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Abstract

Vortices are an inherent property of the velocity fields of complex, time-dependent, Schrödinger

wave functions ψ occurring where both the real and imaginary parts of ψ vanish. They have been

known since the early work of Dirac on magnetic monopoles and have been frequently studied

theoretically. The possibility to observe them by exploiting an “imaging theorem” that relates

atomic wave functions to measured electron momentum distributions has recently been proposed.

Using the Coulomb Born (CB1) approximation, we examine ionization of a K-shell electron of a

model carbon atom by fast electron impact. For an incident electron energy of 1801.2 eV and a

scattering angle of 4◦, we find a vortex in the velocity field associated with a zero in the ionization

T-matrix element and hence in the triply differential cross section, and we obtain a segment of the

vortex line. Angular momentum transfer is essential to produce the vortex in the velocity field

and the corresponding zero in the ionization T-matrix element and in the triply differential cross

section.

PACS numbers: 34.80.Dp
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I. INTRODUCTION

High-energy limits of atomic scattering processes are of interest because the theory of

such processes is often amenable to quantitative, even closed form, treatments. Indeed, the

high-energy theories of atomic collisions and energy loss in matter are based upon the first

Born (B1) approximations [1–3]. The Born and higher-order approximations have also been

used extensively to interpret structures in the electron momentum distributions produced

in ion and electron impact on neutral atoms [2, 4]. It was speculated that all structure seen

in such distributions had been classified based upon high-energy Born or distorted wave

theories [4]. It was later recognized that certain minima found by Murray and Read [5, 6]

in (e,2e) electron distributions did not follow the usual pattern of structures in momentum

distributions. Usually, a 2-dimensional slice through a 3-dimensional electron momentum

distribution will exhibit minima in the form of nodal lines, whereas the minima of Refs. [5, 6]

were found at isolated points on a 2-dimensional surface [7, 8]. It was later found that these

isolated zeros relate to vortices in the velocity field of atomic wave functions for the (e,2e)

process [9]. Accurate values for these zeros were computed by Colgan et al. [10] and were

discussed by Feagin [11]. Vortices have been considered for ionization by proton impact in

a number of places, [12–21], including Ref. [14] which connects time-dependent theory with

time-independent theory. Vortices have also been obtained in ionization by He2+ ions [22]

and by antiproton impact [21] as well as in photoionization [21]. Recently, a minimum in the

fully differential cross section [23] for positron-impact ionization of hydrogen at intermediate

energies was attributed to a vortex [24, 25]. The creation of vortices has been demonstrated

in the electronic probability density of an atom subject to short electric field pulses [20, 26].

Vortices are also of interest in other area of physics, such as in exciton-polariton condensates

[27].

For ionization of a K-shell electron of a model carbon atom by fast electron impact

using the Coulomb-Born approximation of Botero and Macek [28] we find a zero in the

ionization T-matrix element and in the triply differential cross section (TDCS) [29]. The

zero corresponds to a vortex in the velocity field associated with the T-matrix element for

ionization. In section II we review and discuss vortices in velocity fields. In section III we
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give the position of the zero we find in the T-matrix element, and give a segment of the

vortex line. For ionization by a charged particle, transfer of vector angular momentum is

associated with an isolated zero in the time-dependent wave function of an ejected electron at

an asymptotic distance [9, 13, 21, 25]. The connection between a simple analytic property

of an atomic wave function and the transfer of angular momentum has been previously

discussed [9, 13–15, 17, 18, 21, 22, 26, 30].

Isolated zeros can occur in pairs. In this case the net angular momentum transfer may

be zero. Bialynicki-Birula et al. [31] considered a vortex pair where the two lines have op-

posite circulation and they also considered ring vortices. We note using the time-dependent

Schrödinger equation Bialynicki-Birula et al. obtained a rectilinear vortex for a particle in

a uniform magnetic field. In our work we do not consider magnetic fields. Using both the

time-dependent Schrödinger equation and the Klein-Gordon equation, Bialynicki-Birula et

al. also obtained a rectilinear vortex for a free particle. Previously, Fetter [32] obtained

a single vortex for a one-particle wave function that satisfies a time-dependent nonlinear

equation.

The Born (B1), Distorted-Wave Born (DWB), and Coulomb-Born (CB1) approximations

are considered valid when the relative velocities v of the colliding particles are large compared

with the mean velocities of the active electrons [3]. This high-velocity requirement is well-

established but must be understood in the correct sense, usually in the sense that the

momentum K transfered from relative to internal motion is held constant. Derivations,

originating with Henneberg [33] and Livingston and Bethe [34] have articulated a wider

application of the B1 theory based upon an expansion of transition amplitudes in terms of

ratios of the charge of the projectile ZP relative to the charge of the target ZT [3, 28, 35–39].

Such expansions are less well-known than expansions in velocity ratios, however, they are

related to the B1 theory by standard approximations.

Some of these approximations apply to high-energy limits taken holding the scattering

angle θf fixed [40, 41]. In that case, amplitudes for inelastic transitions are given by some

sort of distorted wave approximation which allows for the scattering of the incident projectile

P from the target T . For fixed scattering angle θf and definite energy loss, the momentum

K lost by the projectile increases without limit so that the scattering is mainly between

the atomic nuclei and the projectile as in Rutherford’s measurements. Indeed, the ampli-

tude for elastic scattering becomes just the Rutherford scattering amplitude. For inelastic
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transitions the change of state of the electrons is a small perturbation to the Coulomb scat-

tering from the target nucleus. In this case the Coulomb-Born approximation is a logical

limit, comparable to the Born approximation relevant at fixed momentum transfer. For the

Coulomb-Born approximation, not only is linear momentum transfer relevant, but angular

momentum transfer also occurs [39], something that does happen when the limit is taken

holding K constant. We use the Coulomb-Born (CB1) theory of Ref. [28] which shows how

Coulomb waves moving in arbitrary point charge potentials can be employed in a consis-

tent perturbation expansion so that all orders in the perturbation expansion are finite. The

Coulomb-Born theory describes excitation and ionization at high energies when the limit is

taken holding the scattering angle constant. In this limit the excited states could also be

oriented. Indeed, this was shown in Ref. [39] for the excitation of p-states in collisions of

electrons with ground state He+ ions.

The interpretation of angular momentum transfer is usually given in terms of the align-

ment and orientation anisotropy parameters of Fano and Macek [42–45]. The orientation

parameter, given by the mean value of the angular momentum 〈Jz〉, is known to be rele-

vant for excitation of bound states [45]. It has recently been discovered that orientation of

continuum states by atomic collisions leads to zeros in the angular distribution of ionized

electrons [12, 13, 15, 16]. Since these are also zeros in the wave function at large values of

the electron coordinate, they also correspond to vortices in the velocity field. In essence, it

is found that transfer of angular momentum involves two rotations [14]. One rotation is the

normal classical picture of orbiting about a charge center or, in the language of quantum

mechanics, the rotation of a bound electron’s probability distribution as a whole about a

charge center. A second rotation is a rotation about a zero of the electron wave function

[13, 14, 21]. It has been shown that if a complex one-electron wave function has an isolated

zero, the zero corresponds to vortex in the velocity field [31, 46, 47]. This implies that the

probability current circulates about the isolated zero and becomes infinite exactly at the

vortex. The integral of the current around the vortex is some integer multiple of 2π [31]. It

is established for proton impact ionization that vortices corresponding to zeros in the time-

dependent electron wave function show up as zeros in the electron momentum distribution

of the ejected electrons k [13, 14].

In section III we show that a vortex occurs for inner-shell ionization by electron impact

using the Coulomb-Born (CB1) approximation of Botero and Macek [28]. We review the
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CB1 approximation that has been applied in Ref. [28] to ionization of a K-shell electron

of a carbon atom by fast electron impact and which uses an effective charge Zeff not equal

to the charge of the target nucleus. For the process of electron K-shell ionization of a

model carbon atom, we give the kinematics for a vortex in the velocity field that manifests

itself as deep minimum in the TDCS and we also provide verification of the vortex [29].

We also give a multipole expansion of the Coulomb-Born ionization T-matrix element for

the kinematics of the vortex and analyze the multipoles to determine the most important

components necessary to obtain a vortex. We also give in section III the loci of points where

a vortex appears in the velocity field when the electron is ejected out of the scattering plane.

Previously, minima in the TDCS for inner-shell ionization of carbon [28] have been attributed

to vortices and an analysis had been made using the multipole components [9, 14, 17, 18]

computed by Botero and Macek [28]. The kinematics for the minima in the TDCS of

Ref. [28], however, are generally close to the kinematics for a vortex in the velocity field

rather than exactly at the kinematics for a vortex.

We present a summary in section IV and in appendix A we give the corrected analytic

expression for the multipole components of the ionization T-matrix element for the Born

approximation that were previous given in Ref. [28] but apparently with some errors.

Atomic units are used throughout unless explicitly stated otherwise.

II. VORTICES IN VELOCITY FIELDS OF ATOMIC WAVE FUNCTIONS

Vortices in the velocity fields of atomic wave functions have been discussed generally by

Bialynicki-Birula et al. [31] where they have been related to local rotational properties near

isolated zeros of one-electron atomic wave functions. In this section we review some central

features of vortices of velocity fields given in Ref. [31].

Consider a complex function f(x, y) in two dimensions whose cartesian coordinates are

denoted by x, y. This function may vanish at the point x0, y0 where the real and imaginary

parts of f both vanish at that point. The function is assumed to be analytic in a region

including the zero. The squared magnitude |f(x, y)|2 defines a probability density, and the

expression

v(x, y) =
Re[f ∗(x, y)(−i)∇f(x, y)]

|f(x, y)|2
= Im∇[ln f(x, y)] (1)
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defines a velocity field [31]. In the absence of external fields, the velocity field is irrotational

∇× v(x, y) = 0 except at the zero of the function f(x, y), i.e. at (x0, y0). The function

f(x, y) near its zero can be taken to have the form:

f(x, y) ≈ a[(x− x0) + b(y − y0)] (2)

where b is a complex number which may be time-dependent and in which Im[b] 6= 0 [9, 30,

31, 46, 48, 49]. The velocity field v near the zero of this function f can closely approximated

by its dominant term:

v ≈ −Im[b]
[x̂(y − y0)− ŷ(x− x0)]

(x− x0)2 + |b|2(y − y0)2 + 2Re[b](x− x0)(y − y0)
. (3)

The dominant term is orthogonal to the vector r − r0. The magnitude of the velocity field

has a 1/r singularity at the zero of the function (x0, y0), where r =
√

(x− x0)2 + (y − y0)2

[46]. Using the right-hand-term of Eq. (3) and taking a circular contour c of small radius

of counterclockwise orientation, enclosing the point (x0, y0), one can show that [9, 14, 30–

32, 46–54]: ∫
c

v · d` = 2π . (4)

This result that the line integral of the velocity field v equals 2π is true for any contour of

counterclockwise orientation enclosing the first order zero of f(x, y) at (x0, y0), provided of

course there are no other zeros of the function f(x, y) enclosed in the contour.

For a function f(x, y) with a first order zero, the equation Re[f(x, y)] = 0 in general

defines a nodal line. The vanishing of Im[f(x, y)] = 0 similarly defines a second, generally

different, nodal line. If these two nodal lines do not coincide then where they cross defines

an isolated first order zero of the complex function f(x, y) [31]. We use this procedure to

locate a zero in the T-matrix element for fast electron-impact ionization of a K-shell electron

of carbon. We give the position of the zero in section III.

Eq. (4) shows that the velocity field circulates around the zero of the function f(x, y),

suggesting that the velocity field carries angular momentum. Using Eq. (2) for the function

f(x, y) in the vicinity of the zero and averaging the z-component of the angular momentum

vector Lz over a small region A including the zero, one obtains [30]

〈Lz〉 =

∫
A
f ∗(x, y)Lzf(x, y)dxdy∫

A
|f(x, y)|2dxdy

≈ i(b∗ − b)
|1|2 + |b|2

(5)
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which is non-zero since Im[b] 6= 0. Thus, there is some angular momentum associated with

with the zero of the function f(x, y) given by Eq. (2).

The general theory of Ref. [31] discussed situations where the vortices occurred in pairs

with opposite and presumably equal magnitude currents so that the total angular momentum

carried by the function f vanishes. Those situations are applicable to time-dependent wave

functions prepared by processes that transfer no net vector angular momentum, like atomic

excitation by linearly polarized light [26]. For ionization of a K-shell electron of carbon by

fast electron impact, transfer of angular momentum is associated with the zero in the T-

matrix element we obtain and present in section III. We show in section III that the m = 1

dipole component of a multipole expansion of the ionization T-matrix element is necessary

to obtain the zero.

That vortices, even in “fluids” that are generally irrotational such as those appropri-

ate for time-dependent atomic wave functions [13, 31, 47, 55, 56], should have observable

consequences is an important point introduced in Ref. [31]. The consequences have proved

experimentally elusive, mainly since direct observation of wave functions is seldom consid-

ered as a goal for experimental or theoretical investigation. For time-dependent processes

one can use that the wave function

ψ(r, t) =

∫
K(r, t; r′, t′)ψ(r′, t′)d3r′ (6)

where K is the propagator or time-dependent Green’s function. Upon setting r = kt [13]

and taking the limit as t→∞ one has that all bound state components vanish since r →∞,

leaving only continuum components. For sufficiently large r′ the propagator can be taken to

be the free particle propagator to the extent that continuum components can be represented

by plane waves. In this case the propagator becomes

K(r, t, t; r′, t′) =

(
1

2π|t− t′|

)3/2

exp

[
−i(r− r′)2

2|t− t′|

]
. (7)

Upon setting r = kt in Eq. (7) and taking the limit as t→∞ one obtains

K(kt, t; r′, t′) =

(
1

2πt

)3/2

exp

[
−i(kt− r′)2

2|t− t′|

]
→
(

1

2πt

)3/2

e−ik
2t/2eik·r

′
. (8)

It follows that in the limit of large t one has

[
|ψ(r, t)|2d3r

]
r=kt

∼
∣∣∣∣d3k e−ik

2t/2(2π)−3/2

∫
eik·r

′
ψ(r′, t′)d3r′

∣∣∣∣2 = |ψ̃(k, t′)|2d3k ∝ |Tk(t)|2d3k(9)
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which identifies the time-dependent wave function with the momentum distribution of the

ejected electron. Equation (9) will be referred to as the “imaging theorem” but the identifi-

cation [9, 14, 17, 18, 57–61] is usually implicitly assumed when needed. Reference [58] gives

the relation Tk(t) ∝ ψ̃(k, t), where Tk(t) is the time-dependent transition matrix element.

We can therefore use the ionization T-matrix element to compute the velocity field. Since

the imaging theorem relates an electron momentum distribution to an electron wave func-

tion, one can identify an isolated zero in an ionization T-matrix element with a vortex in a

velocity field. The vortex indicates transfer of angular momentum.

It is somewhat remarkable that an analytic feature of a wave function, namely, an isolated

zero, relates closely to the transfer of angular momentum. In essence, while an isolated zero

of a time-dependent atomic wave function seems to be a simple analytic feature expected to

be present for general functions, that is not actually the case.

In the next section we obtain a vortex for the particular process of ionization of a K-shell

electron of a carbon atom by fast electron impact using the Coulomb-Born approximation

given in Ref. [28] and a hydrogenic wave function for the K-shell electron as was done in

Ref. [28].

III. COULOMB-BORN (CB1) CALCULATIONS OF ELECTRON-IMPACT ION-

IZATION OF THE K-SHELL OF A MODEL CARBON ATOM

A. Coulomb-Born (CB1) ionization T-matrix element

The Coulomb-Born (CB1) limit was studied by Botero and Macek [28] for the special case

of inner-shell ionization of a carbon atom by electron impact where Rutherford scattering

by the carbon nuclei played an important role. A simple screened charge model gave an

ejected electron distribution [28] in moderately good agreement with measurement [62] for

the kinematics of an incident electron Ei of 1801.2 eV, a scattering angle θf of 4◦ and ejected

electron energy Ek of 9.6 eV. In Refs. [9, 14, 17, 18] some of the minima in the CB1 TDCS

of Botero and Macek [28] for different kinematical conditions are interpreted in terms of

vortices. In this paper we discuss that the minimum in the CB1 TDCS at 240◦ computed

by Botero and Macek for the kinematics Ei = 1801.2 eV, θf = 4◦ and Ek = 9.6 eV is due

to the kinematics being close to that to obtain a vortex in the velocity field rather than the
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kinematics for a vortex. By varying the energy of the ejected electron, we obtain a deep

minimum in the CB1 TDCS which is due to a vortex.

For K-shell ionization of carbon by electron impact where an one-electron model is taken

to represent the inner 1s electron in the initial state, the CB1 ionization T-matrix element

has the form [28]

TCB1
fi = 〈ψ−Kf

(r)ψ−k (r′)

∣∣∣∣∣ 1

|r − r′|

∣∣∣∣∣ϕi(r′)ψ+
Ki

(r)〉 . (10)

In this equation, r and r′ are respectively the position vector of the incident (or scattered)

electron and of the atomic (or ejected) electron relative to the target nucleus. In the treat-

ment of Ref. [28] and followed here, the inner 1s electron in the initial state is approximated

by a ground-state hydrogenic wave function ϕi(r
′) = (1/

√
π)Z

3/2
T e−ZT r

′
with the screened

target charge ZT chosen so that it gives the binding energy of the 1s electron. In our cal-

culations we take ZT = 4.6717 obtained using the relaxed-orbital total binding energy of

-10.912347 a.u. of the electron in the level 1S 1
2

of carbon [63]. The ± on the Coulomb wave

functions ψ−Kf
(r), ψ−k (r′), ψ+

Ki
(r) refer to incoming (−) and outgoing (+) boundary condi-

tions [64], and Ki, Kf and k denote the momentum of the incident, scattered and ejected

electrons, respectively. We use the normalization of the Coulomb waves on the momentum

scale [28, 64]. As done by Botero and Macek [28], we set the effective charge Zeff in the

Coulomb wave functions for the incident and scattered electron to equal to ZT .

Following through the analysis of Ref. [28] enables that the CB1 ionization T-matrix

element to be expressed as a two-dimensional integral,

TCB1
k,1s = 2π

N
(+)
Ki
N

(−)∗

Kf
N

(−)∗

k

Γ(1− c)Γ(c)

(
Z3
T

π

)1/2∫ 1

0

dt tc−1(1− t)−c

×
∫ 1

0

dx

[
− µ(1− x)

y3

∂Iab
∂y

+
1

y

∂2Iab
∂y∂µ

]
(11)

where N+
Ki

, N−Kf
and N−k are the normalization of the Coulomb wave functions ψ+

Ki
(r),

ψ−Kf
(r) and ψ−k (r′), respectively. In Eq. (11), a = iZeff

Ki
, b = iZeff

Kf
, c = iZT

k
, µ = ZT − ikt,

p = (1−x)(1− t) and y = [(1−x)(µ2 +xp2
1)]1/2, where p1 = k(t−1). As defined in Ref. [39],

Iab is given by

Iab =
4πCa+b−1

AbBa 2F1(a, b, 1; z) (12)
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where

A = (y − iKf )
2 + (pk −Ki)

2

B = (y − iKi)
2 + (pk + Kf )

2

C = y2 + (pk −Ki + Kf )
2

D = [y − i(Ki +Kf )]
2 + p2k2

z = 1− CD

AB
. (13)

Equations (11) & (13) corrects minor mistakes in Eqs. (54) and (53) of Ref. [28], respectively.

It is useful to note the invariance of TCB1
k,1s under reflection in the plane of Ki and Kf

called the scattering plane. Since the vectors Ki,Kf have no components perpendicular

to the scattering plane, it follow that none of the parameters in Eq. (13) depend upon the

sign of ky in a frame where the y−axis is perpendicular to the scattering plane. The CB1

T-matrix element has the reflection symmetry in the scattering plane given by

TCB1
k,1s (θk, ϕk) = TCB1

k,1s (θk, 2π − ϕk) . (14)

B. Vortex obtained using the CB1 approximation

We compute the triply differential cross section (TDCS), in fact a quintuple differential

cross section, for inner-shell ionization of carbon according to

d5σ

dΩfdEkdΩk

= (2π)4 2Kfk

Ki

|Tk,1s|2 , (15)

where dΩk is the solid angle for the ejected electron and dΩf is the solid angle for the

scattered electron. The factor of two on the r.h.s of this equation is because there are two 1s

electrons in the K-shell of carbon. We consider only the direct ionization T-matrix element,

which is a reasonable approximation since we consider the kinematics where the energy of

the ejected electron is much smaller than the energy of the incident electron.

In the CB1 TDCS for inner-shell ionization of carbon by electron impact reported by

Botero and Macek [28], a minimum is seen at about θk = 240◦ for the kinematic conditions

of Ei =1801.2 eV, θf = 4◦ and Ek = 9.6 eV. We compute the CB1 T-matrix element for

these kinematics and find that while Im[TCB1
k,1s ] is zero at 240◦, Re[TCB1

k,1s ] is not zero at this

angle but at 242◦. Therefore, the minimum in the TDCS does not occur exactly at the
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FIG. 1: (Color online) Plot of angular distribution of the TDCS computed in the CB1 (solid blue

curve) and the B1 (dashed red curve) for electron-impact ionization of the K-shell of carbon for

the kinematic conditions of Ei = 1801.2 eV, θf = 4◦ and Ek = 5.5 eV.

position of a vortex because there is a small part of Re[TCB1
k,1s ] where Im[TCB1

k,1s ] vanishes.

Since Re[TCB1
k,1s ] = 0 at an angle close to the angle where Im[TCB1

k,1s ] = 0 and where there is a

minimum in the CB1 TDCS, the minimum in the CB1 TDCS could be explained as due to a

vortex for kinematics close to those where the minimum is obtained. In all the calculations

that we report in this section, the energy of the incident electron Ei is 1801.2 eV and the

angle of the scattering electron θf is 4◦.

We systematically vary the energy of the ejected electron Ek to search for where

Re[TCB1
k,1s ] = 0 at the same angle that Im[TCB1

k,1s ] = 0. We find that for Ek = 5.5 eV a

deep minimum occurs in the CB1 TDCS at the angle of the ejected electron θk of 239◦ and

at this angle Re[TCB1
k,1s ] = Im[TCB1

k,1s ] = 0. The deep minimum in the CB1 TDCS is due to a
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FIG. 2: (Color online) Real (solid blue curve) and imaginary (dashed red curve) parts of the

Coulomb-Born (CB1) ionization T-matrix element for electron-impact ionization of the K-shell of

carbon the kinematic conditions of Ei = 1801.2 eV, θf = 4◦ and Ek = 5.5 eV.

vortex in the velocity field. We also compute the B1 TDCS using Eq. (15) and the closed

form expression of the B1 approximation from Mott and Massey [3]. In Fig. 1, we show the

TDCS computed in the CB1 and B1 approximations for Ek = 5.5 eV. The deep minimum

in the CB1 TDCS is close to the minimum in the B1 TDCS which is at 236◦. This minimum

in the B1 TDCS is not deep and does not correspond to a vortex. In Fig. 2 we show the

real and imaginary parts of the CB1 ionization T-matrix element for these kinematics.

We show in Fig. 3 a density plot of ln |TCB1
k,1s | as a function of the x and z components,

kx and kz, of the momentum of the ejected electron k, where the z-axis is taken to be the

direction of the incident electron. The x-z plane is taken to be the scattering plane. The
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FIG. 3: (Color online) Density plot of ln |TCB1
k,1s | as a function of the x and z components (kx, kz)

of the momentum k of the ejected electron for electron-impact ionization of the K-shell of carbon.

The nodal lines where Re[TCB1
k,1s ] = 0 and Im[TCB1

k,1s ] = 0 are shown by the blue and green curves,

respectively. The arrows show the direction of the velocity field v = ∇kIm[lnTCB1
k,1s ].

electron is ejected in the scattering plane, so that the y-component of the momentum of

the ejected electron, ky, is zero. In obtaining Fig. 3, we fix the incident energy Ei and

the scattering angle θf , while we vary the energies of the ejected and scattered electrons

to maintain energy conservation. Also, we show in Fig. 3 the nodal lines of Re[TCB1
k,1s ] and

Im[TCB1
k,1s ]. The position where the nodal lines cross is the position of the vortex. This

position is k = (−0.547, 0,−0.326), which corresponds to Ek = 5.5 eV and θk = 239◦. We

also show in Fig. 3 the direction of the velocity field v = ∇kIm[lnTCB1
k,1s ] by arrows. Notice

that the velocity field circulates around the position of the zero of |TCB1
k,1s (kx, 0, kz)|. The

circulation Γ =

∫
c

v · d`, where the contour c is a closed loop around the zero taken in

the counterclockwise direction, does not vanish. We verify that it equals 2π (to numerical

accuracy). We conclude that the deep minimum in the CB1 TDCS at θk = 239◦ for Ek =

5.5 eV is due a vortex in the velocity field.
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C. Multipole expansion of the ionization T-matrix element

It is insightful to examine the multipole components in an expansion of the CB1 ionization

T-matrix element to investigate the vortex in more detail. We perform a multipole expansion

of both the CB1 and B1 ionization T-matrix elements relative to an axis parallel to the

momentum transfer vector K = Ki−Kf for the kinematics of where the vortex is obtained

in the CB1 approximation. We follow the treatment of Botero and Macek [28] in obtaining

the CB1 and B1 multipole components of the T-matrix element, correcting for some apparent

mistakes in the equation given in Ref. [28] for the B1 multipole components. Botero and

Macek performed a multipole components of the CB1 and B1 T-matrix elements for a

number of different kinematics including the kinematics where measurements were made of

the TDCS [62].

The multipole expansion of the T-matrix element relative to z′-axis parallel to the mo-

mentum transfer vector K is given by

Tfi(θ
′
k, ϕ

′
k) =

∞∑
`=0

∑̀
m=−`

Tm` Y
m
` (θ′k, ϕ

′
k) (16)

where θ′k and ϕ′k are respectively the polar and azimuthal angles for this z′-axis and for

the x′ − z′ plane as the scattering plane. The Y m
` (θ′k, ϕ

′
k) are the usual complex spherical

harmonics. We use the definition of the spherical harmonics given in Refs. [65], which

includes the (−1)m Condon-Shortley factor. The coefficients Tm` are for an expansion of the

T matrix in terms of Y m
` (θ′k, ϕ

′
k).

Using orthonormality condition of the spherical harmonics and the property that

Tfi(θ
′
k, ϕ

′
k) is symmetric with respect to ϕ′k, one can write

Tm` = 2

∫ π

0

∫ π

0

Re[Y m
` (θ′k, ϕ

′
k)]Tfi(θ

′
k, ϕ

′
k) sin θ′kdθ

′
kdϕ

′
k . (17)

Since T−m` = (−1)mTm` , the multipole expansion Eq. (16) can be written as

Tfi(θ
′
k, ϕ

′
k) =

∞∑
`=0

(
T 0
` Y

0
` (θ′k, ϕ

′
k) +

∑̀
m=1

Tm`

(
Y m
` (θ′k, ϕ

′
k) + (−1)mY −m` (θ′k, ϕ

′
k)

))
. (18)

We give in Appendix A equations for the B1 ionization T-matrix element and its multipole

components. Those components given in Ref. [28] apparently have errors. We give in Table I

for the CB1 and B1 approximation the phases of the components of the T-matrix element for

14



the kinematics of a vortex and the quantity (2π)4 2Kfk

Ki
|Tm` |2. The values of the relative phases

ϕ′20 and ϕ′11 are important to get a deep minimum in the TDCS, as we discuss below Eq. (20).

Table I

Coulomb-Born (CB1) and Born (B1) multipole components of the T-matrix element for

electron-impact ionization of the K-shell of carbon for the kinematics that give a vortex

(Ei = 1801.2eV , θf = 4◦ and Ek = 5.5eV ). The z′-axis is taken parallel to the momentum

transfer vector. The phases of the multipole components Tm` are ϕ`m, and ϕ′`m are the phases

of the multipole components Tm` relative to the phase ϕ10. The phases are given in degrees.

` m (2π)4 2Kfk

Ki
|Tm (CB1)
` |2 ϕCB1

`m ϕ′CB1
`m (2π)4 2Kfk

Ki
|T 0 (B1)
` |2 ϕB1

`m ϕ′B1
`m

0 0 3.3× 10−4 25.8 146 3.25× 10−4 -101.2 -277.8

1 0 1.06× 10−2 -120.0 0 1.35× 10−2 176.6 0

1 1 3.24× 10−4 150.6 270.6

2 0 8.74× 10−4 140.4 260.4 9.09× 10−4 101.9 -74.7

2 1 2.50× 10−6 -45.6 74.4

2 2 2.94× 10−6 74.0 194.0

3 0 1.67× 10−5 56.7 176.7 1.66× 10−5 34.1 -142.5

3 1 1.27× 10−6 -169.3 -49.3

3 2 6.27× 10−7 7.7 127.7

3 3 3.30× 10−8 -160 -40.1

4 0 1.61× 10−7 -18.3 101.7 1.49× 10−7 -27.3 -203.9

4 1 1.05× 10−8 103.9 -223.9

4 2 1.73× 10−9 -79.7 40.3

4 3 3.9× 10−11 -65 55

4 4 3× 10−11 120.8 241

In Fig. 4, we compare the TDCS computed using different CB1 multipole components in

the expansion of the CB1 ionization T-matrix element for the kinematics of a vortex (Ek =

5.5eV ). The various TDCS are plotted versus the angle of the ejected electron measured

relative to the incident beam direction. We consider the electron ejected in the scattering

plane. The TDCS we compute with `max = 3 CB1 components (not shown) and the TDCS

we compute with `max = 4 CB1 components (shown) are virtually indistinguishable in a

figure and agree very well with the CB1 TDCS we compute with the full CB1 T-matrix

15



0 50 100 150 200 250 300 350
0.000

0.001

0.002

0.003

0.004

0.005

Angle of Ejection ΘkHdegL

T
D

C
S

Ha
.

u
.

L

FIG. 4: (Color online) The TDCS for K-shell ionization of carbon by electron impact computed

using different multipole components in the expansion of the CB1 ionization T-matrix element.

The kinematic conditions are Ei = 1801.2eV , θf = 4◦, Ek = 5.5eV . The TDCS we compute

with `max = 1 is given by the dotted red curve, with `max = 2 by the dashed blue curve and with

`max = 4 by the solid green curve

element (not shown in Fig. 4). As with the CB1 TDCS, the TDCS we compute with the

CB1 components up to `max = 4 and all allowed m values has a deep minimum at 239◦.

Figure 5 shows the angular distributions of the TDCS for the kinematics of a vortex

computed with different multipole components. The z-axis shown is parallel to the incident

beam direction. The figure illustrates the importance of the CB1 m = ±1 dipole components

in obtaining a deep minimum. It shows the TDCS computed with just the CB1 `max = 4,

m = 0 components, the TDCS computed with CB1 m = ±1 dipole components added to
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FIG. 5: (Color online) Angular distributions of the TDCS for K-shell ionization of carbon by

electron impact. The z-axis is parallel to the incident beam direction. The kinematics conditions

(Ei = 1801.2eV , θf = 4◦, Ek = 5.5eV ) are for a vortex. The TDCS computed with the CB1

` = 0 → 4,−` ≤ m ≤ ` components is given by the solid red curve, the TDCS computed with

the CB1 `max = 4,m = 0 plus ` = 1,m = ±1 components is given by the long-dashed green curve

and the TDCS computed with the CB1 ` = 0 → 4,m = 0 components is given by the dotted

magenta curve. The figure also shows the TDCS computed with the B1 multipole components,

` = 0→ 4,m = 0 (dot-dashed blue curve).

the CB1 `max = 4, m = 0 components of the T-matrix element and the TDCS computed

with the CB1 components with `max = 4, and all allowed m values which is essentially the

complete CB1 TDCS. The figure also shows the TDCS computed with the B1 `max = 4

components. The TDCS with the B1 `max = 4 components is indistinguishable in a figure

from the complete B1 TDCS (not shown).

The TDCS we compute with the B1 `max = 4 components has a minimum at 236◦ close

to the deep minimum in the TDCS we compute with the CB1 `max = 4 components, which

17



is at 239◦. However, the value of the minimum in the TDCS with `max = 4 is about 3×10−7

smaller than the minimum in the B1 TDCS. The real and imaginary parts of the T-matrix

element we compute with the B1 multipole components are not zero at the same angle. The

minimum in the B1 TDCS at 236◦ does not correspond to a vortex in the velocity field.

While there is a deep minimum in the CB1 TDCS, the TDCS we compute just using

the CB1 m = 0, `max = 4 components has a minimum, at about 239◦, which is not deep.

In the calculation of the T-matrix element using only the m = 0, `max = 4 components of

the CB1 T-matrix element the angle where Re[Tk,1s] = 0 is separated from the angle where

Im[Tk,1s] = 0 quite significantly. In this case, the minimum in the corresponding TDCS does

not correspond to a vortex.

Adding just the CB1 m = ±1 dipole components to the CB1 `max = 4 m = 0 components

of the T-matrix element makes a huge difference to the shape and magnitude of the TDCS.

Adding the CB1 m = ±1 dipole components brings the angles where Re[Tk,1s] = 0 and

Im[Tk,1s] ≈ 0 close to one another resulting in a deep minimum in the TDCS at about

237◦. Remarkably, the addition of the m = ±1 CB1 dipole components reduces the value

of the minimum in the TDCS by about 3 orders of magnitude. The m = ±1 CB1 dipole

components are therefore extremely important in obtaining a vortex. Interestingly, the effect

of adding the CB1 m = ±1 dipole components is to increase the value of the minimum that

is almost in the opposite direction by a factor of 4. This minimum in the TDCS computed

with the CB1 `max = 4, m = 0 and ` = 1, m = ±1 components is at about 47◦. From

the figure, it is apparent that the angular distribution of the TDCS we compute using the

CB1 `max = 4, m = 0 and ` = 1, m = ±1 multipole components is similar to the angular

distribution of the TDCS we compute using the complete CB1 TDCS.

The importance of adding the CB1 m = ±1 dipole components to the m = 0 components

in reducing the value of one minimum and increasing the value of the other minimum in the

TDCS has earlier been presented in Ref. [18]. However, in Ref. [18], different kinematics

were used to what we use in the calculations that we present here. Furthermore, in the

calculation discussed in Ref. [18], the CB1 m = ±1 dipole components were added to the

B1 components rather than the CB1 m = 0 components. Reference [18] commented on the

difference of the phase of the `, m = 0 components relative to the phase of the m = 0 dipole

component between the CB1 and B1 calculations.
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FIG. 6: (Color online) Angular distributions of the TDCS for K-shell ionization of carbon by

electron impact. The z′-axis taken parallel to the momentum transfer vector. The kinematics

conditions are Ei = 1801.2 eV, θf = 4◦, Ek = 5.5 eV. The TDCS we compute with the CB1

` = 0 → 4, −` ≤ m ≤ ` components is given by the solid red curve, the TDCS we compute with

the CB1 ` = 0 → 2,m = 0 plus ` = 1, m = ±1 components is given by the long-dashed green

curve, the TDCS we compute with the CB1 ` = 0 → 2, m = 0 components only is given by the

dotted brown curve, and the TDCS we compute with the CB1 ` = 1, m = ±1 components is given

by the dashed magenta circles.

Figure 6 gives the angular distribution of the TDCS where the z′-axis is parallel to

the momentum transfer vector for the kinematics of the vortex (Ek = 5.5 eV). For these

kinematics, the angle that the momentum transfer vector makes relative to the incident

beam direction is approximately 325◦. The figure compares the angular distribution of the

TDCS that we compute with only the ` = 0 → 2, m = 0 plus the ` = 1, m = ±1 CB1
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components with that we compute with all the ` = 0 → 4, −` ≤ m ≤ ` CB1 components,

which is essentially the complete CB1 TDCS. It also shows the TDCS that we compute with

only the m = 0 monopole, dipole and quadrupole components of the T-matrix element and

the TDCS that we compute solely with the m = ±1 dipole components. It can be seen that

the angular distributions of the TDCS we compute with only the ` = 0 → 2, m = 0 plus

` = 1, m = ±1 CB1 components is very similar to the angular distribution of the TDCS we

compute with the ` = 0 → 4, −` ≤ m ≤ ` CB1 components. Both angular distributions

have a deep minimum at about 270◦ relative to the momentum transfer axis and a minimum

of enhanced magnitude in about the opposite direction (≈ 90◦ relative to the momentum

transfer axis) compared to the TDCS that we compute with only the m = 0 monopole,

dipole and quadrupole components. Thus, from the figure it is evident that the m = ±1

dipole components are important in obtaining a deep minimum in the TDCS.

It is easier to analyze the T-matrix element that has only the ` = 0 → 2, m = 0 plus

the ` = 1, m = ±1 components rather than the T-matrix element with `max = 4, and all

allowed m. This we do below.

D. Analysis of the vortex using the multipole expansion of the ionization T-matrix

element

The expansion of the CB1 ionization T-matrix element of Eq. (18) retaining only the

`max = 2, m = 0 plus the ` = 1, m = ±1 multipole components can be written as

Tfi(θ
′
k, 0) = eiϕ10T ′fi(θ

′
k, 0) (19)

where

T ′fi(θ
′
k, 0) = |T 0

0 |eiϕ
′
00Y 0

0 (θ′k, 0) + |T 0
1 |Y 0

1 (θ′k, 0) + |T 0
2 |eiϕ

′
20Y 0

2 (θ′k, 0) + 2|T 1
1 |eiϕ

′
11Y 1

1 (θ′k, 0) (20)

and ϕ′`m are the phases of Tm` relative to the phase of the m = 0 dipole component, ϕ′`m =

ϕ`m − ϕ10. Since the relative phases ϕ′20 and ϕ′11 are almost 270◦, the m = 0 quadrupole

and the m = 1 dipole terms of T ′fi(θ
′
k, 0) are almost purely imaginary. At θ′k = 90◦, the

sum of the imaginary parts of the monopole and m = 0 quadrupole terms almost equals

the imaginary part of the m = 1 dipole term (which has the factor of 2 because of the

combining of both the m = 1 and m = −1 terms). This means that for θ′k = 90◦, adding
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the m = ±1 dipole components to the m = 0 monopole and quadrupole components almost

doubles the magnitude of Im[T ′fi(θ
′
k, 0)] and also of T ′fi(θ

′
k, 0) itself since Re[T ′fi(θ

′
k, 0)] ≈ 0

at θ′k = 90◦. Thus, at an angle of 90◦ relative to the momentum transfer axis, the TDCS

increases by almost a factor of four with the inclusion of the m = ±1 dipole components.

However, at θ′k = 270◦, the m = ±1 dipole components almost cancel with the m = 0

monopole and quadrupole components for Im[T ′fi(θ
′
k, 0)], and because Re[T ′fi(θ

′
k, 0)] ≈ 0 at

θ′k = 270◦, T ′fi(θ
′
k, 0) and the TDCS are also almost zero at this angle. More terms in the

multipole expansion of the T-matrix element are needed for a better cancellation of the

T-matrix element at θ′k ≈ 270◦, but this analysis illustrates the importance of the m = 0

monopole and quadrupole components and the m = ±1 dipole components to obtain a deep

minimum in the TDCS.

In Ref. [30] a discussion is given of the importance of adding a monopole term to the

dipole term to shift the position of the zero in the amplitude from the origin. It is explained

in Ref. [30] that an examination of the multipole components of the CB1 T-matrix element

determined by Botero and Macek [28] shows that the x-component of the ionization ampli-

tude is nearly 90◦ out of phase with the z-component. Reference [30] suggested that the

continuum wave function corresponding to the ionization amplitude carries some net angular

momentum.

E. Vortex line

In order to construct a segment of the vortex line for the kinematics of an incident

energy Ei = 1801.2 eV and scattering angle θf = 4◦, we also consider the electron from

the inner-shell of carbon to be ejected out of the scattering plane. We consider a number

of different but small values of ky. For each value of ky, we vary the values of kx and kz,

whilst adjusting the magnitude of Kf to compensate so that the total energy of the system

is conserved, and we locate an intersection of the nodal lines of the real and imaginary parts

of the CB1 T-matrix element. A point of intersection is a position of the vortex for that

particular value of ky. We repeat this for different fixed small values of ky. We plot the

positions of the vortex points for different ky values and the loci of the vortex positions

forms a segment of the vortex line for the kinematics Ei = 1801.2 eV and θf = 4◦, see

Fig. 7. So that the vortex line is smooth, we use the data of the positions of the vortex
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points to four significant figures, although we claim an accuracy of the positions to ±0.001

only. The vortex line starts off perpendicular to the scattering plane, the kx-kz plane, as it

has to because of reflection symmetry [17]. However, the vortex line quickly bends towards

larger values of kx and kz with increasing ky. The trend of the vortex line, namely that it

appears to start perpendicular to the scattering plane, but bends quickly is similar to that

obtained in ion-atom collisions [66].

kx
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kz
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FIG. 7: (Color online) A segment of the vortex line for the K-shell ionization of carbon by electron

impact for an incident energy Ei of 1801.2 eV and a scattering angle θf of 4◦. The positions of the

vortex for different values of the y-component of the momentum of the ejected electron, ky, are

denoted by the red dots. The loci of the positions of the vortex form a segment of the vortex line.

Expressing the CB1 T-matrix element in terms of the components of the momentum of

the ejected electron helps with the understanding of the behavior of the vortex line. The

multipole components Tm` can be written in terms of slowly varying functions a`m(k) of k
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for the energy range Ek of Figs. 3 and 7 according to

T
m (CB1)
` = (−1)m(N−k )∗k`

√
4π

2`+ 1
a`m(k) . (21)

Substituting Eq. (21) into the multipole expansion Eq. (16) and retaining only the m = 0,

` =0, 1, & 2 and ` = 1,m = 1 components, which are the most important components in

obtaining the vortex, leads to

TCB1
k,1s ≈ (N−k )∗

[
a00 + a10k

′
z + a20(2k′2z − k′2x − k′2y )/2 +

√
2a11k

′
x

]
. (22)

In Eq. (22) k′x, k
′
y, k

′
z are the components of the momentum of the ejected electron in

which the z′-axis is taken parallel to the momentum transfer vector and the x′-axis is in the

scattering plane.

Using Eq. (22) it can be seen that the vortex line where both Re[TCB1
k,1s ] = 0 and Im[TCB1

k,1s ] =

0 is an even function of k′y and the vortex line is symmetric with respect to the scattering

plane. We note in connection with Eq (22), Feagin [11] recently developed a threshold-like

analytic expression for the scattering amplitude using cylindrical partial waves for the two

outgoing electrons about the vortex.

IV. SUMMARY

Using the Coulomb Born (CB1) approximation, we show that there is a vortex in the

velocity field for K-shell ionization of carbon by electron impact for the kinematic conditions

of Ei=1801.2 eV, θf = 4◦, Ek= 5.5 eV and θk = 239◦. These kinematics are close to the

conditions where a minima was found in experiment [62] and in earlier calculations [28].

For this process, we give a plot of the nodal lines of Re[TCB1
k,1s ] = 0 and Im[TCB1

k,1s ] = 0

showing the point where they cross, a plot of the velocity field associated with TCB1
k,1s showing

that the velocity field circulates around the point that Re[TCB1
k,1s ] = Im[TCB1

k,1s ] = 0 and

verification that circulation along a closed contour encircling this point cross gives 2π. Our

work verifies that there is vortex in the velocity field associated with the T-matrix element

for electron ionization. We also determine a segment of the vortex line for the kinematics of

Ei = 1801.2eV and θf = 4◦. The line starts off perpendicular to the scattering plane due to

reflection symmetry. Furthermore, we give a detailed analysis of the partial-wave expansion

of the CB1 ionization T-matrix element for the kinematics of the vortex, and demonstrate

the importance of the m = ±1 dipole components in the producing the zero in TCB1
k,1s .
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Appendix A: A Multipole Expansion of the Born Ionization T-matrix Element

We give the Born (B1) approximation to the ionization T-matrix element and its compo-

nents in a multipole expansion. These were given in Ref. [28], but there appears to be some

mistakes in Ref. [28].

The B1 approximation to the T-matrix element is given by [28]

TB1
fi = 〈ΦKf

(r)ψ−k (r′)

∣∣∣∣∣ 1

|r − r′|

∣∣∣∣∣ϕi(r′)ΦKi
(r)〉 (A1)

where ΦKi
(r) and ΦKf

(r) are the plane waves for the incident electron and the scattered

electron normalized to the momentum scale. The integration with respect to r, where r

is the position vector of the incident (scattered) electron, can easily be performed allowing

TB1
fi to be written as

TB1
fi =

4π

(2π)3K2
〈ψ−k (r′)|eiK·r′ϕi(r′)〉 (A2)

where K = Ki−Kf is the momentum transfer vector. Equation (A2) is in agreement with

Eq. (B1) of Botero and Macek [28]. Taking ϕi(r
′) for the inner 1s electron of carbon to be a

ground-state hydrogenic wave function and using the function Iab given in Ref. [39] enables

the B1 T-matrix element to be expressed as

TB1
fi = − 1

(2π)3

4π

K2
(N−k )∗

Z3/2

√
π

∂

∂x
I0c

∣∣∣∣
x=ZT

(A3)

where

I0c =

∫
ei(K−k

′)·r e
−xr

r
1F1[c, 1; i(k′r + k′ · r)]dr =

4πCc−1

Ac
(A4)

in which C = x2 + (K − k′)2 and A = (x− ik′)2 +K2. Eq. (A3) contains an extra factor of

−(2π)−3/2 compared to Eq. (B2) of Ref. [28].

In the B1 approximation, only the m = 0 multipole components of the expansion of the

T-matrix element Eq. (16) where the z′-axis is taken parallel to K are non-zero. They are

given by

TB1
` = (2π)

√
2`+ 1

4π

∫ 1

−1

TfiP`(y)dy (A5)

where y = cos θ. Using Eq. (A3) in Eq. (A5) gives for the B1 m = 0 multipole components

TB1
` = − 4(N−k )∗Z5/2

√
2`+ 1

πK2[(Z − ik)2 +K2]c

×
[
(c− 1)f`(c− 2)− (c+ 1)

[(Z − ik)2 +K2]
f`(c− 1))

]
(A6)
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where f`(γ), defined in Eq. (B5) of Ref. [28], is

f`(γ) =

∫ 1

−1

(Z2 + q2 + k2 − 2qky)γP`(y)dy . (A7)

Eq. (A6) for TPBA
` corrects for mistakes found in Eq. (64) and Eq. (B4) of Ref. [28].

Following the procedure given in Ref. [28] of using Rodrigue’s formula for the Legendre

polynomial and integration by parts ` times gives

f`(γ) =
`!Γ[1 + γ]2`+1(Z2 + (K − k)2)γ−`(−2kK)`

(2`+ 1)!Γ[1 + γ − `] 2F1

[
`+ 1, `− γ; 2`+ 2,

−4kK

Z2 + (K − k)2

]
(A8)

This equation corrects mistakes in Eq. (65) and Eq. (B5) of Ref. [28].
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