit by using the TRG
method. Following the procedure described in Refs. [8–
10], we can write

Z = Tr
∏
(x,t)

T
(x,t)
nxn′xntn

′
t
, (4)
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with the local tensor expressed in terms of the modified
Bessel functions:

T (x,t)
nxnx′ntnt′

=
√
Int(βτ )Int′ (βτ ) exp(µ(nt + n′t))√
Inx(βs)Inx′ (βs)δnx+nt,nx′+nt′ . (5)

The indices nx, n
′
x, nt and n′t label the four links coming

out of (x, t) in the x and t direction and the trace Tr refers
to the sum over all these link indices. A transfer matrix
T can be constructed by taking the spatial traces in a
time slice:

T(n1,n2,...nNs )(n
′
1,n
′
2...n

′
Ns

) =∑
nx1nx2...nNs

T
(1,t)
nxNsnx1n1n′1

T
(2,t)
nx1nx2n2n′2...

. . . T
(Ns,t)
nx(Ns−1)nxNsnNsn

′
Ns

. (6)

The indices (n1, n2, . . . nNs) represent the past and
(n′1, n

′
2 . . . n

′
Ns

) the future.
In view of the rapid decay of the In(β) when |n|

increases at fixed β, good approximations can be ob-
tained by replacing the infinite sums by sums restricted
to −nmax to nmax. We denote the number of states
Dst = 2nmax + 1. With this truncation the transfer ma-
trix is a DNs

st ×D
Ns
st matrix. It is possible to coarse grain

the transfer matrix efficiently by using a higher order
singular value decomposition (HOTRG) described in [7].
This procedure then reduces the two site transfer ma-
trix to a Dst × Dst matrix and thus accomplishes the
blocking from two sites to a single site. Note that in the
spin-1 projection, we keep Dst much larger than 3 as we
keep blocking. In other words, the spin projection repre-
sents a microscopic modification of the model, while we
need to keep Dst as large as possible in order to keep a
good macroscopic accuracy. The same numerical method
is used in all cases, the only difference being the initial
tensor.

An important advantage of the TRG method is that it
allows to reach exponentially large volumes. However, it
is important to check the results at small volume where
sampling methods are feasible and accurate. We have
used the TRG and the worm algorithm [11, 12] to calcu-
late the particle number density [12]

〈N〉 ≡ 1/(Ns ×Nτ )∂ lnZ/∂µ . (7)

The partition function Z can be calculated by taking the
trace of TNτ or by using the methods described in Refs.
[7–10]. The numerical values on a 16 × 16 lattice, for
values of βs = βτ and µ slightly below the tips of the
regions with 〈N〉 = 0, 1, . . . , 4 of the phase diagram
described below are shown in Table I.

Small discrepancies between the two methods appear
typically in the 4th significant digit. The errors for the
worm algorithm are purely statistical and to the best of
our knowledge, there are no systematic errors associated
with it. On the other hand, for the TRG method, the

β µ 〈N〉 (worm) 〈N〉(HOTRG)

1.12 0.01 0.00726(1) 0.00728(8)

0.46 1.8 0.98929(1) 0.9892(3)

0.28 2.85 1.98980(2) 1.989(2)

0.2 3.53 2.96646(3) 2.967(1)

0.12 4.3 3.96206(4) 3.965(1)

TABLE I. 〈N〉 for the worm algorithm and the HOTRG for
βs = βτ = β.

limit Dst →∞ shows very small variations which will be
documented and analyzed in a separate publication [27]
but do not affect the results presented here.

By increasing µ at fixed β, we go through successive
Mott insulating (MI) phases characterized by a fixed inte-
ger value of 〈N〉 increasing with µ and alternating with
superfluid (SF) phases where 〈N〉 interpolates continu-
ously between the successive integers. The phase bound-
aries are clearly visible from the steps in 〈N〉 as a function
of µ as shown in Fig. 1. The phase boundaries can also be
obtained by looking at the two largest eigenvalues of the
transfer matrix. In a given MI phase, one would expect
that the largest value of the transfer matrix is unique and
corresponds to an eigenstate with fixed integer particle
density. On the other hand in the the SF phase, the two
largest eigenvalues of the transfer matrix are expected to
be degenerate and the corresponding eigenstates to have
particle density corresponding to the two neighboring MI
regions. Figure 1 shows that these expectations are ver-
ified quite precisely. The system reaches the superfluid
(SF) phase when λ2/λ1 = 1 and when µ is increased fur-
ther, this ratio stays 1 while there is an increase in the
particle number density between two adjacent integers
which stand for two different MI phases.

The alternation between the MI and SF phases in the
β-µ plane is shown in Fig. 2 . The pointy shape of the MI
phase region is also observed in other 1+1 dimensional
Bose-Hubbard models [28, 29]. The spin-1 projection is
also shown in these figures. When µ is not too large, only
small differences with the original, unprojected model
are observed. However, when µ becomes large enough
to have 〈N〉 > 1, the truncation prevents such a large
occupation and 〈N〉 saturates to 1 as expected and there
is no 〈N〉 = 2 MI phase. The phase boundary on Fig. 2
between the MI 〈N〉 = 0 phase from the SF phase ap-
proximately coincides with the line for the model with an
infinite number of states. Similarly, the spin-2 projection
(not shown on the graph) reproduces well the 〈N〉 = 0
and 1 boundaries while discrepancies appear for 〈N〉 = 2.

Figure 2 shows that when β is small, the boundary be-
tween the MI and SF phase appear to be at large values
of µ. It is useful to recall that so far we have only consid-
ered the phase diagram in the isotropic case β = βs = βτ .
When β → 0, the interaction along the space links are
small, but if µ is sufficiently large, the interactions along
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FIG. 1. (Color online) Ratio (λ2/λ1) of the first two eigen-
values of the transfer matrix and the particle number density
〈N〉 for the βτ = βs = 0.06 from HOTRG calculation with
Dst = 15. The particle number density 〈N〉3 and the sec-
ond normalized eigenvalues (λ2/λ1)3 where a lower index 3
denotes the spin-1 projection (3-states) is also shown.
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FIG. 2. (Color online) The phase diagram in the β-µ plane
for the isotropic (βs = βτ = β) case.

the time links are not small. In the limit where the inter-
actions among the space links are negligible, the problem
reduces to a collection of independent one site problems
(simple quantum mechanics) as in mean field theory [14].
In this limit, Eq. (5) shows that the transfer matrix
becomes diagonal because In(0) = 0 except for n = 0
(I0(0) = 1) and by the conservation law the same index
nx characterizes the interaction along the time direction.

In other words, there is no quantum number flowing in
the space direction and the flow in the time direction at
each site is constant. In this limit, the eigenvalues of the
transfer matrix are just

λ(n1,n2,...nNs )
=

∏
x

Inx(β)enxµ . (8)

The largest eigenvalue is then

λmax = (Maxn(In(β)enµ))Ns . (9)

Finding the value of n corresponding to the maximum
eigenvalue gives the particle density 〈N〉 in the MI phase.

The maximization of An = In(β)enµ can be achieved
by considering the ratios rn = An+1/An. Note that we
assume µ > 0 and given that In(β) = I−n(β), we only
need to consider n ≥ 0. When rn−1 > 1 and rn < 1,
An is a maximum. It can be shown in the limit of small
and large β that rn decreases when n increases. If this
remains true for arbitrary β and if rn 6= 1, then the
problem has a unique solution. The interesting case is
rn = 1 which implies An = An+1 and should be at the
boundary between two MI phases with particle density n
and n + 1. In the small β limit, In(β) ' βn/(2nn!) and
the condition rn = 1 implies that

βeµ/2 = n+ 1 (10)

in that approximation. The sudden transition in particle
density occurs at integer values of βeµ/2. This predic-
tion is confirmed by plotting the phase diagram in the
β-βeµ/2 plane as shown in Fig. 3. We see that by chang-
ing the vertical coordinate to µ → βeµ/2, the shape of
the phase diagram of the isotropic system looks like the
cuspy shapes found for the Bose-Hubbard in one spatial
dimension [28, 29]. Keeping in mind that we are working
in the limit of small β, Eq. (10) implies that the phase
boundaries of the SF phase between the n and n+ 1 MI
phases diverge like ln(2(n + 1)/β) when β → 0 which is
consistent with Fig. 2.

We now depart from the isotropic βτ = βs situation
and consider the case βτ � βs corresponding to the time
continuum limit. If we neglect βs we obtain the one site
approximation described above. The particle density can
be obtained from the ratio analysis in the large βτ limit.
Using In+1(βτ )/In(βτ ) ' 1− ((n+ 1/2)/βτ in this limit,
we find that the degeneracy occurs for integer values of
µβτ −1/2. Defining the effective chemical potential µe =
µβτ − 1/2 and effective coupling βe = βsβτ , we find that
the same MI-SF pattern appears in the βe-µe plane (Fig.
4).

Having computed the phase diagram in the βτ = βs
and βτ � βs cases, we learned that they have very simi-
lar shapes in suitable systems of coordinates. From this
we expect that they can be smoothly deformed into each
others and that nothing special happens in the interme-
diate situations.
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IV. OPTICAL LATTICE IMPLEMENTATION

In order to incorporate the positive and negative eigen-
values of L, we will consider a two-species Bose-Hubbard

Hamiltonian on a lattice:

H = −
∑
〈xy〉

(taa
†
xay + tbb

†
xby + h.c.)−

∑
x,α

(µ+ ∆α)nαx

+
∑
x,α

Uα
2
nαx(nαx − 1) +W

∑
x

naxn
b
x +

∑
〈xy〉,α

Vαn
α
xn

α
y

(11)

with α = a, b indicating the two different species, nax =
a†xax and nbx = b†xbx the number operators, and |nax, nbx〉
the corresponding on-site basis. This class of models has
been studied extensively [30–33]. It is possible to adjust
the chemical potentials in order to set 〈nx〉 = 〈nax+nbx〉 =
2. In the limit where Ua = Ub = W are very large and
positive, the on-site Hilbert space can then be restricted
to the states satisfying nx = 2 at each site. All the other
states (with nx 6= 2) belong to high-energy sectors that
are separated from this one by energies of order U . The
three states |2, 0〉, |1, 1〉 and |0, 2〉 correspond to the three
states of the spin-1 projection considered above.

It is useful to visualize the minima of the on-site Hamil-
tonian obtained in the limit t → 0. It can be written as
a quadratic form and a linear term in na and nb. If
UaUb > W 2, there is a unique minimum, |1, 1〉, which
corresponds to a miscible phase where the two species
need to be present at the same place. Since in the spin-1
approximation, |1, 1〉 corresponds to a rotor with angu-
lar momentum zero, this is the correct situation for the
O(2) model we try to simulate. On the other hand, if
UaUb < W 2, the extremum is a saddle point. As we
will discuss later, the unstable direction coming out of
the extremum is limited by the positivity of the occu-
pation number. There are two vacua |2, 0〉 and |0, 2〉,
which corresponds to imiscible phases. The limiting case
UaUb = W corresponds to our Ua = Ub = W = U0 lowest
order approximation. If in addition we have µ = (3/2)U0

and ∆α = 0, we have a flat direction along the line nx = 2
where we have three states of energy −2U0, while the de-
generate lines with nx = 1 or 3 have energy −(3/2)U0

which is considered much larger in the strong coupling
approximation. Small changes in the parameters will
break the degeneracy of the ground state but preserve
a significant difference between these states and the ex-
cited states. Decreasing W lowers the energy of the |1, 1〉
state linearly in the difference with U0. Similarly, increas-
ing W raises the energy of the |1, 1〉, the flat direction
curves down at both ends, but the positivity of the occu-
pation number prevents to have energy unbounded from
below. When species dependent chemical potentials are
turned on, the flat direction becomes slanted linearly in
the variation of the chemical potential ∆α. The overall
shape of the trap will typically create small variations in
a space-dependent manner. In summary, as long as the
variations of the parameters are small compared to U0,
the features departing from the degenerate case can be
treated as perturbations.

Going back to the general Hamiltonian (Eq. 11), we
write Ua(b) = U±δ and assume U � δ, (U−W ), V, tα,∆α
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FIG. 5. (Color Online) Two-species (green and red) of bosons
on species-dependent optical lattices (with the same color).
The nearest neighbor interaction is coming from the overlap of
Wannier Gaussian wave functions. We assume the difference
between intra-species interactions are small U � δ.

and do degenerate perturbation theory. Virtual processes
exchanging particles between neighboring sites are al-
lowed at second order with contributions proportional to
−tαtα′/U . The hopping amplitude is tunable and when

chosen to be tα =
√
VαU/2, the final result is that the

effective Hamiltonian up to second order in degenerate
perturbation theory corresponds to the spin-1 projection
of the rotor Hamiltonian of Eq. (3) with J̃ =

√
VaVb,

Ũ = 2(U −W ), and µ̃ = (∆a − Va) − (∆b − Vb). Simi-
larly, by increasing the chemical potentials, it is possible
to restrict the Hilbert space to nax + nbx = 2s which cor-
responds to a spin-s projection in the O(2) model.

This two-species Bose-Hubbard model can be realized
in a 87Rb and 41K Bose-Bose mixture where an inter-
species Feshbach resonance is accessible [34, 35]. Due
to the physical nature of the different atoms, the hop-
ping amplitudes (ta, tb) are different to begin with, as
well as the intraspecies interactions. In addition, species-
dependent optical lattices [36–40] are widely used in bo-
son systems, which allows the hopping amplitudes of
each individual species to be further tuned to the desired
value. As mentioned above, the interspecies interaction
(W ) can be controlled by an external magnetic field [35].
Finally, the extended repulsion, Vα, is present and small
when we consider Wannier Gaussian wave functions cen-
tered on nearby lattice sites according to previous study
[41]. This is schematically illustrated in Fig. 5. This may
be the most difficult parameter to achieve, but other pro-
posals may be explored, such as by using dipolar bosons
[42], or by pumping bosons to higher Bloch bands [43]
in order to engineer the nearest neighbor interaction. It
is also important to have U significantly larger than the
temperature. For the mixture considered here the tem-
perature and recoil energies are of the order of 100nK and
values of U 10-20 times larger can typically be reached
[44–46].

V. CONCLUSIONS

In summary, we have used new numerical methods to
connect the O(2) model in 1+1 dimensions to an optical

lattice setup. A first test of the correspondence would
be to check that the optical lattice system reproduces
the phase diagram of Fig. 4 which corresponds to the
time continuum limit βτ � βs of the classical model and
where the microscopic parameters can be approximately
connected to those of the two-species Hubbard model.

The TRG method presented here allows reliable calcu-
lations of the eigenvalues λi of the transfer matrix. In
the time continuum limit, we have

λi/λ1 ∝ e−a(Ei−E0) , (12)

with Ei the corresponding energies and a ∝ 1/βτ the
lattice spacing. Recently developed experimental tech-
niques, e. g. momentum resolved Bragg spectroscopy
[47], could in principle allow detailed comparisons.

We have shown that for low enough µ, the effect of
the truncation to spin-1 or 2 of the original O(2) model
had small effects on the phase boundaries. In the TRG
formulation, this truncation only affects the initial val-
ues of the tensor which can be compared with the initial
tensor of other spin models with a finite number of states
in configuration space (clock and Potts models). Under-
standing how the symmetries of this initial tensor affects
the universality class is under study.

The O(2) model has an exact conservation law which is
made clear by the Kronecker delta in Eq. (5). The states
kept in the TRG calculation have a well-defined quantum
number associated with this conservation law and it can
monitored and put into histograms [27]. This provides
detailed information about the average occupation and
its fluctuations. It could give a better insight into the
validity of Gutzwiller ansatz or mean field calculations
such as the ones discussed in Ref. [14], or the validity of
the finite spin projection discussed here.

In LGT calculations, important information regarding
the spectrum and matrix elements can be extracted from
the 2 and 3 point functions obtained by introducing local-
ized sources in the Lagrangian formulations. Techniques
to gather related information from an optical lattice sys-
tem remain to be developed. Generalizing the work done
here for the O(3) model which has a physics more similar
to lattice QCD seems possible and interesting.
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