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Kelvin probe force microscopy at normal pressure was performed by two different groups on the
same Au-coated planar sample used to measure the Casimir interaction in a sphere-plane geom-
etry. The obtained voltage distribution was used to calculate the separation dependence of the
electrostatic pressure Pres(D) in the configuration of the Casimir experiments. In the calculation
it was assumed that the potential distribution in the sphere has the same statistical properties as
the measured one, and that there are no correlation effects on the potential distributions due to the
presence of the other surface. The result of this calculation, using the currently available knowl-
edge, is that Pres(D) does not explain the magnitude or the separation dependence of the difference
∆P (D) between the measured Casimir pressure and the one calculated using a Drude model for the
electromagnetic response of Au. We discuss in the conclusions the points which have to be checked
out by future work, including the influence of pressure and a more accurate determination of the
patch distribution, in order to confirm these results.

PACS numbers: 31.30.jh, 12.20.-m, 42.50.Ct, 78.20.Ci

I. INTRODUCTION

Measurements of the Casimir interaction between gold-
covered mirrors now reach a good precision, which opens
the way to detailed comparisons with theoretical pre-
dictions. Some measurements, performed at distances
smaller than 1 µm, lead to unexpected conclusions [1–4].
These results agree with a description of conduction elec-
trons in metals by the lossless plasma model, and deviate
significantly from that based on the Drude model which
accounts for dissipation [5–8]. Different conclusions are
reached in another experiment performed at distances of
the order or larger than 1 µm [9]. The results of this
experiment agree with predictions drawn from the dissi-
pative Drude model, after the contribution of the elec-
trostatic patch effect has been subtracted.

In this context, it is important to discuss carefully all
possible sources of systematic effects, in particular the ef-
fect of electrostatic patches already discussed for various
high precision measurements [10–23], and more recently
in the context of Casimir force measurements [24–30].
The patch effect is due to the fact that the surface of a
metallic plate is made of micro-crystallites with different

∗Present address: Halliburton Energy Services, Houston, Texas
77032, USA

work functions [31]. For clean metallic surfaces studied
by the techniques of surface physics, the resulting volt-
age roughness is correlated to the grain size as well as
to the orientation of micro-crystallites [32]. For surfaces
exposed to air, the situation is changed due to the un-
avoidable contamination by adsorbents, which spread out
the electrostatic patches, enlarge correlation lengths, and
reduce voltage dispersions [33–35].

The force due to electrostatic patches can be computed
by solving the Poisson equation, as soon as the correla-
tions of the patch voltages are known. In other words, the
force depends on the associated voltage correlation func-
tion C(k), with k a patch wavevector. In many studies
devoted to this question, the spectrum was assumed to
be flat between two sharp cutoffs at minimum and max-
imum wavevectors [24]. Assuming that these cutoffs are
given by the grain size distribution measured with an
atomic force microscope (AFM), it was concluded that
the patch pressure was much smaller than the difference
between the experimental Casimir pressure (more precise
discussion below; see Eq.(1)) and the theoretical predic-
tion based on the Drude model [1].

A quasi-local model was proposed recently as a bet-
ter motivated representation of patches [29]. The model
produces a smooth spectrum which leads to conclusions
differing from those drawn from the sharp-cutoff model,
due to the contribution of low values of |k|. Using a
very simple model with a uniform distribution P(`) of
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patch sizes ` up to a largest value `max and a root-mean-
square (rms) voltage dispersion Vrms, it was found that
the difference ∆P (D) between experiment and theory
based on the Drude model could be qualitatively repro-
duced by fitting the model to the experimental data.
The corresponding values for `max and Vrms are differ-
ent from those obtained by identifying patch and grain
sizes, with `max ∼ 1 µm larger than the maximum grain
size ∼ 300 nm, and Vrms ∼ 12 mV smaller than the rms
voltage ∼ 80 mV associated with random orientations
of clean micro-crystallites of gold [1]. These values are
however compatible with a contamination of metallic sur-
faces, which has to be expected anyway [33–35].

The results of [29] imply that patches have to be con-
sidered as an important source of systematic effects in
Casimir force measurements. However, they do not prove
that patches are the explanation of the difference ∆P (D)
observed in [1–4]. In order to address this possibility,
one has to measure the surface voltage distribution on
the samples used in Casimir experiments. The method
is to use the dedicated technique of Kelvin probe force
microscopy (KPFM) which has the ability of achieving
the necessary size and voltage resolutions [36–39]. Using
the measurements of patch potential distribution, it is
then possible to evaluate the contribution of the patches
to the Casimir measurements and to subtract it when
comparing theory and experiments. This evaluation has
to be done in the plane-sphere geometry by using results
in [30].

The purpose of this paper is to present the first re-
sults of such an analysis with measurements performed
on the same Au-coated planar sample used to mea-
sure the Casimir interaction in a sphere-plane geome-
try. The paper is organized as follows. In Section II
we briefly review Casimir measurements on gold samples
performed at Indiana University Purdue University In-
dianapolis (IUPUI). Section III presents normal pressure
KPFM measurements of the same gold samples. These
measurements are carried out independently and cross-
checked in two separate laboratories, the one at IUPUI
and another one at Istituto per la Sintesi Organica e la
Fotoreattivitá (ISOF) in Bologna. We discuss the sample
preparation and characterization, as well as the measure-
ment of the patch properties. In Section IV we use the
measured patch distribution to compute the electrostatic
interaction in the sphere-plane geometry of Casimir ex-
periments. As this is experimentally more difficult, we
have not performed KPFM measurements on the spheri-
cal plates. We have instead used properties demonstrated
in [30] to evaluate the patch force by considering that
the patch properties on the curved surface are similar
to those on the planar one. Within the aforementioned
caveats, the main conclusion of our study, discussed in
Section V, is that the calculated patch interaction does
not have the magnitude nor distance dependence which
would explain the difference ∆P (D) for the measure-
ments reported in [1–3].

II. CASIMIR EFFECT MEASUREMENTS

A planar sample was made by sputtering 130 nm Au
on a Si substrate. Morphology and roughness studies
performed by atomic force microscopy indicate excellent
uniformity and low roughness on the sample. The pla-
nar sample used in this paper is one of the many made
for the experiments reported in [40]. The measured
Casimir interaction observed in this sample is indistin-
guishable within the experimental error from the results
reported in [2, 3]. The experimental setup for measur-
ing the Casimir effect is similar to the one used in pre-
vious work [1–3]. A Au-coated sapphire sphere (radius
R = (151.7± 0.2) µm), is attached to a micromechanical
torsional oscillator. To enhance adhesion between the ∼
200 nm thick Au and the sapphire, a thin (∼ 10 nm) layer
of Cr is first deposited on the sphere. The Au layers in
both the sphere and the sample are thick enough to be
considered infinite from the Casimir interaction’s stand
point.

The sample is mounted on a flat platform which has
an optical fiber rigidly attached to it. The fiber axis
coincides with the normal of the sample-platform struc-
ture. The fiber is part of a two color interferometer which
keeps the sphere-sample separation D stable within half
a nanometer. As the sample is brought into close proxim-
ity of the sphere, the interaction between the two surfaces
produces a shift in the resonance frequency of the oscilla-
tor, which is used to extract the gradient of the Casimir
force, ∂DFC . The use of a sphere instead of another pla-
nar surface avoids the problem of keeping the two objects
parallel but complicates the exact theoretical description.
A common approach to bypass this difficulty relies on the
proximity force approximation. When D/R� 1, one can
then approximate the sphere’s surface as a collection of
planar elements. Within this procedure, the force gradi-
ent can be calculated as the sum of several local parallel
plane interactions, and

∂DFC(D) = 2πRPpp(D) , (1)

where Ppp(D) is the Lifshitz expression for the Casimir
pressure between two parallel plates [41].

As customarily done in Casimir force measurements [1–
3, 42, 43], the apparatus was calibrated using a calculable
interaction, i.e. the electrostatic interaction between the
sphere and the sample. In this section, we assume the
two objects to be equipotentials, so that the electrostatic
energy between them is given by

Ee(D) =
1

2
C(D)∆V 2 , (2)

where C(D) is the capacitance between the sphere and
the plane separated by a distance D, and the potential
difference between them ∆V = Vs − Vp. An external
voltage V0 is applied between the two surfaces in the
calibration process [1–3, 42, 43], so that the potential
difference becomes ∆V − V0.
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FIG. 1: Equivalent Casimir pressure as a function of separa-
tion between the sphere and the sample. Error bars in P (.
3 mPa) and D (∼ 0.5 nm) are too small to be seen.

From Eq. 2 the force and the gradient of the force can
be easily derived when ∆V is not a function of distance.
In the calibration process both the expression of the force
and the gradient of the force have been used. It turns
out [1–3] that the force

Fe(D) =
1

2

∂C(D)

∂D
(∆V − V0)

2
, (3)

and the gradient of the force

∂DFe(D) =
1

2

∂2C(D)

∂D2
(∆V − V0)

2
, (4)

are not zero when ∆V = 0. With the simple Eqs. 3 and 4
corresponding to equipotential surfaces, the electrostatic
interaction can be made null by a judicious choice of the
applied potential chosen to cancel the initial potential
V0 = Vmin = ∆V (Vmin is called the “minimizing poten-
tial”). A more precise discussion taking into account the
patch effect will be given below, in section IV.

In our calibration procedure, we have found that by
taking the derivative with respect to the potential dif-
ference, Vmin is more accurately determined [44]. Either
the use of the electrostatic force or the gradient of the
electrostatic force yield the same calibration parameters
and, relevant for this paper, the same value of Vmin. This
minimizing potential was found to be independent of D
within the experimental accuracy of 0.1 mV. The results
of the Casimir interaction between the sphere and the
sample are shown in Fig. 1.

III. KPFM MEASUREMENTS

The electrostatic potential distribution Vp(x) on the
Au sample surface is measured by Kelvin probe force
microscopy. This contactless technique is based on mon-
itoring long-ranged electrostatic interactions between a

cantilever and a sample. A sharp metal-coated tip is mi-
crofabricated at the edge of a cantilever which is main-
tained at a fixed potential. With no mechanical action
of the tip on the sample, electrostatic forces exerted on
the cantilever are measured, just as in AFM, by the de-
flection of the cantilever using the reflection of a laser
beam off the tip [39, 45]. Because these forces are pro-
portional to the variation with distance D of the local
capacitance C between the tip and the sample, a direct
quantification of the surface potential difference ∆V be-
tween the tip and the sample is not trivial. To achieve
this, KPFM measurements exploit a Zeeman vibrating
capacitor setup [36]. The two electrodes of the capacitor
are the sample and the tip which is forced to oscillate at a
fixed frequency ω while raster-scanning the surface of the
sample at fixed separation distance D. In such an ampli-
tude modulation (AM) mode, which is used for all KPFM
measurements reported in this paper, the tip oscillations
modulate the tip-sample electrostatic interaction energy
U(D) = 1

2C∆V 2, assuming a linear relationship between
local charges and local potentials [46]. The electrical po-
tential inhomogeneities of the surface sample can thus be
mapped by detecting the amplitude variations of the free
tip oscillations.

More precisely, a feedback loop applies an adjustable
DC bias offset potential V0 to the cantilever tip in or-
der to minimize the interaction between the tip and the
sample. Superimposed to this DC voltage bias, an al-
ternating current (AC) signal is applied to the tip har-
monically at a frequency ω. In this case, ∆V is re-
placed in the expression for the interaction energy by
the total voltage ∆V − V0 + V1 sin(ωt) between the
tip and the sample, where V1 is the amplitude of the
modulation. Then, the ω component of the resulting
force Fω = −∂DUω = −∂DC [(∆V − V0)V1 sin(ωt)], di-
rectly measured with a lock-in amplifier, is canceled when
V0 = ∆V . The feedback circuit monitors the bias V0 ap-
plied to compensate for the surface potential ∆V , thus
providing a direct quantification of the latter. Note that
the tip potential is calibrated using HOPG (high ordered
pyrolytic graphite), a substrate well stable in air. This
calibration implies that the real potential Vp(x) on the
sample is determined up to a constant value (at a fixed
tip-sample distance). Such an offset does not affect the
measurement of the variations of the surface potential
(see Section IV below for a more precise discussion).

The KPFM measurements shown in Fig. 2 have been
performed at ISOF using a commercial microscope Multi-
mode III (Bruker) equipped with an Extender Electron-
ics module. The measurements have been acquired in
a nitrogen environment (relative humidity smaller than
10%) at room temperature. Potential maps have been
recorded over a surface area of 15.36 × 15.36 µm2, with
512 pixels per line, using a scanning rate of 1 Hz per line.
In order to obtain a sufficiently large and detectable me-
chanical deflection of the microscope tip, we used a 20 nm
radius Pt/Ir coated Si ultra levers (SCM, Bruker) with
oscillating frequencies ω ∼ (75 ± 15) kHz and stiffness
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FIG. 2: (Color online) KPFM image of the electrostatic po-
tential distribution Vp(x) on the surface of the Au sample
recorded at ISOF. This image is composed of 512 × 512 pix-
els, with a lateral size of 15.36 µm.The scale bar corresponds
to 2 µm and the scan range is 20 mV. The amplitude of the
modulation is V1 = 2.5V .

k ∼ 2.8 N.m−1. The measurements have been performed
at a fixed tip-sample distance D = 30 nm, chosen as
the minimal distance that prevents artifacts due to the
cross-talking between topographic and electrical signals
(precise criterium below).

Similar results were obtained at IUPUI using a differ-
ent AFM (Brueker Dimension) with 20 nm radius Cr/Pt
coated Si levers (Budget Sensors, TAP190E-G) under
similar environmental conditions. These cantilevers are
stiffer, with k ∼ 48 N.m−1 and a resonance frequency
∼ (190 ± 30) kHz. The KPFM measurements were per-
formed over a smaller area of 5 × 5 µm2, with 256 points
per line and at 1 Hz per line. The measurements were
repeated at different separations and it was found that
the results from 20 nm to 60 nm were compatible and
reproducible when V1 was kept below 3 V, without any
cross-talks artifacts.

The criterium for the avoidance of cross-talking in both
cases (IUPUI and ISOF) is the observation of not too
large correlations 〈h(x, y)∆V (x, y)〉 < 0.5 between the
height h(x, y) measured by the AFM at point (x, y) and
the potential ∆V (x, y) measured by the KPFM at the
same point.

Obviously, the measured KPFM image is a convolu-
tion between the real potential map and the microscope
transfer function, leading to unavoidable broadening of
the nano-objects and underestimation of the measured
potential differences. The measured map can be retrieved
using linear deconvolution, although perfect recovery is
impossible without a precise description of the noise in
the system [47, 48]. The transfer function can be de-
scribed in terms of tip-sample electrostatic interactions
and its width corresponds to effective surface area of the
sample interacting with the tip. Due to the long-range
nature of the electrostatic interactions, the area of the

surface sampled in such a measurement expands several
tens of nanometers beyond the area underneath the apex
of the probe. In addition, the surrounding part of the
conical tip as well as the oscillating cantilever contribute
to the interaction. Other experimental parameters, in
particular the amplitude V1 of the modulation, affect the
transfer function and its analytic evaluation requires a
comprehensive simulation of the tip-sample system [49].
Usually, the transfer function has been calculated using
simplified tip geometries [50, 51].

In this work, we have by-passed simulations and simpli-
fied geometries by exploiting a semi-quantitative model
developed in Ref. [39]. This approach has been checked
by measuring nano patterned samples with well-defined
geometries. Previous experiments performed with the
same tip-sample geometry at the same separation dis-
tance allowed us to evaluate an effective microscope
transfer function width of ∼100 nm [37]. In the case
of an isotropic surface, the transfer function can be as-
sumed to be Gaussian. In this situation, a simple relation
w = 0.626× LR was recently demonstrated between the
width (w) of the effective area and lateral resolution (LR)
defined as the minimal detectable feature size [38, 52].
For ISOF measurements, the pixel size of 30 nm corre-
sponds to a third of the effective area width. This allows
us to neglect pixelization and convolution artifacts for ar-
eas larger than 160 nm (i.e. larger than 5 pixels width),
and implies that the acquired KPFM images provide us
with fair maps of the gold surface potential for patch sizes
larger than 160 nm. We tested this property by using the
same KPFM experimental setup to measure the electri-
cal potential of interdigitated gold nanoelectrodes having
a channel length and an electrode width of 200 nm. By
comparing the applied potential and the measured one,
we observed an underestimation of the electrical poten-
tial difference with AM-KPFM of the order of 20%.

IV. ELECTROSTATIC PATCH INTERACTION
BETWEEN A PLANE AND A SPHERE

In the following we recall the basic equations to eval-
uate the electrostatic patch interaction between a plane
and a sphere, using the exact solutions derived in [30]. In
particular, the known case of perfect equipotential sur-
faces on the plane and the sphere can be solved in this
way (see the Appendix C in [30]). Here we write the ex-
act solutions for patchy surfaces, and show how to deduce
the patch interaction from the KPFM data measured on
the gold samples. Writing this interaction as an equiva-
lent pressure, as in Eq.(1), we finally compare our results
to ∆P (D).

In order to solve the Poisson equation in the sphere-
plane geometry with arbitrary potential distributions on
both surfaces, it is advantageous to use bi-spherical co-
ordinates because the equation is then separable and the
surfaces correspond to constant values of the bi-spherical
coordinate η [30]. Writing the boundary value problem
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for the electrostatic potential in the space between the
sphere and the plane, the interaction energy can be ex-
pressed as a double integration over solid angles in bi-

spherical coordinates,
∫
dΩ ≡

∫ π
0
dξ
∫ 2π

0
dφ sin ξ, of a

quadratic form of the surface potentials (see Eq. (11)
of [30]). After performing a coordinate transformation
from bi-spherical to spherical or polar coordinates, appro-
priate for the spherical and planar surfaces respectively,
the integration energy can be written in the form

Esp =
∑
a,b

∫∫
dΩadΩbVa(Ωa)Ea,b(Ωa; Ωb)Vb(Ωb) , (5)

where Va,b(Ωa,b) denote the arbitrary electrostatic po-
tentials on the sphere and the plane (with a, b = s or
p respectively), Ωs ≡ (θ, φ) are spherical coordinates
on the sphere, and Ωp ≡ (ρ, φ) are polar coordinates
on the plane. The integration measures are defined as∫
dΩs =

∫ 2π

0
dφ
∫ π
0
dθ sin θ (here θ is a polar angle on the

sphere) and
∫
dΩp =

∫ 2π

0
dφ
∫∞
0
dρρ (here ρ is the ra-

dius for a polar coordinate system defined on the plane
with origin below the apex of the sphere). The ker-
nels Ea,b(Ωa; Ωb) depend on the distance D between the
sphere and the plane, and their explicit expressions are
given in Appendix B of [30]. By taking the derivative of
the energy (5) with respect to D, the electrostatic patch
force between the sphere and the plane is computed

Fsp =
∑
a,b

∫∫
dΩadΩbVa(Ωa)Fa,b(Ωa; Ωb)Vb(Ωb) ,

Fa,b(Ωa; Ωb) =
∂Ea,b(Ωa; Ωb)

∂D
. (6)

This expression is general for arbitrary boundary condi-
tions on the sphere and the plane.

As explained in Section III, we have measured the
patch voltages on the planar Au samples used in our
Casimir force measurements, but we do not have the
same KPFM experimental knowledge for the sphere used
in Casimir experiments. In this context, we use the fol-
lowing strategy to compute the total patch force. We
consider that the patch properties on the weakly curved
surface (R � D) are similar to those on the planar one
on the length scales of relevance for our calculation, and
we use the fact known from [30] that the kernels Es,s
and Ep,p thus lead to similar contributions (again for
R � D). We also assume that there are no statisti-
cal correlations between the patches on the sphere and
the plane (〈Vs(Ωs)Vp(Ωp)〉 = 0), so that the kernel Es,p
leads to a negligible contribution. We then approximate
the total force between the plane and the sphere as twice
the patch interaction calculated in the simpler case when
the sphere is grounded (Vs = 0) and the plane has the
patch distribution known from measurements

Fsp ≈ 2

∫∫
dΩpdΩ′pVp(Ωp)Fp,p(Ωp; Ω′p)Vp(Ω′p). (7)

We expect that this approximate expression for the patch
force gives the correct order of magnitude and distance

dependence for the patch interaction, provided the patch
properties on the sphere and the plane are similar, and
the cross terms between the sphere and the plane have a
negligible contribution.

As discussed in Section II, an external voltage V0 is
applied between the two surfaces in order to perform the
electrostatic calibration of the system. This bias V0 is
swept to observe the quadratic dependence of (3) or (4)
on V0 at fixed sphere-plane separation D, and obtain its
minimum which defines the minimizing potential

0 =
∂Fsp

∂V0

∣∣∣∣
V0=Vmin

. (8)

A precise description of this problem is built up by adding
a constant value V0 to the patchy potential Vp in (7) and
sweeping it. Solving (8), we find that Vmin is defined so
that it compensates exactly the average value V p of the
patch potential over the zone of electrostatic influence,
with the latter defined from the kernel Fp,p [30]

Vmin = −V p, (9)

V p ≡
∫
dΩp

∫
dΩ′pVp(Ωp)Fp,p(Ωp; Ω′p)∫

dΩp

∫
dΩ′pFp,p(Ωp; Ω′p)

.

The size of the zone of electrostatic influence is of the
order of

√
RD ∼ 10 µm, with the numbers correspond-

ing to the experiments in [1–3]. The minimizing poten-
tial Vmin, which depends of the specific realization of the
patch voltage in the zone of electrostatic influence, has to
vary when the sphere-plane separation or the lateral posi-
tion of the sphere above the plane are changed. However,
this variation can be small due to the averaging of the
effect of patches over the zone of electrostatic influence.

With the more complete treatment of the electrostatic
problem now achieved, setting the applied potential V0
equal to Vmin does no longer nullify the electrostatic in-
teraction between the sphere and the plane, but only
minimizes it. There indeed remains the effect of the dis-
persion of the patchy potential Vp over the zone of elec-
trostatic influence. This statement is made quantitative
by evaluating the residual patch force (7) which remains
at the minimizing potential (9)

Fres ≡ Fsp|V0=Vmin
(10)

= 2

∫∫
dΩpdΩ′pδVp(Ωp)Fp,p(Ωp; Ω′p)δVp(Ω′p) .

Here δVp(Ωp) is the deviation of the patchy potential
from its average over the zone of electrostatic influence

δVp(Ωp) ≡ Vp(Ωp)− Vp , (11)

so that the residual patch force can effectively be re-
garded as measuring the dispersion of δVp(Ωp) over the
zone of electrostatic influence.

At this point, it is worth discussing the contribution
of patches corresponding to given size scales. For small
sizes, smaller than the distance D between the two plates,
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the contribution is suppressed by the kernel Fp,p ob-
tained by solving the Poisson equation. For large sizes,
larger than the size

√
RD of the zone of electrostatic

influence, the contribution could be large before the cal-
ibration process, but it is essentially canceled out in this
process because Vmin is defined so that it compensates
the average potential of patches over this zone. It follows
that the significant contributions are mainly associated to
size scales in the intermediate interval from D to

√
RD,

that is from a fraction of µm to 10 µm with the numbers
corresponding to the experiments in [1–3]. These quali-
tative statements are made precise by using the Eq.(10),
with the expression of the kernel Fp,p taken from [30].

When performing numerical evaluations, we have to
face the difficulty that the measured samples are, of
course, finite, as discussed in Section III. In order to
obtain patch distribution data over a sufficiently large
area, we used the following “mirror symmetry+replica”
procedure. We took the measured KPFM data of the
finite-size square sample (we call it 1× 1 cell), generated
a 2× 2 cell by taking mirror images of the original 1× 1
cell, and then the 2×2 cell was periodically replicated on
two dimensions, until the final size reaches 80× 80 µm2,
which is certainly enough for our numerics. Clearly, this
procedure introduces artificial correlations over distances
larger than the original sample sizes (15×15 µm2 for the
larger ones), and it also ignores possible long-distance
correlations associated with very large patches. We be-
lieve our method to be valid, at least for preliminary esti-
mations, as a consequence of the discussion of the preced-
ing paragraph. The contribution of possibly large patches
(with sizes larger than

√
RD) is essentially washed out

in the electrostatic calibration process because Vmin com-
pensates the average potential of patches over the zone
of electrostatic influence. We computed the voltage cor-
relation function from the KPFM data, and the resulting
correlation within the measurement area decreases as a
function of distance in an approximate exponential form.
This supports our assumption above for computing the
electrostatic patch interaction.

Fig.3 shows our numerical results for the patch inter-
action, measured as an equivalent patch pressure as in
Eq.(1). Though they were obtained on different parts of
the same sample with different instruments, scan sizes
and resolutions, the measurements made at IUPUI (solid
line with squares) and ISOF (dashed line with circles)
lead to comparable patch pressures, in terms of their
magnitude and variation with distance. In particular,
both curves have a different law of variation with D
and smaller magnitudes than ∆P (D), also reproduced
for comparison on Fig.3. For this difference, the bars
show the experimental uncertainties discussed in [2, 3],
similar to those shown in Fig.1. The theoretical calcula-
tions from the Drude model are described in [1, 2, 29].
They are done at room temperature T = 295 K using
tabulated optical data extrapolated to low frequencies
with a Drude model with parameters ΩP = 8.9 eV for
the plasma frequency and γ = 0.0357 eV for the damping
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FIG. 3: Equivalent electrostatic patch pressure Pres computed
for the IUPUI (solid line with squares) and ISOF (dashed
line with circles) data, versus distance D. We also show,
for comparison, the difference ∆P (D) between experimental
measurements of the Casimir pressure and theoretical predic-
tions based on the Drude model.

rate. A simple model for roughness corrections is used [2],
with root-mean square roughness heights of 3.6 nm and
1.9 nm, for the plane and the sphere respectively.

V. CONCLUSIONS

In this paper, we have shown that it is possible to
measure patch properties on the same Au samples used
in Casimir experiments [2, 3]. In fact we did it on the
planar samples and we assumed that the properties were
similar on the spherical ones. We then estimated the
contribution of patches to the force in the plane-sphere
geometry used in Casimir experiments [30].

We have discussed the subtleties associated to small
and large patch sizes. The influence of patch sizes smaller
than the plane-sphere distance D is suppressed in the so-
lution of the Poisson equation. The influence of patch
areas larger than the zone of influence 2πRD is canceled
by the voltage V0 applied in the electrostatic calibra-
tion. This entails that, for the parameters used in the
Casimir experiment, the significant contributions from
patches are mainly associated to sizes in the interval from
a fraction of a µm to ∼10 µm. Hence the resolution of
the AM-KPFM measurements discussed in Section III
should be sufficient for a reliable estimation of the effect
of electrostatic patches shown in Section IV.

The patch pressure estimations shown in Fig.3 have
smaller magnitudes and a different law of variation with
D than the difference ∆P (D) observed in Casimir exper-
iments [2, 3]. They do not reproduce the results which
were found in [29] to fit this difference. This means that
the statistical properties measured on the patches differ
from the model used in [29]. It has also to be emphasized
at this point that the description of the patch interaction
in [29] was based on the proximity force approximation,
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whereas the present paper used the much more satisfac-
tory approach developed in [30] to perform precise eval-
uations in the plane-sphere geometry.

The analysis of the present paper is preliminary and
some of its limitations have to be cured by further work.
In our calculation of the sphere-plane patch force (7), we
have assumed that the patches on the sphere had the
same statistical properties as on the plane, and also that
the cross-correlations between the patches on the sphere
and plane had a negligible contribution. In order to con-
firm these assumptions, it would be necessary to measure
patches on the spherical mirrors, which is an experimen-
tal challenge. We have measured patch distributions on
samples at ambient pressures, whereas the Casimir exper-
iments were performed at ∼ 10−7 torr. As the pressure
could influence the contamination process and hence the
patch properties, it would be crucial to repeat the patch
characterization on the same metallic samples and under
the same environmental conditions as in the vessel where
Casimir measurements are done.

Our KPFM measurements were done with a scan size
of the order of 15 µm and a resolution of the order of
160nm (ISOF experiment). Such numbers should be suf-
ficient to get a qualitative characterization, as they cover
the patch sizes having a critical influence on the force
between the plane and the sphere. Of course, larger scan
sizes and improved resolutions would allow one to test
the reliability and accuracy of the whole method. Fur-
ther work is thus needed to confirm the present result
that the patch contribution does not match the differ-
ence ∆P (D) observed in Casimir experiments [1–4].

Note added: While this paper was under review, a
preprint [53] has become available with conclusions dif-
fering from ours. It is asserted there that AM-KPFM

measurements underestimate the potential differences as
measured by FM-KPFM and thus lead only to a lower
bound for the patch contribution to the force. Underes-
timations by AM-KPFM of the true potential differences
on metallic samples have indeed been reported [54], and
they depend on experimental conditions. As explained
at the end of § III, we have checked that the underesti-
mation is of the order of 20% for typical patch sizes of
200 nm and under the experimental conditions used in
our measurements. Though it calls for further work in
order to confirm the results of the present paper, such an
underestimation does not affect its conclusions (see the
preceding paragraphs).
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